# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright (c) 2008-2024
# National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________
"""
This module contains transformations for representing a
single-variate piecewise linear function using a
mixed-integer problem formulation (see [VAN10]_).
"""
import logging
import bisect
# TODO: Figure out of the 'log' and 'dlog' representations
# really do require (2^n)+1 points or if there is a way to
# handle the between sizes.
from pyomo.core.expr.numvalue import value as _value
from pyomo.core.kernel.set_types import IntegerSet
from pyomo.core.kernel.block import block
from pyomo.core.kernel.expression import expression, expression_tuple
from pyomo.core.kernel.variable import (
IVariable,
variable_list,
variable_tuple,
variable_dict,
variable,
)
from pyomo.core.kernel.constraint import (
constraint_list,
constraint_tuple,
linear_constraint,
)
from pyomo.core.kernel.sos import sos2
from pyomo.core.kernel.piecewise_library.util import (
characterize_function,
is_nondecreasing,
is_positive_power_of_two,
log2floor,
generate_gray_code,
PiecewiseValidationError,
)
logger = logging.getLogger('pyomo.core')
registered_transforms = {}
# wrapper that allows a list containing parameters to be
# used with the bisect module
class _shadow_list(object):
__slots__ = ("_x",)
def __init__(self, x):
self._x = x
def __len__(self):
return self._x.__len__()
def __getitem__(self, i):
return _value(self._x.__getitem__(i))
[docs]
def piecewise(
breakpoints,
values,
input=None,
output=None,
bound='eq',
repn='sos2',
validate=True,
simplify=True,
equal_slopes_tolerance=1e-6,
require_bounded_input_variable=True,
require_variable_domain_coverage=True,
):
"""
Models a single-variate piecewise linear function.
This function takes a list breakpoints and function
values describing a piecewise linear function and
transforms this input data into a block of variables and
constraints that enforce a piecewise linear relationship
between an input variable and an output variable. In the
general case, this transformation requires the use of
discrete decision variables.
Args:
breakpoints (list): The list of breakpoints of the
piecewise linear function. This can be a list of
numbers or a list of objects that store mutable
data (e.g., mutable parameters). If mutable data
is used validation might need to be disabled by
setting the :attr:`validate` keyword to
:const:`False`. The list of breakpoints must be
in non-decreasing order.
values (list): The values of the piecewise linear
function corresponding to the breakpoints.
input: The variable constrained to be the input of
the piecewise linear function.
output: The variable constrained to be the output of
the piecewise linear function.
bound (str): The type of bound to impose on the
output expression. Can be one of:
- 'lb': y <= f(x)
- 'eq': y = f(x)
- 'ub': y >= f(x)
repn (str): The type of piecewise representation to
use. Choices are shown below (+ means step
functions are supported)
- 'sos2': standard representation using sos2 constraints (+)
- 'dcc': disaggregated convex combination (+)
- 'dlog': logarithmic disaggregated convex combination (+)
- 'cc': convex combination (+)
- 'log': logarithmic branching convex combination (+)
- 'mc': multiple choice
- 'inc': incremental method (+)
validate (bool): Indicates whether or not to perform
validation of the input data. The default is
:const:`True`. Validation can be performed
manually after the piecewise object is created
by calling the :meth:`validate`
method. Validation should be performed any time
the inputs are changed (e.g., when using mutable
parameters in the breakpoints list or when the
input variable changes).
simplify (bool): Indicates whether or not to attempt
to simplify the piecewise representation to
avoid using discrete variables. This can be done
when the feasible region for the output
variable, with respect to the piecewise function
and the bound type, is a convex set. Default is
:const:`True`. Validation is required to perform
simplification, so this keyword is ignored when
the :attr:`validate` keyword is :attr:`False`.
equal_slopes_tolerance (float): Tolerance used check
if consecutive slopes are nearly equal. If any
are found, validation will fail. Default is
1e-6. This keyword is ignored when the
:attr:`validate` keyword is :attr:`False`.
require_bounded_input_variable (bool): Indicates if
the input variable is required to have finite
upper and lower bounds. Default is
:const:`True`. Setting this keyword to
:const:`False` can be used to allow general
expressions to be used as the input in place of
a variable. This keyword is ignored when the
:attr:`validate` keyword is :attr:`False`.
require_variable_domain_coverage (bool): Indicates
if the function domain (defined by the endpoints
of the breakpoints list) needs to cover the
entire domain of the input variable. Default is
:const:`True`. Ignored for any bounds of
variables that are not finite, or when the input
is not assigned a variable. This keyword is
ignored when the :attr:`validate` keyword is
:attr:`False`.
