strategy (In(dict_keys(['rand', 'midpoint_guess_and_bound', 'rand_guess_and_bound', 'rand_distributed', 'midpoint'])), default='rand') –
Specify the restart strategy.
”rand”: random choice between variable bounds
”midpoint_guess_and_bound”: midpoint between current value and
farthest bound
”rand_guess_and_bound”: random choice between current value and
farthest bound
”rand_distributed”: random choice among evenly distributed values
”midpoint”: exact midpoint between the bounds. If using this option,
multiple iterations are useless.
solver (default='ipopt') – solver to use, defaults to ipopt
solver_args (default={}) – Dictionary of keyword arguments to pass to the solver.
iterations (default=10) – Specify the number of iterations, defaults to 10. If -1 is specified,
the high confidence stopping rule will be used
stopping_mass (default=0.5) – Maximum allowable estimated missing mass of optima for the high
confidence stopping rule, only used with the random strategy. The
lower the parameter, the stricter the rule. Value bounded in (0, 1].
stopping_delta (default=0.5) – 1 minus the confidence level required for the stopping rule for the
high confidence stopping rule, only used with the random strategy. The
lower the parameter, the stricter the rule. Value bounded in (0, 1].
suppress_unbounded_warning (bool, default=False) – True to suppress warning for skipping unbounded variables.
HCS_max_iterations (default=1000) – Maximum number of iterations before interrupting the high confidence
stopping rule.
HCS_tolerance (default=0) – Tolerance on HCS objective value equality. Defaults to Python float
equality precision.