Source code for pyomo.contrib.mpc.data.interval_data

#  ___________________________________________________________________________
#
#  Pyomo: Python Optimization Modeling Objects
#  Copyright (c) 2008-2024
#  National Technology and Engineering Solutions of Sandia, LLC
#  Under the terms of Contract DE-NA0003525 with National Technology and
#  Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
#  rights in this software.
#  This software is distributed under the 3-clause BSD License.
#  ___________________________________________________________________________

#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021
# by the software owners: The Regents of the University of California, through
# Lawrence Berkeley National Laboratory,  National Technology & Engineering
# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University
# Research Corporation, et al.  All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and
# license information.
#################################################################################

from collections import namedtuple
from pyomo.core.expr.numvalue import value as pyo_value
from pyomo.contrib.mpc.data.get_cuid import get_indexed_cuid
from pyomo.contrib.mpc.data.dynamic_data_base import _is_iterable, _DynamicDataBase
from pyomo.contrib.mpc.data.scalar_data import ScalarData
from pyomo.contrib.mpc.data.find_nearest_index import (
    find_nearest_index,
    find_nearest_interval_index,
)


IntervalDataTuple = namedtuple("IntervalTuple", ["data", "intervals"])


[docs] def assert_disjoint_intervals(intervals): """ This function takes intervals in the form of tuples and makes sure that they are disjoint. Arguments --------- intervals: iterable Iterable of tuples, each containing the low and high values of an interval. """ intervals = list(sorted(intervals)) for i, (lo, hi) in enumerate(intervals): if not lo <= hi: raise RuntimeError( "Lower endpoint of interval is higher than upper endpoint" ) if i != 0: prev_lo, prev_hi = intervals[i - 1] if not prev_hi <= lo: raise RuntimeError( "Intervals %s and %s are not disjoint" % ((prev_lo, prev_hi), (lo, hi)) )
[docs] class IntervalData(_DynamicDataBase):
[docs] def __init__(self, data, intervals, time_set=None, context=None): intervals = list(intervals) if not intervals == list(sorted(intervals)): raise RuntimeError("Intervals are not sorted in increasing order.") assert_disjoint_intervals(intervals) self._intervals = intervals # First make sure provided lists of variable data have the # same lengths as the provided time list. for key, data_list in data.items(): if len(data_list) != len(intervals): raise ValueError( "Data lists must have same length as time. " "Length of time is %s while length of data for " "key %s is %s." % (len(intervals), key, len(data_list)) ) super().__init__(data, time_set=time_set, context=context)
def __eq__(self, other): if isinstance(other, IntervalData): return ( self._data == other.get_data() and self._intervals == other.get_intervals() ) else: raise TypeError( "%s and %s are not comparable" % (self.__class__, other.__class__) ) def get_intervals(self): return self._intervals def get_data_at_interval_indices(self, indices): # NOTE: Much of this code is repeated from TimeSeriesData. # TODO: Find some way to consolidate. if _is_iterable(indices): index_list = list(sorted(indices)) interval_list = [self._intervals[i] for i in indices] data = { cuid: [values[idx] for idx in index_list] for cuid, values in self._data.items() } time_set = self._orig_time_set return IntervalData(data, interval_list, time_set=time_set) else: return ScalarData( {cuid: values[indices] for cuid, values in self._data.items()} ) # TODO: get_data_at_interval, get_data_at_time def get_data_at_time(self, time, tolerance=None, prefer_left=True): if not _is_iterable(time): index = find_nearest_interval_index( self._intervals, time, tolerance=tolerance, prefer_left=prefer_left ) if index is None: raise RuntimeError( "Time point %s not found in an interval within" " tolerance %s" % (time, tolerance) ) else: raise RuntimeError( "get_data_at_time is not supported with multiple time points" " for IntervalData. To sample the piecewise-constant data at" " particular time points, please use interval_to_series from" " pyomo.contrib.mpc.data.convert" ) return self.get_data_at_interval_indices(index)
[docs] def to_serializable(self): """ Convert to json-serializable object. """ intervals = self._intervals data = { str(cuid): [pyo_value(val) for val in values] for cuid, values in self._data.items() } return IntervalDataTuple(data, intervals)
[docs] def concatenate(self, other, tolerance=0.0): """ Extend interval list and variable data lists with the intervals and variable values in the provided IntervalData """ other_intervals = other.get_intervals() intervals = self._intervals if len(other_intervals) == 0: return if other_intervals[0][0] < intervals[-1][1] + tolerance: # First point of new intervals is less than (within # tolerance) raise ValueError( "Initial time point of target, %s, is not greater than" " final time point of source, %s, within tolerance %s." % (other_time[0][0], time[-1][1], tolerance) ) self._intervals.extend(other_intervals) data = self._data other_data = other.get_data() for cuid, values in data.items(): # We assume that other contains all the cuids in self. # We make no assumption the other way around. values.extend(other_data[cuid])
[docs] def shift_time_points(self, offset): """ Apply an offset to stored time points. """ # Note that this is different from what we are doing in # shift_values_by_time in the helper class. self._intervals = [(lo + offset, hi + offset) for lo, hi in self._intervals]
[docs] def extract_variables(self, variables, context=None, copy_values=False): """ Only keep variables specified. """ if copy_values: raise NotImplementedError( "extract_variables with copy_values=True has not been" " implemented by %s" % self.__class__ ) data = {} if not isinstance(variables, (list, tuple)): # If variables is not a sequence and is instead a slice (or # indexed variable), we get either a confusing error message # or a lot of repeated work. raise TypeError("extract_values only accepts a list or tuple of variables") for var in variables: cuid = get_indexed_cuid(var, (self._orig_time_set,), context=context) data[cuid] = self._data[cuid] return IntervalData(data, self._intervals, time_set=self._orig_time_set)