Returns:
TransformedPiecewiseLinearFunction: a block that
stores any new variables, constraints, and other
modeling objects used by the piecewise representation
"""
transform = None
try:
transform = registered_transforms[repn]
except KeyError:
raise ValueError(
"Keyword assignment repn='%s' is not valid. "
"Must be one of: %s" % (repn, str(sorted(registered_transforms.keys())))
)
assert transform is not None
if not validate:
# can not simplify if we do not validate
simplify = False
func = PiecewiseLinearFunction(breakpoints, values, validate=False)
if simplify and (transform is not piecewise_convex):
ftype = func.validate(equal_slopes_tolerance=equal_slopes_tolerance)
if (bound == 'eq') and (ftype == characterize_function.affine):
transform = piecewise_convex
elif (bound == 'lb') and (
ftype in (characterize_function.affine, characterize_function.convex)
):
transform = piecewise_convex
elif (bound == 'ub') and (
ftype in (characterize_function.affine, characterize_function.concave)
):
transform = piecewise_convex
return transform(
func,
input=input,
output=output,
bound=bound,
validate=validate,
equal_slopes_tolerance=equal_slopes_tolerance,
require_bounded_input_variable=require_bounded_input_variable,
require_variable_domain_coverage=require_variable_domain_coverage,
)
[docs]
class PiecewiseLinearFunction(object):
"""A piecewise linear function
Piecewise linear functions are defined by a list of
breakpoints and a list function values corresponding to
each breakpoint. The function value between breakpoints
is implied through linear interpolation.
Args:
breakpoints (list): The list of function
breakpoints.
values (list): The list of function values (one for
each breakpoint).
validate (bool): Indicates whether or not to perform
validation of the input data. The default is
:const:`True`. Validation can be performed
manually after the piecewise object is created
by calling the :meth:`validate`
method. Validation should be performed any time
the inputs are changed (e.g., when using mutable
parameters in the breakpoints list).
**kwds: Additional keywords are passed to the
:meth:`validate` method when the :attr:`validate`
keyword is :const:`True`; otherwise, they are
ignored.
"""
__slots__ = ("_breakpoints", "_values")
[docs]
def __init__(self, breakpoints, values, validate=True, **kwds):
self._breakpoints = breakpoints
self._values = values
if type(self._breakpoints) is not tuple:
self._breakpoints = tuple(self._breakpoints)
if type(self._values) is not tuple:
self._values = tuple(self._values)
if len(self._breakpoints) != len(self._values):
raise ValueError(
"The number of breakpoints (%s) differs from "
"the number of function values (%s)"
% (len(self._breakpoints), len(self._values))
)
if validate:
self.validate(**kwds)
def __getstate__(self):
"""Required for older versions of the pickle
protocol since this class uses __slots__"""
return {key: getattr(self, key) for key in self.__slots__}
def __setstate__(self, state):
"""Required for older versions of the pickle
protocol since this class uses __slots__"""
for key in state:
setattr(self, key, state[key])
[docs]
def validate(self, equal_slopes_tolerance=1e-6):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints and values
lists (e.g., that the list of breakpoints is
nondecreasing).
Args:
equal_slopes_tolerance (float): Tolerance used
check if consecutive slopes are nearly
equal. If any are found, validation will
fail. Default is 1e-6.
