Source code for pyomo.contrib.pynumero.interfaces.pyomo_nlp

#
#  Pyomo: Python Optimization Modeling Objects
#  Copyright (c) 2008-2024
#  National Technology and Engineering Solutions of Sandia, LLC
#  Under the terms of Contract DE-NA0003525 with National Technology and
#  Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
#  rights in this software.
#  This software is distributed under the 3-clause BSD License.
#  ___________________________________________________________________________
"""
This module defines the classes that provide an NLP interface based on
the Ampl Solver Library (ASL) implementation
"""

import os
import numpy as np

from scipy.sparse import coo_matrix
from pyomo.common.deprecation import deprecated
from pyomo.common.tempfiles import TempfileManager
from pyomo.opt import WriterFactory
import pyomo.core.base as pyo
from pyomo.common.collections import ComponentMap
from pyomo.common.env import CtypesEnviron
from pyomo.solvers.amplfunc_merge import amplfunc_merge
from ..sparse.block_matrix import BlockMatrix
from pyomo.contrib.pynumero.interfaces.ampl_nlp import AslNLP
from pyomo.contrib.pynumero.interfaces.nlp import NLP
from pyomo.core.base.suffix import SuffixFinder
from .external_grey_box import ExternalGreyBoxBlock


# TODO: There are todos in the code below
[docs] class PyomoNLP(AslNLP):
[docs] def __init__(self, pyomo_model, nl_file_options=None): """ Pyomo nonlinear program interface Parameters ---------- pyomo_model: pyomo.environ.ConcreteModel Pyomo concrete model """ TempfileManager.push() try: # get the temp file names for the nl file nl_file = TempfileManager.create_tempfile(suffix='pynumero.nl') # The current AmplInterface code only supports a single # objective function Therefore, we throw an error if there # is not one (and only one) active objective function. This # is better than adding a dummy objective that the user does # not know about (since we do not have a good place to # remove this objective later) # # TODO: extend the AmplInterface and the AslNLP to correctly # handle this # # This currently addresses issue #1217 objectives = list( pyomo_model.component_data_objects( ctype=pyo.Objective, active=True, descend_into=True ) ) if len(objectives) != 1: raise NotImplementedError( 'The ASL interface and PyomoNLP in PyNumero currently ' 'only support single objective problems. Deactivate ' 'any extra objectives you may have, or add a dummy ' 'objective (f(x)=0) if you have a square problem ' '(found %s objectives).' % (len(objectives),) ) self._objective = objectives[0] # write the nl file for the Pyomo model and get the symbolMap if nl_file_options is None: nl_file_options = dict() fname, symbolMap = WriterFactory('nl')( pyomo_model, nl_file, lambda x: True, nl_file_options ) self._symbol_map = symbolMap # create component maps from vardata to idx and condata to idx self._vardata_to_idx = vdidx = ComponentMap() self._condata_to_idx = cdidx = ComponentMap() # TODO: Are these names totally consistent? for name, obj in symbolMap.bySymbol.items(): if name[0] == 'v': vdidx[obj] = int(name[1:]) elif name[0] == 'c': cdidx[obj] = int(name[1:]) # The NL writer advertises the external function libraries # through the PYOMO_AMPLFUNC environment variable; merge it # with any preexisting AMPLFUNC definitions amplfunc = amplfunc_merge(os.environ) with CtypesEnviron(AMPLFUNC=amplfunc): super(PyomoNLP, self).__init__(nl_file) # keep pyomo model in cache self._pyomo_model = pyomo_model # Create ComponentMap corresponding to equality constraint indices # This must be done after the call to super-init. full_to_equality = self._con_full_eq_map equality_mask = self._con_full_eq_mask self._condata_to_eq_idx = ComponentMap( (con, full_to_equality[i]) for con, i in self._condata_to_idx.items() if equality_mask[i] ) full_to_inequality = self._con_full_ineq_map inequality_mask = self._con_full_ineq_mask self._condata_to_ineq_idx = ComponentMap( (con, full_to_inequality[i]) for con, i in self._condata_to_idx.items() if inequality_mask[i] ) finally: # delete the nl file TempfileManager.pop()
@property def symbol_map(self): return self._symbol_map
[docs] def pyomo_model(self): """ Return optimization model """ return self._pyomo_model
[docs] def get_pyomo_objective(self): """ Return an instance of the active objective function on the Pyomo model. (there can be only one) """ return self._objective
[docs] def get_pyomo_variables(self): """ Return an ordered list of the Pyomo VarData objects in the order corresponding to the primals """ # ToDo: is there a more efficient way to do this idx_to_vardata = {i: v for v, i in self._vardata_to_idx.items()} return [idx_to_vardata[i] for i in range(len(idx_to_vardata))]
[docs] def get_pyomo_constraints(self): """ Return an ordered list of the Pyomo ConData objects in the order corresponding to the primals """ # ToDo: is there a more efficient way to do this idx_to_condata = {i: v for v, i in self._condata_to_idx.items()} return [idx_to_condata[i] for i in range(len(idx_to_condata))]
[docs] def get_pyomo_equality_constraints(self): """ Return an ordered list of the Pyomo ConData objects in the order corresponding to the equality constraints. """ idx_to_condata = {i: c for c, i in self._condata_to_eq_idx.items()} return [idx_to_condata[i] for i in range(len(idx_to_condata))]
[docs] def get_pyomo_inequality_constraints(self): """ Return an ordered list of the Pyomo ConData objects in the order corresponding to the inequality constraints. """ idx_to_condata = {i: c for c, i in self._condata_to_ineq_idx.items()} return [idx_to_condata[i] for i in range(len(idx_to_condata))]
[docs] @deprecated( msg='This method has been replaced with primals_names', version='6.0.0', remove_in='6.0', ) def variable_names(self): return self.primals_names()
