Gurobi

class pyomo.contrib.appsi.solvers.gurobi.GurobiResults(solver)[source]

Bases: pyomo.contrib.appsi.base.Results

class pyomo.contrib.appsi.solvers.gurobi.Gurobi[source]

Bases: pyomo.contrib.appsi.base.PersistentBase, pyomo.contrib.appsi.base.PersistentSolver

Interface to Gurobi

class Availability(value)

Bases: enum.IntEnum

An enumeration.

BadLicense = -2
BadVersion = -1
FullLicense = 1
LimitedLicense = 2
NotFound = 0
add_block(block)
add_constraints(cons: List[pyomo.core.base.constraint._GeneralConstraintData])
add_params(params: List[pyomo.core.base.param._ParamData])
add_sos_constraints(cons: List[pyomo.core.base.sos._SOSConstraintData])
add_variables(variables: List[pyomo.core.base.var._GeneralVarData])
available()[source]

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs. ‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to True if the solver is available (possibly with limitations). The Enum may also have multiple members that all resolve to False indicating the reason why the interface is not available (not found, bad license, unsupported version, etc).

Returns:available – An enum that indicates “how available” the solver is. Note that the enum can be cast to bool, which will be True if the solver is runable at all and False otherwise.
Return type:Solver.Availability
cbCut(con)[source]

Add a cut within a callback.

Parameters:con (pyomo.core.base.constraint._GeneralConstraintData) – The cut to add
cbGet(what)[source]
cbGetNodeRel(vars)[source]
Parameters:vars (Var or iterable of Var) –
cbGetSolution(vars)[source]
Parameters:vars (iterable of vars) –
cbLazy(con)[source]
Parameters:con (pyomo.core.base.constraint._GeneralConstraintData) – The lazy constraint to add
cbSetSolution(vars, solution)[source]
cbUseSolution()[source]
property config: pyomo.contrib.appsi.solvers.gurobi.GurobiConfig

An object for configuring solve options.

Returns:An object for configuring pyomo solve options such as the time limit. These options are mostly independent of the solver.
Return type:SolverConfig
get_duals(cons_to_load=None)[source]

Declare sign convention in docstring here.

Parameters:cons_to_load (list) – A list of the constraints whose duals should be loaded. If cons_to_load is None, then the duals for all constraints will be loaded.
Returns:duals – Maps constraints to dual values
Return type:dict
get_gurobi_param_info(param)[source]

Get information about a gurobi parameter.

Parameters:param (str) – The gurobi parameter to get info for. See Gurobi documenation for possible options.
Returns:
Return type:six-tuple containing the parameter name, type, value, minimum value, maximum value, and default value.
get_linear_constraint_attr(con, attr)[source]

Get the value of an attribute on a gurobi linear constraint.

Parameters:
  • con (pyomo.core.base.constraint._GeneralConstraintData) – The pyomo constraint for which the corresponding gurobi constraint attribute should be retrieved.
  • attr (str) – The attribute to get. See the Gurobi documentation
get_model_attr(attr)[source]

Get the value of an attribute on the Gurobi model.

Parameters:attr (str) – The attribute to get. See Gurobi documentation for descriptions of the attributes.
get_primals(vars_to_load=None, solution_number=0)[source]
get_quadratic_constraint_attr(con, attr)[source]

Get the value of an attribute on a gurobi quadratic constraint.

Parameters:
  • con (pyomo.core.base.constraint._GeneralConstraintData) – The pyomo constraint for which the corresponding gurobi constraint attribute should be retrieved.
  • attr (str) – The attribute to get. See the Gurobi documentation
get_reduced_costs(vars_to_load=None)[source]
Parameters:vars_to_load (list) – A list of the variables whose reduced cost should be loaded. If vars_to_load is None, then all reduced costs will be loaded.
Returns:reduced_costs – Maps variable to reduced cost
Return type:ComponentMap
get_slacks(cons_to_load=None)[source]
Parameters:cons_to_load (list) – A list of the constraints whose slacks should be loaded. If cons_to_load is None, then the slacks for all constraints will be loaded.
Returns:slacks – Maps constraints to slack values
Return type:dict
get_sos_attr(con, attr)[source]

Get the value of an attribute on a gurobi sos constraint.

Parameters:
  • con (pyomo.core.base.sos._SOSConstraintData) – The pyomo SOS constraint for which the corresponding gurobi SOS constraint attribute should be retrieved.
  • attr (str) – The attribute to get. See the Gurobi documentation
get_var_attr(var, attr)[source]

Get the value of an attribute on a gurobi var.

Parameters:
  • var (pyomo.core.base.var._GeneralVarData) – The pyomo var for which the corresponding gurobi var attribute should be retrieved.
  • attr (str) – The attribute to get. See gurobi documentation
property gurobi_options
returns: gurobi_options – A dictionary mapping solver options to values for those options. These
are solver specific.
Return type:dict
is_persistent()
Returns:is_persistent – True if the solver is a persistent solver.
Return type:bool
load_vars(vars_to_load=None, solution_number=0)[source]

Load the solution of the primal variables into the value attribut of the variables.