Returns:
int:
a function characterization code (see
:func:`util.characterize_function`)
Raises:
PiecewiseValidationError: if validation fails
"""
breakpoints = [_value(x) for x in self._breakpoints]
values = [_value(x) for x in self._values]
if not is_nondecreasing(breakpoints):
raise PiecewiseValidationError(
"The list of breakpoints is not nondecreasing: %s" % (str(breakpoints))
)
ftype, slopes = characterize_function(breakpoints, values)
for i in range(1, len(slopes)):
if (
(slopes[i - 1] is not None)
and (slopes[i] is not None)
and (abs(slopes[i - 1] - slopes[i]) <= equal_slopes_tolerance)
):
raise PiecewiseValidationError(
"Piecewise function validation detected slopes "
"of consecutive line segments to be within %s "
"of one another. This may cause numerical issues. "
"To avoid this error, set the 'equal_slopes_tolerance' "
"keyword to a smaller value or disable validation."
% (equal_slopes_tolerance)
)
return ftype
@property
def breakpoints(self):
"""The set of breakpoints used to defined this function"""
return self._breakpoints
@property
def values(self):
"""The set of values used to defined this function"""
return self._values
def __call__(self, x):
"""Evaluates the piecewise linear function at the
given point using interpolation. Note that step functions are
assumed lower-semicontinuous."""
i = bisect.bisect_left(_shadow_list(self.breakpoints), x)
if i == 0:
xP = _value(self.breakpoints[i])
if xP == x:
return float(_value(self.values[i]))
elif i != len(self.breakpoints):
xL = _value(self.breakpoints[i - 1])
xU = _value(self.breakpoints[i])
assert xL <= xU
if (xL <= x) and (x <= xU):
yL = _value(self.values[i - 1])
yU = _value(self.values[i])
return yL + (float(yU - yL) / (xU - xL)) * (x - xL)
raise ValueError(
"The point %s is outside of the "
"function domain: [%s,%s]."
% (x, _value(self.breakpoints[0]), _value(self.breakpoints[-1]))
)
[docs]
class piecewise_convex(TransformedPiecewiseLinearFunction):
"""Simple convex piecewise representation
Expresses a piecewise linear function with a convex
feasible region for the output variable using a simple
collection of linear constraints.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_convex, self).__init__(*args, **kwds)
breakpoints = self.breakpoints
values = self.values
self.c = constraint_list()
for i in range(len(breakpoints) - 1):
X0 = breakpoints[i]
F_AT_X0 = values[i]
dF_AT_X0 = (values[i + 1] - F_AT_X0) / (breakpoints[i + 1] - X0)
const = F_AT_X0 - dF_AT_X0 * X0
con = linear_constraint((self.output, self.input), (-1, dF_AT_X0))
if self.bound == 'ub':
con.lb = -const
elif self.bound == 'lb':
con.ub = -const
else:
assert self.bound == 'eq'
con.rhs = -const
self.c.append(con)
# In order to enforce the same behavior as actual
# piecewise constraints, we need to constrain the
# input expression to be between first and last
# breakpoint. This might be duplicating the
# variable, but its not always the case, and there's
# no guarantee that the input "variable" is not a
# more general linear expression.
self.c.append(
linear_constraint(
terms=[(self.input, 1)], lb=self.breakpoints[0], ub=self.breakpoints[-1]
)
)
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
ftype = super(piecewise_convex, self).validate(**kwds)
if (self.bound == 'eq') and (ftype != characterize_function.affine):
raise PiecewiseValidationError(
"The bound type is 'eq' but the function "
"was not characterized as affine (only two "
"breakpoints). The 'convex' piecewise "
"representation does not support this function."
)
elif (self.bound == 'lb') and (
ftype not in (characterize_function.affine, characterize_function.convex)
):
raise PiecewiseValidationError(
"The bound type is 'lb' but the function "
"was not characterized as convex or affine. "
"The 'convex' piecewise representation does "
"not support this function."
)
elif (self.bound == 'ub') and (
ftype not in (characterize_function.affine, characterize_function.concave)
):
raise PiecewiseValidationError(
"The bound type is 'ub' but the function "
"was not characterized as concave or affine. "
"The 'convex' piecewise representation does "
"not support this function."