[docs] def primals_names(self): """ Return an ordered list of the Pyomo variable names in the order corresponding to the primals """ pyomo_variables = self.get_pyomo_variables() return [v.getname(fully_qualified=True) for v in pyomo_variables]
[docs] def constraint_names(self): """ Return an ordered list of the Pyomo constraint names in the order corresponding to internal constraint order """ pyomo_constraints = self.get_pyomo_constraints() return [v.getname(fully_qualified=True) for v in pyomo_constraints]
[docs] def equality_constraint_names(self): """ Return an ordered list of the Pyomo ConData names in the order corresponding to the equality constraints. """ equality_constraints = self.get_pyomo_equality_constraints() return [v.getname(fully_qualified=True) for v in equality_constraints]
[docs] def inequality_constraint_names(self): """ Return an ordered list of the Pyomo ConData names in the order corresponding to the inequality constraints. """ inequality_constraints = self.get_pyomo_inequality_constraints() return [v.getname(fully_qualified=True) for v in inequality_constraints]
[docs] def get_primal_indices(self, pyomo_variables): """ Return the list of indices for the primals corresponding to the list of Pyomo variables provided Parameters ---------- pyomo_variables : list of Pyomo Var or VarData objects """ assert isinstance(pyomo_variables, list) var_indices = [] for v in pyomo_variables: if v.is_indexed(): for vd in v.values(): var_id = self._vardata_to_idx[vd] var_indices.append(var_id) else: var_id = self._vardata_to_idx[v] var_indices.append(var_id) return var_indices
[docs] def get_constraint_indices(self, pyomo_constraints): """ Return the list of indices for the constraints corresponding to the list of Pyomo constraints provided Parameters ---------- pyomo_constraints : list of Pyomo Constraint or ConstraintData objects """ assert isinstance(pyomo_constraints, list) con_indices = [] for c in pyomo_constraints: if c.is_indexed(): for cd in c.values(): con_id = self._condata_to_idx[cd] con_indices.append(con_id) else: con_id = self._condata_to_idx[c] con_indices.append(con_id) return con_indices
[docs] def get_equality_constraint_indices(self, constraints): """ Return the list of equality indices for the constraints corresponding to the list of Pyomo constraints provided. Parameters ---------- constraints : list of Pyomo Constraints or ConstraintData objects """ indices = [] for c in constraints: if c.is_indexed(): for cd in c.values(): con_eq_idx = self._condata_to_eq_idx[cd] indices.append(con_eq_idx) else: con_eq_idx = self._condata_to_eq_idx[c] indices.append(con_eq_idx) return indices
[docs] def get_inequality_constraint_indices(self, constraints): """ Return the list of inequality indices for the constraints corresponding to the list of Pyomo constraints provided. Parameters ---------- constraints : list of Pyomo Constraints or ConstraintData objects """ indices = [] for c in constraints: if c.is_indexed(): for cd in c.values(): con_ineq_idx = self._condata_to_ineq_idx[cd] indices.append(con_ineq_idx) else: con_ineq_idx = self._condata_to_ineq_idx[c] indices.append(con_ineq_idx) return indices
# overloaded from NLP
[docs] def get_obj_scaling(self): scaling_finder = SuffixFinder( 'scaling_factor', default=1.0, context=self._pyomo_model ) val = scaling_finder.find(self.get_pyomo_objective()) if not scaling_finder.all_suffixes: return None return val
# overloaded from NLP
[docs] def get_primals_scaling(self): scaling_finder = SuffixFinder( 'scaling_factor', default=1.0, context=self._pyomo_model ) primals_scaling = np.fromiter( (scaling_finder.find(v) for v in self.get_pyomo_variables()), count=self.n_primals(), dtype=float, ) if not scaling_finder.all_suffixes: return None return primals_scaling
# overloaded from NLP
[docs] def get_constraints_scaling(self): scaling_finder = SuffixFinder( 'scaling_factor', default=1.0, context=self._pyomo_model ) constraints_scaling = np.fromiter( (scaling_finder.find(v) for v in self.get_pyomo_constraints()), count=self.n_constraints(), dtype=float, ) if not scaling_finder.all_suffixes: return None return constraints_scaling
[docs] def extract_subvector_grad_objective(self, pyomo_variables): """Compute the gradient of the objective and return the entries corresponding to the given Pyomo variables Parameters ---------- pyomo_variables : list of Pyomo Var or VarData objects """ grad_obj = self.evaluate_grad_objective() return grad_obj[self.get_primal_indices(pyomo_variables)]
[docs] def extract_subvector_constraints(self, pyomo_constraints): """ Return the values of the constraints corresponding to the list of Pyomo constraints provided Parameters ---------- pyomo_constraints : list of Pyomo Constraint or ConstraintData objects """ residuals = self.evaluate_constraints() return residuals[self.get_constraint_indices(pyomo_constraints)]
[docs] def extract_submatrix_jacobian(self, pyomo_variables, pyomo_constraints): """ Return the submatrix of the jacobian that corresponds to the list of Pyomo variables and list of Pyomo constraints provided Parameters ---------- pyomo_variables : list of Pyomo Var or VarData objects pyomo_constraints : list of Pyomo Constraint or ConstraintData objects """ jac = self.evaluate_jacobian() primal_indices = self.get_primal_indices(pyomo_variables) constraint_indices = self.get_constraint_indices(pyomo_constraints) row_mask = np.isin(jac.row, constraint_indices) col_mask = np.isin(jac.col, primal_indices) submatrix_mask = row_mask & col_mask submatrix_irows = np.compress(submatrix_mask, jac.row) submatrix_jcols = np.compress(submatrix_mask, jac.col) submatrix_data = np.compress(submatrix_mask, jac.data) # ToDo: this is expensive - have to think about how to do this with numpy row_submatrix_map = {j: i for i, j in enumerate(constraint_indices)} for i, v in enumerate(submatrix_irows): submatrix_irows[i] = row_submatrix_map[v] col_submatrix_map = {j: i for i, j in enumerate(primal_indices)} for i, v in enumerate(submatrix_jcols): submatrix_jcols[i] = col_submatrix_map[v] return coo_matrix( (submatrix_data, (submatrix_irows, submatrix_jcols)), shape=(len(constraint_indices), len(primal_indices)), )