Parameters:vars_to_load (list) – A list of the variables whose solution should be loaded. If vars_to_load is None, then the solution to all primal variables will be loaded.
remove_block(block)
remove_constraints(cons: List[pyomo.core.base.constraint._GeneralConstraintData])
remove_params(params: List[pyomo.core.base.param._ParamData])
remove_sos_constraints(cons: List[pyomo.core.base.sos._SOSConstraintData])
remove_variables(variables: List[pyomo.core.base.var._GeneralVarData])
reset()[source]
set_callback(func=None)[source]

Specify a callback for gurobi to use.

Parameters:func (function) –

The function to call. The function should have three arguments. The first will be the pyomo model being solved. The second will be the GurobiPersistent instance. The third will be an enum member of gurobipy.GRB.Callback. This will indicate where in the branch and bound algorithm gurobi is at. For example, suppose we want to solve

min 2*x + y s.t.

y >= (x-2)**2 0 <= x <= 4 y >= 0 y integer

as an MILP using exteneded cutting planes in callbacks.

>>> from gurobipy import GRB 
>>> import pyomo.environ as pe
>>> from pyomo.core.expr.taylor_series import taylor_series_expansion
>>> from pyomo.contrib import appsi
>>>
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var(bounds=(0, 4))
>>> m.y = pe.Var(within=pe.Integers, bounds=(0, None))
>>> m.obj = pe.Objective(expr=2*m.x + m.y)
>>> m.cons = pe.ConstraintList()  # for the cutting planes
>>>
>>> def _add_cut(xval):
...     # a function to generate the cut
...     m.x.value = xval
...     return m.cons.add(m.y >= taylor_series_expansion((m.x - 2)**2))
>>>
>>> _c = _add_cut(0)  # start with 2 cuts at the bounds of x
>>> _c = _add_cut(4)  # this is an arbitrary choice
>>>
>>> opt = appsi.solvers.Gurobi()
>>> opt.config.stream_solver = True
>>> opt.set_instance(m) 
>>> opt.gurobi_options['PreCrush'] = 1
>>> opt.gurobi_options['LazyConstraints'] = 1
>>>
>>> def my_callback(cb_m, cb_opt, cb_where):
...     if cb_where == GRB.Callback.MIPSOL:
...         cb_opt.cbGetSolution(vars=[m.x, m.y])
...         if m.y.value < (m.x.value - 2)**2 - 1e-6:
...             cb_opt.cbLazy(_add_cut(m.x.value))
>>>
>>> opt.set_callback(my_callback)
>>> res = opt.solve(m) 
set_gurobi_param(param, val)[source]

Set a gurobi parameter.

Parameters:
  • param (str) – The gurobi parameter to set. Options include any gurobi parameter. Please see the Gurobi documentation for options.
  • val (any) – The value to set the parameter to. See Gurobi documentation for possible values.
set_instance(model)[source]
set_linear_constraint_attr(con, attr, val)[source]

Set the value of an attribute on a gurobi linear constraint.

Parameters:
  • con (pyomo.core.base.constraint._GeneralConstraintData) – The pyomo constraint for which the corresponding gurobi constraint attribute should be modified.
  • attr (str) –
    The attribute to be modified. Options are:
    CBasis DStart Lazy
  • val (any) – See gurobi documentation for acceptable values.
set_objective(obj: pyomo.core.base.objective._GeneralObjectiveData)
set_var_attr(var, attr, val)[source]

Set the value of an attribute on a gurobi variable.

Parameters:
  • var (pyomo.core.base.var._GeneralVarData) – The pyomo var for which the corresponding gurobi var attribute should be modified.
  • attr (str) –
    The attribute to be modified. Options are:
    Start VarHintVal VarHintPri BranchPriority VBasis PStart
  • val (any) – See gurobi documentation for acceptable values.
solve(model, timer: Optional[pyomo.common.timing.HierarchicalTimer] = None) pyomo.contrib.appsi.base.Results[source]

Solve a Pyomo model.

Parameters:
  • model (_BlockData) – The Pyomo model to be solved
  • timer (HierarchicalTimer) – An option timer for reporting timing
Returns:

results – A results object

Return type:

Results

solve_sub_block(block)
property symbol_map
update(timer: Optional[pyomo.common.timing.HierarchicalTimer] = None)[source]
property update_config
update_params()[source]
update_variables(variables: List[pyomo.core.base.var._GeneralVarData])
version()[source]
Returns:version – A tuple representing the version
Return type:tuple
write(filename)[source]

Write the model to a file (e.g., and lp file).

Parameters:filename (str) – Name of the file to which the model should be written.