)
return ftype
registered_transforms['convex'] = piecewise_convex
[docs]
class piecewise_sos2(TransformedPiecewiseLinearFunction):
"""Discrete SOS2 piecewise representation
Expresses a piecewise linear function using
the SOS2 formulation.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_sos2, self).__init__(*args, **kwds)
# create vars
y_tuple = tuple(variable(lb=0) for i in range(len(self.breakpoints)))
y = self.v = variable_tuple(y_tuple)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=y_tuple + (self.input,),
coefficients=self.breakpoints + (-1,),
rhs=0,
)
)
self.c.append(
linear_constraint(
variables=y_tuple + (self.output,), coefficients=self.values + (-1,)
)
)
if self.bound == 'ub':
self.c[-1].lb = 0
elif self.bound == 'lb':
self.c[-1].ub = 0
else:
assert self.bound == 'eq'
self.c[-1].rhs = 0
self.c.append(
linear_constraint(variables=y_tuple, coefficients=(1,) * len(y), rhs=1)
)
self.s = sos2(y)
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
return super(piecewise_sos2, self).validate(**kwds)
registered_transforms['sos2'] = piecewise_sos2
[docs]
class piecewise_dcc(TransformedPiecewiseLinearFunction):
"""Discrete DCC piecewise representation
Expresses a piecewise linear function using
the DCC formulation.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_dcc, self).__init__(*args, **kwds)
# create index sets
polytopes = range(len(self.breakpoints) - 1)
vertices = range(len(self.breakpoints))
def polytope_verts(p):
return range(p, p + 2)
# create vars
self.v = variable_dict()
lmbda = self.v['lambda'] = variable_dict(
((p, v), variable(lb=0)) for p in polytopes for v in vertices
)
y = self.v['y'] = variable_tuple(
variable(domain_type=IntegerSet, lb=0, ub=1) for p in polytopes
)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=tuple(
lmbda[p, v] for p in polytopes for v in polytope_verts(p)
)
+ (self.input,),
coefficients=tuple(
self.breakpoints[v] for p in polytopes for v in polytope_verts(p)
)
+ (-1,),
rhs=0,
)
)
self.c.append(
linear_constraint(
variables=tuple(
lmbda[p, v] for p in polytopes for v in polytope_verts(p)
)
+ (self.output,),
coefficients=tuple(
self.values[v] for p in polytopes for v in polytope_verts(p)
)
+ (-1,),
)
)
if self.bound == 'ub':
self.c[-1].lb = 0
elif self.bound == 'lb':
self.c[-1].ub = 0
else:
assert self.bound == 'eq'
self.c[-1].rhs = 0
clist = []
for p in polytopes:
variables = tuple(lmbda[p, v] for v in polytope_verts(p))
clist.append(
linear_constraint(
variables=variables + (y[p],),
coefficients=(1,) * len(variables) + (-1,),
rhs=0,
)
)
self.c.append(constraint_tuple(clist))
self.c.append(
linear_constraint(variables=tuple(y), coefficients=(1,) * len(y), rhs=1)
)
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
return super(piecewise_dcc, self).validate(**kwds)
registered_transforms['dcc'] = piecewise_dcc
[docs]
class piecewise_cc(TransformedPiecewiseLinearFunction):
"""Discrete CC piecewise representation
Expresses a piecewise linear function using
the CC formulation.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_cc, self).__init__(*args, **kwds)
# create index sets
polytopes = range(len(self.breakpoints) - 1)
vertices = range(len(self.breakpoints))
def vertex_polys(v):
if v == 0:
return [v]
if v == len(self.breakpoints) - 1:
return [v - 1]
else:
return [v - 1, v]
# create vars
self.v = variable_dict()
lmbda = self.v['lambda'] = variable_tuple(variable(lb=0) for v in vertices)
y = self.v['y'] = variable_tuple(
variable(domain_type=IntegerSet, lb=0, ub=1) for p in polytopes
)
lmbda_tuple = tuple(lmbda)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=lmbda_tuple + (self.input,),
coefficients=self.breakpoints + (-1,),
rhs=0,
)
)
self.c.append(
linear_constraint(
variables=lmbda_tuple + (self.output,), coefficients=self.values + (-1,)
)
)
if self.bound == 'ub':
self.c[-1].lb = 0
elif self.bound == 'lb':
self.c[-1].ub = 0
else:
assert self.bound == 'eq'
self.c[-1].rhs = 0
self.c.append(
linear_constraint(
variables=lmbda_tuple, coefficients=(1,) * len(lmbda), rhs=1
)
)
clist = []
for v in vertices:
variables = tuple(y[p] for p in vertex_polys(v))
clist.append(
linear_constraint(
variables=variables + (lmbda[v],),
coefficients=(1,) * len(variables) + (-1,),
lb=0,
)
)
self.c.append(constraint_tuple(clist))
self.c.append(
linear_constraint(variables=tuple(y), coefficients=(1,) * len(y), rhs=1)
)
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
return super(piecewise_cc, self).validate(**kwds)
registered_transforms['cc'] = piecewise_cc
[docs]
class piecewise_mc(TransformedPiecewiseLinearFunction):
"""Discrete MC piecewise representation
Expresses a piecewise linear function using
the MC formulation.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_mc, self).__init__(*args, **kwds)
# create indexers
polytopes = range(len(self.breakpoints) - 1)
# create constants (using future division)
# these might also be expressions if the breakpoints
# or values lists contain mutable objects
slopes = tuple(
(self.values[p + 1] - self.values[p])
/ (self.breakpoints[p + 1] - self.breakpoints[p])
for p in polytopes
)
intercepts = tuple(
self.values[p] - (slopes[p] * self.breakpoints[p]) for p in polytopes
)
# create vars
self.v = variable_dict()
lmbda = self.v['lambda'] = variable_tuple(variable() for p in polytopes)
lmbda_tuple = tuple(lmbda)
y = self.v['y'] = variable_tuple(
variable(domain_type=IntegerSet, lb=0, ub=1) for p in polytopes
)
y_tuple = tuple(y)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=lmbda_tuple + (self.input,),
coefficients=(1,) * len(lmbda) + (-1,),
rhs=0,
)
)
self.c.append(
linear_constraint(
variables=lmbda_tuple + y_tuple + (self.output,),
coefficients=slopes + intercepts + (-1,),
)
)
if self.bound == 'ub':
self.c[-1].lb = 0
elif self.bound == 'lb':
self.c[-1].ub = 0
else:
assert self.bound == 'eq'
self.c[-1].rhs = 0
clist1 = []
clist2 = []
for p in polytopes:
clist1.append(
linear_constraint(
variables=(y[p], lmbda[p]),
coefficients=(self.breakpoints[p], -1),
ub=0,
)
)
clist2.append(
linear_constraint(
variables=(lmbda[p], y[p]),
coefficients=(1, -self.breakpoints[p + 1]),
ub=0,
)
)
self.c.append(constraint_tuple(clist1))
self.c.append(constraint_tuple(clist2))
self.c.append(
linear_constraint(variables=y_tuple, coefficients=(1,) * len(y), rhs=1)
)
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
ftype = super(piecewise_mc, self).validate(**kwds)
# this representation does not support step functions
if ftype == characterize_function.step:
raise PiecewiseValidationError(
"The 'mc' piecewise representation does not support step functions."