[docs] def extract_submatrix_hessian_lag(self, pyomo_variables_rows, pyomo_variables_cols): """ Return the submatrix of the hessian of the lagrangian that corresponds to the list of Pyomo variables provided Parameters ---------- pyomo_variables_rows : list of Pyomo Var or VarData objects List of Pyomo Var or VarData objects corresponding to the desired rows pyomo_variables_cols : list of Pyomo Var or VarData objects List of Pyomo Var or VarData objects corresponding to the desired columns """ hess_lag = self.evaluate_hessian_lag() primal_indices_rows = self.get_primal_indices(pyomo_variables_rows) primal_indices_cols = self.get_primal_indices(pyomo_variables_cols) row_mask = np.isin(hess_lag.row, primal_indices_rows) col_mask = np.isin(hess_lag.col, primal_indices_cols) submatrix_mask = row_mask & col_mask submatrix_irows = np.compress(submatrix_mask, hess_lag.row) submatrix_jcols = np.compress(submatrix_mask, hess_lag.col) submatrix_data = np.compress(submatrix_mask, hess_lag.data) # ToDo: this is expensive - have to think about how to do this with numpy submatrix_map = {j: i for i, j in enumerate(primal_indices_rows)} for i, v in enumerate(submatrix_irows): submatrix_irows[i] = submatrix_map[v] submatrix_map = {j: i for i, j in enumerate(primal_indices_cols)} for i, v in enumerate(submatrix_jcols): submatrix_jcols[i] = submatrix_map[v] return coo_matrix( (submatrix_data, (submatrix_irows, submatrix_jcols)), shape=(len(primal_indices_rows), len(primal_indices_cols)), )
def load_state_into_pyomo(self, bound_multipliers=None): primals = self.get_primals() variables = self.get_pyomo_variables() for var, val in zip(variables, primals): var.set_value(val) m = self.pyomo_model() model_suffixes = dict(pyo.suffix.active_import_suffix_generator(m)) if 'dual' in model_suffixes: duals = self.get_duals() constraints = self.get_pyomo_constraints() model_suffixes['dual'].clear() model_suffixes['dual'].update(zip(constraints, duals)) if 'ipopt_zL_out' in model_suffixes: model_suffixes['ipopt_zL_out'].clear() if bound_multipliers is not None: model_suffixes['ipopt_zL_out'].update( zip(variables, bound_multipliers[0]) ) if 'ipopt_zU_out' in model_suffixes: model_suffixes['ipopt_zU_out'].clear() if bound_multipliers is not None: model_suffixes['ipopt_zU_out'].update( zip(variables, bound_multipliers[1]) )
# TODO: look for the [:-i] when i might be zero
[docs] class PyomoGreyBoxNLP(NLP):
[docs] def __init__(self, pyomo_model): # store all the greybox custom block data objects greybox_components = [] try: # We support Pynumero's ExternalGreyBoxBlock modeling # objects. We need to find them and convert them to Blocks # before calling the NL writer so that the attached Vars get # picked up by the writer. for greybox in pyomo_model.component_objects( ExternalGreyBoxBlock, descend_into=True ): greybox.parent_block().reclassify_component_type(greybox, pyo.Block) greybox_components.append(greybox) self._pyomo_model = pyomo_model self._pyomo_nlp = PyomoNLP(pyomo_model) finally: # Restore the ctypes of the ExternalGreyBoxBlock components for greybox in greybox_components: greybox.parent_block().reclassify_component_type( greybox, ExternalGreyBoxBlock ) # get the greybox block data objects greybox_data = [] for greybox in greybox_components: greybox_data.extend(data for data in greybox.values() if data.active) if len(greybox_data) > 1: raise NotImplementedError( "The PyomoGreyBoxModel interface has not" " been tested with Pyomo models that contain" " more than one ExternalGreyBoxBlock. Currently," " only a single block is supported." ) if self._pyomo_nlp.n_primals() == 0: raise ValueError( "No variables were found in the Pyomo part of the model." " PyomoGreyBoxModel requires at least one variable" " to be active in a Pyomo objective or constraint" ) # check that the greybox model supports what we would expect # TODO: add support for models that do not provide jacobians """ for data in greybox_data: c = data._ex_model.model_capabilities() if (c.n_equality_constraints() > 0 \ and not c.supports_jacobian_equality_constraints) \ or (c.n_equality_constraints() > 0 \ and not c.supports_jacobian_equality_constraints) raise NotImplementedError('PyomoGreyBoxNLP does not support models' ' without explicit Jacobian support') """ # number of additional variables required - they are in the # greybox models but not included in the NL file self._n_greybox_primals = 0 # number of residuals (equality constraints + output constraints # coming from the grey box models self._greybox_primals_names = [] self._greybox_constraints_names = [] # Update the primal index map with any variables in the # greybox models that do not otherwise appear in the NL # and capture some other book keeping items n_primals = self._pyomo_nlp.n_primals() greybox_primals = [] self._vardata_to_idx = ComponentMap(self._pyomo_nlp._vardata_to_idx) for data in greybox_data: # check that none of the inputs / outputs are fixed for v in data.inputs.values(): if v.fixed: raise NotImplementedError( 'Found a grey box model input that is fixed: {}.' ' This interface does not currently support fixed' ' variables. Please add a constraint instead.' ''.format(v.getname(fully_qualified=True)) ) for v in data.outputs.values(): if v.fixed: raise NotImplementedError( 'Found a grey box model output that is fixed: {}.' ' This interface does not currently support fixed' ' variables. Please add a constraint instead.' ''.format(v.getname(fully_qualified=True)) ) block_name = data.getname() for nm in data._ex_model.equality_constraint_names(): self._greybox_constraints_names.append('{}.