__init__ ()
|
|
add_lazy_affine_cuts (mindtpy_solver, config, opt)
|
Adds affine cuts using MCPP. |
add_lazy_no_good_cuts (var_values, ...[, ...])
|
Adds no-good cuts. |
add_lazy_oa_cuts (target_model, dual_values, ...)
|
Linearizes nonlinear constraints; add the OA cuts through CPLEX inherent function self.add() For nonconvex problems, turn on 'config.add_slack'. |
copy_lazy_var_list_values (opt, from_list, ...)
|
This function copies variable values from one list to another. |
handle_lazy_main_feasible_solution (main_mip, ...)
|
This function is called during the branch and bound of main mip, more exactly when a feasible solution is found and LazyCallback is activated. |
handle_lazy_subproblem_infeasible (fixed_nlp, ...)
|
Solves feasibility NLP subproblem and adds cuts according to the specified strategy. |
handle_lazy_subproblem_optimal (fixed_nlp, ...)
|
This function copies the optimal solution of the fixed NLP subproblem to the MIP main problem(explanation see below), updates bound, adds OA and no-good cuts, stores incumbent solution if it has been improved. |
handle_lazy_subproblem_other_termination (...)
|
Handles the result of the latest iteration of solving the NLP subproblem given a solution that is neither optimal nor infeasible. |