)
return ftype
registered_transforms['mc'] = piecewise_mc
[docs]
class piecewise_inc(TransformedPiecewiseLinearFunction):
"""Discrete INC piecewise representation
Expresses a piecewise linear function using
the INC formulation.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_inc, self).__init__(*args, **kwds)
# create indexers
polytopes = range(len(self.breakpoints) - 1)
# create vars
self.v = variable_dict()
delta = self.v['delta'] = variable_tuple(variable() for p in polytopes)
delta[0].ub = 1
delta[-1].lb = 0
delta_tuple = tuple(delta)
y = self.v['y'] = variable_tuple(
variable(domain_type=IntegerSet, lb=0, ub=1) for p in polytopes[:-1]
)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=(self.input,) + delta_tuple,
coefficients=(-1,)
+ tuple(
self.breakpoints[p + 1] - self.breakpoints[p] for p in polytopes
),
rhs=-self.breakpoints[0],
)
)
self.c.append(
linear_constraint(
variables=(self.output,) + delta_tuple,
coefficients=(-1,)
+ tuple(self.values[p + 1] - self.values[p] for p in polytopes),
)
)
if self.bound == 'ub':
self.c[-1].lb = -self.values[0]
elif self.bound == 'lb':
self.c[-1].ub = -self.values[0]
else:
assert self.bound == 'eq'
self.c[-1].rhs = -self.values[0]
clist1 = []
clist2 = []
for p in polytopes[:-1]:
clist1.append(
linear_constraint(
variables=(delta[p + 1], y[p]), coefficients=(1, -1), ub=0
)
)
clist2.append(
linear_constraint(
variables=(y[p], delta[p]), coefficients=(1, -1), ub=0
)
)
self.c.append(constraint_tuple(clist1))
self.c.append(constraint_tuple(clist2))
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
return super(piecewise_inc, self).validate(**kwds)
registered_transforms['inc'] = piecewise_inc
[docs]
class piecewise_dlog(TransformedPiecewiseLinearFunction):
"""Discrete DLOG piecewise representation
Expresses a piecewise linear function using the DLOG
formulation. This formulation uses logarithmic number of
discrete variables in terms of number of breakpoints.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_dlog, self).__init__(*args, **kwds)
breakpoints = self.breakpoints
values = self.values
if not is_positive_power_of_two(len(breakpoints) - 1):
raise ValueError(
"The list of breakpoints must be "
"of length (2^n)+1 for some positive "
"integer n. Invalid length: %s" % (len(breakpoints))
)
# create branching schemes
L = log2floor(len(breakpoints) - 1)
assert 2**L == len(breakpoints) - 1
B_LEFT, B_RIGHT = self._branching_scheme(L)
# create indexers
polytopes = range(len(breakpoints) - 1)
vertices = range(len(breakpoints))
def polytope_verts(p):
return range(p, p + 2)
# create vars
self.v = variable_dict()
lmbda = self.v['lambda'] = variable_dict(
((p, v), variable(lb=0)) for p in polytopes for v in polytope_verts(p)
)
y = self.v['y'] = variable_tuple(
variable(domain_type=IntegerSet, lb=0, ub=1) for i in range(L)
)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=(self.input,)
+ tuple(lmbda[p, v] for p in polytopes for v in polytope_verts(p)),
coefficients=(-1,)
+ tuple(breakpoints[v] for p in polytopes for v in polytope_verts(p)),
rhs=0,
)
)
self.c.append(
linear_constraint(
variables=(self.output,)
+ tuple(lmbda[p, v] for p in polytopes for v in polytope_verts(p)),
coefficients=(-1,)
+ tuple(values[v] for p in polytopes for v in polytope_verts(p)),
)
)
if self.bound == 'ub':
self.c[-1].lb = 0
elif self.bound == 'lb':
self.c[-1].ub = 0
else:
assert self.bound == 'eq'
self.c[-1].rhs = 0
self.c.append(
linear_constraint(
variables=tuple(lmbda.values()), coefficients=(1,) * len(lmbda), rhs=1
)
)
clist = []
for i in range(L):
variables = tuple(lmbda[p, v] for p in B_LEFT[i] for v in polytope_verts(p))
clist.append(
linear_constraint(
variables=variables + (y[i],),
coefficients=(1,) * len(variables) + (-1,),
ub=0,
)
)
self.c.append(constraint_tuple(clist))
del clist
clist = []
for i in range(L):
variables = tuple(
lmbda[p, v] for p in B_RIGHT[i] for v in polytope_verts(p)
)
clist.append(
linear_constraint(
variables=variables + (y[i],),
coefficients=(1,) * len(variables) + (1,),
ub=1,
)
)
self.c.append(constraint_tuple(clist))
def _branching_scheme(self, L):
N = 2**L
B_LEFT = []
for i in range(1, L + 1):
start = 1
step = N // (2**i)
tmp = []
while start < N:
tmp.extend(j - 1 for j in range(start, start + step))
start += 2 * step
B_LEFT.append(tmp)
biglist = range(N)
B_RIGHT = []
for i in range(len(B_LEFT)):
tmp = []
for j in biglist:
if j not in B_LEFT[i]:
tmp.append(j)
B_RIGHT.append(sorted(tmp))
return B_LEFT, B_RIGHT
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
return super(piecewise_dlog, self).validate(**kwds)
registered_transforms['dlog'] = piecewise_dlog
[docs]
class piecewise_log(TransformedPiecewiseLinearFunction):
"""Discrete LOG piecewise representation
Expresses a piecewise linear function using the LOG
formulation. This formulation uses logarithmic number of
discrete variables in terms of number of breakpoints.