{}'.format(block_name, nm)) for nm in data._ex_model.output_names(): self._greybox_constraints_names.append( '{}.{}_con'.format(block_name, nm) ) for var in data.component_data_objects(pyo.Var): if var not in self._vardata_to_idx: # there is a variable in the greybox block that # is not in the NL - append this to the end self._vardata_to_idx[var] = n_primals n_primals += 1 greybox_primals.append(var) self._greybox_primals_names.append( var.getname(fully_qualified=True) ) self._n_greybox_primals = len(greybox_primals) self._greybox_primal_variables = greybox_primals # Configure the primal and dual data caches self._greybox_primals_lb = np.zeros(self._n_greybox_primals) self._greybox_primals_ub = np.zeros(self._n_greybox_primals) self._init_greybox_primals = np.zeros(self._n_greybox_primals) for i, var in enumerate(greybox_primals): if var.value is not None: self._init_greybox_primals[i] = var.value self._greybox_primals_lb[i] = -np.inf if var.lb is None else var.lb self._greybox_primals_ub[i] = np.inf if var.ub is None else var.ub self._greybox_primals_lb.flags.writeable = False self._greybox_primals_ub.flags.writeable = False self._greybox_primals = self._init_greybox_primals.copy() # data member to store the cached greybox constraints and jacobian self._cached_greybox_constraints = None self._cached_greybox_jac = None # create the helper objects con_offset = self._pyomo_nlp.n_constraints() self._external_greybox_helpers = [] for data in greybox_data: h = _ExternalGreyBoxModelHelper(data, self._vardata_to_idx, con_offset) self._external_greybox_helpers.append(h) con_offset += h.n_residuals() self._n_greybox_constraints = con_offset - self._pyomo_nlp.n_constraints() assert len(self._greybox_constraints_names) == self._n_greybox_constraints # make sure the primal values get to the greybox models self.set_primals(self.get_primals()) # If any part of the problem is scaled (i.e., obj, primals, # or any of the constraints for any of the external grey boxes), # then we want scaling factors for everything (defaulting to # ones for any of the missing factors). # This code builds all the scaling factors, with the defaults, # but then sets them all to None if *no* scaling factors are provided # for any of the pieces. (inefficient, but only done once) need_scaling = False self._obj_scaling = self._pyomo_nlp.get_obj_scaling() if self._obj_scaling is None: self._obj_scaling = 1.0 else: need_scaling = True scaling_finder = SuffixFinder( 'scaling_factor', default=1.0, context=self._pyomo_model ) self._primals_scaling = np.fromiter( (scaling_finder.find(v) for v in self.get_pyomo_variables()), count=self.n_primals(), dtype=float, ) need_scaling = bool(scaling_finder.all_suffixes) self._constraints_scaling = [] pyomo_nlp_scaling = self._pyomo_nlp.get_constraints_scaling() if pyomo_nlp_scaling is None: pyomo_nlp_scaling = np.ones(self._pyomo_nlp.n_constraints()) else: need_scaling = True self._constraints_scaling.append(pyomo_nlp_scaling) for h in self._external_greybox_helpers: tmp_scaling = h.get_residual_scaling() if tmp_scaling is None: tmp_scaling = np.ones(h.n_residuals()) else: need_scaling = True self._constraints_scaling.append(tmp_scaling) if need_scaling: self._constraints_scaling = np.concatenate(self._constraints_scaling) else: self._obj_scaling = None self._primals_scaling = None self._constraints_scaling = None # might want the user to be able to specify these at some point self._init_greybox_duals = np.zeros(self._n_greybox_constraints) self._init_greybox_primals.flags.writeable = False self._init_greybox_duals.flags.writeable = False self._greybox_duals = self._init_greybox_duals.copy() # compute the jacobian for the external greybox models # to get some of the statistics self._evaluate_greybox_jacobians_and_cache_if_necessary() self._nnz_greybox_jac = len(self._cached_greybox_jac.data) # make sure the duals get to the external greybox models self.set_duals(self.get_duals()) # compute the hessian for the external greybox models # to get some of the statistics try: self._evaluate_greybox_hessians_and_cache_if_necessary() self._nnz_greybox_hess = len(self._cached_greybox_hess.data) except (AttributeError, NotImplementedError): self._nnz_greybox_hess = None
def _invalidate_greybox_primals_cache(self): self._greybox_constraints_cached = False self._greybox_jac_cached = False self._greybox_hess_cached = False def _invalidate_greybox_duals_cache(self): self._greybox_hess_cached = False # overloaded from NLP
[docs] def n_primals(self): return self._pyomo_nlp.n_primals() + self._n_greybox_primals
# overloaded from NLP
[docs] def n_constraints(self): return self._pyomo_nlp.n_constraints() + self._n_greybox_constraints
# overloaded from ExtendedNLP def n_eq_constraints(self): return self._pyomo_nlp.n_eq_constraints() + self._n_greybox_constraints # overloaded from ExtendedNLP def n_ineq_constraints(self): return self._pyomo_nlp.n_ineq_constraints() # overloaded from NLP
[docs] def nnz_jacobian(self): return self._pyomo_nlp.nnz_jacobian() + self._nnz_greybox_jac
# overloaded from AslNLP def nnz_jacobian_eq(self): return self._pyomo_nlp.nnz_jacobian_eq() + self._nnz_greybox_jac # overloaded from NLP
[docs] def nnz_hessian_lag(self): return self._pyomo_nlp.nnz_hessian_lag() + self._nnz_greybox_hess
# overloaded from NLP
[docs] def primals_lb(self): return np.concatenate((self._pyomo_nlp.primals_lb(), self._greybox_primals_lb))
# overloaded from NLP
[docs] def primals_ub(self): return np.concatenate((self._pyomo_nlp.primals_ub(), self._greybox_primals_ub))
# overloaded from NLP
[docs] def constraints_lb(self): return np.concatenate( ( self._pyomo_nlp.constraints_lb(), np.zeros(self._n_greybox_constraints, dtype=np.float64), ) )
# overloaded from NLP
[docs] def constraints_ub(self): return np.concatenate( ( self._pyomo_nlp.constraints_ub(), np.zeros(self._n_greybox_constraints, dtype=np.float64), ) )
# overloaded from NLP
[docs] def init_primals(self): return np.concatenate( (self._pyomo_nlp.init_primals(), self._init_greybox_primals) )
# overloaded from NLP
[docs] def init_duals(self): return np.concatenate((self._pyomo_nlp.init_duals(), self._init_greybox_duals))
# overloaded from ExtendedNLP def init_duals_eq(self): return np.concatenate( (self._pyomo_nlp.init_duals_eq(), self._init_greybox_duals) ) # overloaded from NLP / Extended NLP
[docs] def create_new_vector(self, vector_type): if vector_type == 'primals': return np.zeros(self.n_primals(), dtype=np.float64) elif vector_type == 'constraints' or vector_type == 'duals': return np.zeros(self.n_constraints(), dtype=np.float64) elif vector_type == 'eq_constraints' or vector_type == 'duals_eq': return np.zeros(self.n_eq_constraints(), dtype=np.float64) elif vector_type == 'ineq_constraints' or vector_type == 'duals_ineq': return np.zeros(self.n_ineq_constraints(), dtype=np.float64) else: raise RuntimeError('Called create_new_vector with an unknown vector_type')
# overloaded from NLP
[docs] def set_primals(self, primals): self._invalidate_greybox_primals_cache() # set the primals on the "pyomo" part of the nlp self._pyomo_nlp.set_primals(primals[: self._pyomo_nlp.n_primals()]) # copy the values for the greybox primals np.copyto(self._greybox_primals, primals[self._pyomo_nlp.n_primals() :]) for external in self._external_greybox_helpers: external.set_primals(primals)
# overloaded from AslNLP
[docs] def get_primals(self): # return the value of the primals that the pyomo # part knows about as well as any extra values that # are only in the greybox part return np.concatenate((self._pyomo_nlp.get_primals(), self._greybox_primals))
# overloaded from NLP
[docs] def set_duals(self, duals): self._invalidate_greybox_duals_cache() # set the duals for the pyomo part of the nlp self._pyomo_nlp.set_duals(duals[: self._pyomo_nlp.n_constraints()]) # set the duals for the greybox part of the nlp np.copyto(self._greybox_duals, duals[self._pyomo_nlp.n_constraints() :]) # set the duals in the helpers for the hessian computation for h in self._external_greybox_helpers: h.set_duals(duals)
# overloaded from NLP
[docs] def get_duals(self): # return the duals for the pyomo part of the nlp # concatenated with the greybox part return np.concatenate((self._pyomo_nlp.get_duals(), self._greybox_duals))
# overloaded from ExtendedNLP def set_duals_eq(self, duals): raise NotImplementedError('set_duals_eq not implemented for PyomoGreyBoxNLP') # we think the code below is correct, but it has not yet been tested """ #self._invalidate_greybox_duals_cache() # set the duals for the pyomo part of the nlp self._pyomo_nlp.set_duals_eq( duals[:self._pyomo_nlp.n_equality_constraints()]) # set the duals for the greybox part of the nlp np.copyto(self._greybox_duals, duals[self._pyomo_nlp.n_equality_constraints():]) # set the duals in the helpers for the hessian computation for h in self._external_greybox_helpers: h.set_duals_eq(duals) """ # TODO: Implement set_duals_ineq # overloaded from NLP def get_duals_eq(self): raise NotImplementedError('get_duals_eq not implemented for PyomoGreyBoxNLP') """ # return the duals for the pyomo part of the nlp # concatenated with the greybox part return np.concatenate(( self._pyomo_nlp.get_duals_eq(), self._greybox_duals, )) """ # overloaded from NLP
[docs] def set_obj_factor(self, obj_factor): # objective is owned by the pyomo model self._pyomo_nlp.set_obj_factor(obj_factor)
# overloaded from NLP
[docs] def get_obj_factor(self): # objective is owned by the pyomo model return self._pyomo_nlp.get_obj_factor()
# overloaded from NLP
[docs] def get_obj_scaling(self): return self._obj_scaling
# overloaded from NLP
[docs] def get_primals_scaling(self): return self._primals_scaling
# overloaded from NLP
[docs] def get_constraints_scaling(self): return self._constraints_scaling
# overloaded from NLP
[docs] def evaluate_objective(self): # objective is owned by the pyomo model return self._pyomo_nlp.evaluate_objective()
# overloaded from NLP
[docs] def evaluate_grad_objective(self, out=None): # objective is owned by the pyomo model return np.concatenate( ( self._pyomo_nlp.evaluate_grad_objective(out), np.zeros(self._n_greybox_primals), ) )
def _evaluate_greybox_constraints_and_cache_if_necessary(self): if self._greybox_constraints_cached: return self._cached_greybox_constraints = np.concatenate( tuple( external.evaluate_residuals() for external in self._external_greybox_helpers ) ) self._greybox_constraints_cached = True # overloaded from NLP
[docs] def evaluate_constraints(self, out=None): self._evaluate_greybox_constraints_and_cache_if_necessary() if out is not None: if not isinstance(out, np.ndarray) or out.size != self.n_constraints(): raise RuntimeError( 'Called evaluate_constraints with an invalid' ' "out" argument - should take an ndarray of ' 'size {}'.format(self.n_constraints()) ) # call on the pyomo part of the nlp self._pyomo_nlp.evaluate_constraints(out[: -self._n_greybox_constraints]) # call on the greybox part of the nlp np.copyto( out[-self._n_greybox_constraints :], self._cached_greybox_constraints ) return out else: # concatenate the pyomo and external constraint residuals return np.concatenate( ( self._pyomo_nlp.evaluate_constraints(), self._cached_greybox_constraints, ) )