"""
[docs]
def __init__(self, *args, **kwds):
super(piecewise_log, self).__init__(*args, **kwds)
breakpoints = self.breakpoints
values = self.values
if not is_positive_power_of_two(len(breakpoints) - 1):
raise ValueError(
"The list of breakpoints must be "
"of length (2^n)+1 for some positive "
"integer n. Invalid length: %s" % (len(breakpoints))
)
# create branching schemes
L = log2floor(len(breakpoints) - 1)
S, B_LEFT, B_RIGHT = self._branching_scheme(L)
# create indexers
polytopes = range(len(breakpoints) - 1)
vertices = range(len(breakpoints))
# create vars
self.v = variable_dict()
lmbda = self.v['lambda'] = variable_tuple(variable(lb=0) for v in vertices)
y = self.v['y'] = variable_list(
variable(domain_type=IntegerSet, lb=0, ub=1) for s in S
)
# create piecewise constraints
self.c = constraint_list()
self.c.append(
linear_constraint(
variables=(self.input,) + tuple(lmbda),
coefficients=(-1,) + breakpoints,
rhs=0,
)
)
self.c.append(
linear_constraint(
variables=(self.output,) + tuple(lmbda), coefficients=(-1,) + values
)
)
if self.bound == 'ub':
self.c[-1].lb = 0
elif self.bound == 'lb':
self.c[-1].ub = 0
else:
assert self.bound == 'eq'
self.c[-1].rhs = 0
self.c.append(
linear_constraint(
variables=tuple(lmbda), coefficients=(1,) * len(lmbda), rhs=1
)
)
clist = []
for s in S:
variables = tuple(lmbda[v] for v in B_LEFT[s])
clist.append(
linear_constraint(
variables=variables + (y[s],),
coefficients=(1,) * len(variables) + (-1,),
ub=0,
)
)
self.c.append(constraint_tuple(clist))
del clist
clist = []
for s in S:
variables = tuple(lmbda[v] for v in B_RIGHT[s])
clist.append(
linear_constraint(
variables=variables + (y[s],),
coefficients=(1,) * len(variables) + (1,),
ub=1,
)
)
self.c.append(constraint_tuple(clist))
def _branching_scheme(self, n):
N = 2**n
S = range(n)
G = generate_gray_code(n)
L = tuple(
[
k
for k in range(N + 1)
if ((k == 0) or (G[k - 1][s] == 1)) and ((k == N) or (G[k][s] == 1))
]
for s in S
)
R = tuple(
[
k
for k in range(N + 1)
if ((k == 0) or (G[k - 1][s] == 0)) and ((k == N) or (G[k][s] == 0))
]
for s in S
)
return S, L, R
[docs]
def validate(self, **kwds):
"""
Validate this piecewise linear function by verifying
various properties of the breakpoints, values, and
input variable (e.g., that the list of breakpoints
is nondecreasing).
See base class documentation for keyword
descriptions.
"""
return super(piecewise_log, self).validate(**kwds)
registered_transforms['log'] = piecewise_log