# overloaded from ExtendedNLP def evaluate_eq_constraints(self, out=None): raise NotImplementedError('Not yet implemented for PyomoGreyBoxNLP') """ self._evaluate_greybox_constraints_and_cache_if_necessary() if out is not None: if not isinstance(out, np.ndarray) \ or out.size != self.n_eq_constraints(): raise RuntimeError( 'Called evaluate_eq_constraints with an invalid' ' "out" argument - should take an ndarray of ' 'size {}'.format(self.n_eq_constraints())) self._pyomo_nlp.evaluate_eq_constraints( out[:-self._n_greybox_constraints]) np.copyto(out[-self._n_greybox_constraints:], self._cached_greybox_constraints) return out else: return np.concatenate(( self._pyomo_nlp.evaluate_eq_constraints(), self._cached_greybox_constraints, )) """ def _evaluate_greybox_jacobians_and_cache_if_necessary(self): if self._greybox_jac_cached: return jac = BlockMatrix(len(self._external_greybox_helpers), 1) for i, external in enumerate(self._external_greybox_helpers): jac.set_block(i, 0, external.evaluate_jacobian()) self._cached_greybox_jac = jac.tocoo() self._greybox_jac_cached = True # overloaded from NLP
[docs] def evaluate_jacobian(self, out=None): self._evaluate_greybox_jacobians_and_cache_if_necessary() if out is not None: if ( not isinstance(out, coo_matrix) or out.shape[0] != self.n_constraints() or out.shape[1] != self.n_primals() or out.nnz != self.nnz_jacobian() ): raise RuntimeError( 'evaluate_jacobian called with an "out" argument' ' that is invalid. This should be a coo_matrix with' ' shape=({},{}) and nnz={}'.format( self.n_constraints(), self.n_primals(), self.nnz_jacobian() ) ) n_pyomo_constraints = self.n_constraints() - self._n_greybox_constraints # to avoid an additional copy, we pass in a slice (numpy view) of the underlying # data, row, and col that we were handed to be populated in evaluate_jacobian self._pyomo_nlp.evaluate_jacobian( out=coo_matrix( ( out.data[: -self._nnz_greybox_jac], ( out.row[: -self._nnz_greybox_jac], out.col[: -self._nnz_greybox_jac], ), ), shape=(n_pyomo_constraints, self._pyomo_nlp.n_primals()), ) ) np.copyto(out.data[-self._nnz_greybox_jac :], self._cached_greybox_jac.data) return out else: base = self._pyomo_nlp.evaluate_jacobian() base = coo_matrix( (base.data, (base.row, base.col)), shape=(base.shape[0], self.n_primals()), ) jac = BlockMatrix(2, 1) jac.set_block(0, 0, base) jac.set_block(1, 0, self._cached_greybox_jac) return jac.tocoo()
# TODO: Doesn't this need a "shape" specification? # return coo_matrix(( # np.concatenate((base.data, self._cached_greybox_jac.data)), # ( np.concatenate((base.row, self._cached_greybox_jac.row)), # np.concatenate((base.col, self._cached_greybox_jac.col)) ) # )) # overloaded from ExtendedNLP """ def evaluate_jacobian_eq(self, out=None): raise NotImplementedError() self._evaluate_greybox_jacobians_and_cache_if_necessary() if out is not None: if ( not isinstance(out, coo_matrix) or out.shape[0] != self.n_eq_constraints() or out.shape[1] != self.n_primals() or out.nnz != self.nnz_jacobian_eq() ): raise RuntimeError( 'evaluate_jacobian called with an "out" argument' ' that is invalid. This should be a coo_matrix with' ' shape=({},{}) and nnz={}' .format(self.n_eq_constraints(), self.n_primals(), self.nnz_jacobian_eq())) self._pyomo_nlp.evaluate_jacobian_eq( coo_matrix((out.data[:-self._nnz_greybox_jac], (out.row[:-self._nnz_greybox_jac], out.col[:-self._nnz_greybox_jac]))) ) np.copyto(out.data[-self._nnz_greybox_jac], self._cached_greybox_jac.data) return out else: base = self._pyomo_nlp.evaluate_jacobian_eq() # TODO: Doesn't this need a "shape" specification? return coo_matrix(( np.concatenate((base.data, self._cached_greybox_jac.data)), ( np.concatenate((base.row, self._cached_greybox_jac.row)), np.concatenate((base.col, self._cached_greybox_jac.col)) ) )) """ # overloaded from NLP def _evaluate_greybox_hessians_and_cache_if_necessary(self): if self._greybox_hess_cached: return data = list() irow = list() jcol = list() for external in self._external_greybox_helpers: hess = external.evaluate_hessian() data.append(hess.data) irow.append(hess.row) jcol.append(hess.col) data = np.concatenate(data) irow = np.concatenate(irow) jcol = np.concatenate(jcol) self._cached_greybox_hess = coo_matrix( (data, (irow, jcol)), shape=(self.n_primals(), self.n_primals()) ) self._greybox_hess_cached = True
[docs] def evaluate_hessian_lag(self, out=None): self._evaluate_greybox_hessians_and_cache_if_necessary() if out is not None: if ( not isinstance(out, coo_matrix) or out.shape[0] != self.n_primals() or out.shape[1] != self.n_primals() or out.nnz != self.nnz_hessian_lag() ): raise RuntimeError( 'evaluate_hessian_lag called with an "out" argument' ' that is invalid. This should be a coo_matrix with' ' shape=({},{}) and nnz={}'.format( self.n_primals(), self.n_primals(), self.nnz_hessian() ) ) # to avoid an additional copy, we pass in a slice (numpy view) of the underlying # data, row, and col that we were handed to be populated in evaluate_hessian_lag # the coo_matrix is simply a holder of the data, row, and col structures self._pyomo_nlp.evaluate_hessian_lag( out=coo_matrix( ( out.data[: -self._nnz_greybox_hess], ( out.row[: -self._nnz_greybox_hess], out.col[: -self._nnz_greybox_hess], ), ), shape=(self._pyomo_nlp.n_primals(), self._pyomo_nlp.n_primals()), ) ) np.copyto( out.data[-self._nnz_greybox_hess :], self._cached_greybox_hess.data ) return out else: hess = self._pyomo_nlp.evaluate_hessian_lag() data = np.concatenate((hess.data, self._cached_greybox_hess.data)) row = np.concatenate((hess.row, self._cached_greybox_hess.row)) col = np.concatenate((hess.col, self._cached_greybox_hess.col)) hess = coo_matrix( (data, (row, col)), shape=(self.n_primals(), self.n_primals()) ) return hess
# overloaded from NLP
[docs] def report_solver_status(self, status_code, status_message): raise NotImplementedError('Todo: implement this')
[docs] @deprecated( msg='This method has been replaced with primals_names', version='6.0.0', remove_in='6.0', ) def variable_names(self): return self.primals_names()
[docs] def primals_names(self): names = list(self._pyomo_nlp.variable_names()) names.extend(self._greybox_primals_names) return names
[docs] def constraint_names(self): names = list(self._pyomo_nlp.constraint_names()) names.extend(self._greybox_constraints_names) return names
[docs] def pyomo_model(self): """ Return optimization model """ return self._pyomo_model
[docs] def get_pyomo_objective(self): """ Return an instance of the active objective function on the Pyomo model. (there can be only one) """ return self._pyomo_nlp.get_pyomo_objective()
[docs] def get_pyomo_variables(self): """ Return an ordered list of the Pyomo VarData objects in the order corresponding to the primals """ return self._pyomo_nlp.get_pyomo_variables() + self._greybox_primal_variables
[docs] def get_pyomo_constraints(self): """ Return an ordered list of the Pyomo ConData objects in the order corresponding to the primals """ # FIXME: what do we return for the external block constraints? # return self._pyomo_nlp.get_pyomo_constraints() raise NotImplementedError( "returning list of all constraints when using an external model is TBD" )
def load_state_into_pyomo(self, bound_multipliers=None): primals = self.get_primals() variables = self.get_pyomo_variables() for var, val in zip(variables, primals): var.set_value(val) m = self.pyomo_model() model_suffixes = dict(pyo.suffix.active_import_suffix_generator(m)) if 'dual' in model_suffixes: model_suffixes['dual'].clear() # Until we sort out how to return the duals for the external # block (implied) constraints, I am disabling *all* duals # # duals = self.get_duals() # constraints = self.get_pyomo_constraints() # model_suffixes['dual'].update( # zip(constraints, duals)) if 'ipopt_zL_out' in model_suffixes: model_suffixes['ipopt_zL_out'].clear() if bound_multipliers is not None: model_suffixes['ipopt_zL_out'].update( zip(variables, bound_multipliers[0]) ) if 'ipopt_zU_out' in model_suffixes: model_suffixes['ipopt_zU_out'].clear() if bound_multipliers is not None: model_suffixes['ipopt_zU_out'].update( zip(variables, bound_multipliers[1]) )
class _ExternalGreyBoxModelHelper(object): def __init__(self, ex_grey_box_block, vardata_to_idx, con_offset): """This helper takes an ExternalGreyBoxModel and provides the residual, Jacobian, and Hessian computation mapped to the correct variable space. The ExternalGreyBoxModel provides an interface that supports equality constraints (pure residuals) and output equations. Let u be the inputs, o be the outputs, and x be the full set of primal variables from the entire pyomo_nlp. With this, the ExternalGreyBoxModel provides the residual computations w_eq(u), and w_o(u), as well as the Jacobians, Jw_eq(u), and Jw_o(u). This helper provides h(x)=0, where h(x) = [h_eq(x); h_o(x)-o] and h_eq(x)=w_eq(Pu*x), and h_o(x)=w_o(Pu*x), and Pu is a mapping from the full primal variables "x" to the inputs "u". It also provides the Jacobian of h w.r.t. x. J_h(x) = [Jw_eq(Pu*x); Jw_o(Pu*x)-Po*x] where Po is a mapping from the full primal variables "x" to the outputs "o". """ self._block = ex_grey_box_block self._ex_model = ex_grey_box_block.get_external_model() self._n_primals = len(vardata_to_idx) n_inputs = len(self._block.inputs) assert n_inputs == self._ex_model.n_inputs() n_eq_constraints = self._ex_model.n_equality_constraints() n_outputs = len(self._block.outputs) assert n_outputs == self._ex_model.n_outputs() # store the map of input indices (0 .. n_inputs) to # the indices in the full primals vector self._inputs_to_primals_map = np.fromiter( (vardata_to_idx[v] for v in self._block.inputs.values()), dtype=np.int64, count=n_inputs, ) # store the map of output indices (0 .. n_outputs) to # the indices in the full primals vector self._outputs_to_primals_map = np.fromiter( (vardata_to_idx[v] for v in self._block.outputs.values()), dtype=np.int64, count=n_outputs, ) if ( self._ex_model.n_outputs() == 0 and self._ex_model.n_equality_constraints() == 0 ): raise ValueError( 'ExternalGreyBoxModel has no equality constraints ' 'or outputs. It must have at least one or both.' ) self._ex_eq_duals_to_full_map = None if n_eq_constraints > 0: self._ex_eq_duals_to_full_map = list( range(con_offset, con_offset + n_eq_constraints) ) self._ex_output_duals_to_full_map = None if n_outputs > 0: self._ex_output_duals_to_full_map = list( range( con_offset + n_eq_constraints, con_offset + n_eq_constraints + n_outputs, ) ) # we need to change the column indices in the jacobian # from the 0..n_inputs provided by the external model # to the indices corresponding to the full Pyomo model # so we create that here self._eq_jac_primal_jcol = None self._outputs_jac_primal_jcol = None self._additional_output_entries_irow = None self._additional_output_entries_jcol = None self._additional_output_entries_data = None self._con_offset = con_offset self._eq_hess_jcol = None self._eq_hess_irow = None self._output_hess_jcol = None self._output_hess_irow = None def set_primals(self, primals): # map the full primals "x" to the inputs "u" and set # the values on the external model input_values = primals[self._inputs_to_primals_map] self._ex_model.set_input_values(input_values) # map the full primals "x" to the outputs "o" and # store a vector of the current output values to # use when evaluating residuals self._output_values = primals[self._outputs_to_primals_map] def set_duals(self, duals): # map the full duals to the duals for the equality # and the output constraints if self._ex_eq_duals_to_full_map is not None: duals_eq = duals[self._ex_eq_duals_to_full_map] self._ex_model.set_equality_constraint_multipliers(duals_eq) if self._ex_output_duals_to_full_map is not None: duals_outputs = duals[self._ex_output_duals_to_full_map] self._ex_model.set_output_constraint_multipliers(duals_outputs) def n_residuals(self): return self._ex_model.n_equality_constraints() + self._ex_model.n_outputs() def get_residual_scaling(self): eq_scaling = self._ex_model.get_equality_constraint_scaling_factors() output_con_scaling = self._ex_model.get_output_constraint_scaling_factors() if eq_scaling is None and output_con_scaling is None: return None if eq_scaling is None: eq_scaling = np.ones(self._ex_model.n_equality_constraints()) if output_con_scaling is None: output_con_scaling = np.ones(self._ex_model.n_outputs()) return np.concatenate((eq_scaling, output_con_scaling)) def evaluate_residuals(self): # evaluate the equality constraints and the output equations # and return a single vector of residuals # returns residual for h(x)=0, where h(x) = [h_eq(x); h_o(x)-o] resid_list = [] if self._ex_model.n_equality_constraints() > 0: resid_list.append(self._ex_model.evaluate_equality_constraints()) if self._ex_model.n_outputs() > 0: computed_output_values = self._ex_model.evaluate_outputs() output_resid = computed_output_values - self._output_values resid_list.append(output_resid) return np.concatenate(resid_list) def evaluate_jacobian(self): # compute the jacobian of h(x) w.r.t. x # J_h(x) = [Jw_eq(Pu*x); Jw_o(Pu*x)-Po*x] # Jw_eq(x) eq_jac = None if self._ex_model.n_equality_constraints() > 0: eq_jac = self._ex_model.evaluate_jacobian_equality_constraints() if self._eq_jac_primal_jcol is None: # The first time through, we won't have created the # mapping of external primals ('u') to the full space # primals ('x') self._eq_jac_primal_jcol = self._inputs_to_primals_map[eq_jac.col] # map the columns from the inputs "u" back to the full primals "x" eq_jac = coo_matrix( (eq_jac.data, (eq_jac.row, self._eq_jac_primal_jcol)), (eq_jac.shape[0], self._n_primals), ) outputs_jac = None if self._ex_model.n_outputs() > 0: outputs_jac = self._ex_model.evaluate_jacobian_outputs() row = outputs_jac.row # map the columns from the inputs "u" back to the full primals "x" if self._outputs_jac_primal_jcol is None: # The first time through, we won't have created the # mapping of external outputs ('o') to the full space # primals ('x') self._outputs_jac_primal_jcol = self._inputs_to_primals_map[ outputs_jac.col ] # We also need tocreate the irow, jcol, nnz structure for the # output variable portion of h(u)-o=0 self._additional_output_entries_irow = np.asarray( range(self._ex_model.n_outputs()) ) self._additional_output_entries_jcol = self._outputs_to_primals_map self._additional_output_entries_data = -1.0 * np.ones( self._ex_model.n_outputs() ) col = self._outputs_jac_primal_jcol data = outputs_jac.data # add the additional entries for the -Po*x portion of the jacobian row = np.concatenate((row, self._additional_output_entries_irow)) col = np.concatenate((col, self._additional_output_entries_jcol)) data = np.concatenate((data, self._additional_output_entries_data)) outputs_jac = coo_matrix( (data, (row, col)), shape=(outputs_jac.shape[0], self._n_primals) ) jac = None if eq_jac is not None: if outputs_jac is not None: # create a jacobian with both Jw_eq and Jw_o jac = BlockMatrix(2, 1) jac.name = 'external model jacobian' jac.set_block(0, 0, eq_jac) jac.set_block(1, 0, outputs_jac) else: assert self._ex_model.n_outputs() == 0 assert self._ex_model.n_equality_constraints() > 0 # only need the Jacobian with Jw_eq (there are not # output equations) jac = eq_jac else: assert outputs_jac is not None assert self._ex_model.n_outputs() > 0 assert self._ex_model.n_equality_constraints() == 0 # only need the Jacobian with Jw_o (there are no equalities) jac = outputs_jac return jac def evaluate_hessian(self): # compute the portion of the Hessian of the Lagrangian # of h(x) w.r.t. x # H_h(x) = sum_i y_eq_i * Hw_eq(Pu*x) +_ sum_k y_o_j * Hw_o(Pu*x)] data_list = [] irow_list = [] jcol_list = [] # Hw_eq(x) eq_hess = None if self._ex_model.n_equality_constraints() > 0: eq_hess = self._ex_model.evaluate_hessian_equality_constraints() if self._eq_hess_jcol is None: # first time through, let's also check that it is lower triangular if np.any(eq_hess.row < eq_hess.col): raise ValueError( 'ExternalGreyBoxModel must return lower ' 'triangular portion of the Hessian only' ) # The first time through, we won't have created the # mapping of external primals ('u') to the full space # primals ('x') self._eq_hess_irow = row = self._inputs_to_primals_map[eq_hess.row] self._eq_hess_jcol = col = self._inputs_to_primals_map[eq_hess.col] # mapping may have made this not lower triangular mask = col > row row[mask], col[mask] = col[mask], row[mask] data_list.append(eq_hess.data) irow_list.append(self._eq_hess_irow) jcol_list.append(self._eq_hess_jcol) if self._ex_model.n_outputs() > 0: output_hess = self._ex_model.evaluate_hessian_outputs() if self._output_hess_irow is None: # first time through, let's also check that it is lower triangular if np.any(output_hess.row < output_hess.col): raise ValueError( 'ExternalGreyBoxModel must return lower ' 'triangular portion of the Hessian only' ) # The first time through, we won't have created the # mapping of external outputs ('o') to the full space # primals ('x') self._output_hess_irow = row = self._inputs_to_primals_map[ output_hess.row ] self._output_hess_jcol = col = self._inputs_to_primals_map[ output_hess.col ] # mapping may have made this not lower triangular mask = col > row row[mask], col[mask] = col[mask], row[mask] data_list.append(output_hess.data) irow_list.append(self._output_hess_irow) jcol_list.append(self._output_hess_jcol) data = np.concatenate(data_list) irow = np.concatenate(irow_list) jcol = np.concatenate(jcol_list) hess = coo_matrix((data, (irow, jcol)), (self._n_primals, self._n_primals)) return hess