# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________
__all__ = ['Constraint', '_ConstraintData', 'ConstraintList',
'simple_constraint_rule', 'simple_constraintlist_rule']
import inspect
import io
import sys
import logging
import math
from weakref import ref as weakref_ref
from pyomo.common.log import is_debug_set
from pyomo.common.timing import ConstructionTimer
from pyomo.core.expr import logical_expr
from pyomo.core.expr.numvalue import (ZeroConstant,
value,
as_numeric,
is_constant,
native_numeric_types)
from pyomo.core.base.plugin import ModelComponentFactory
from pyomo.core.base.component import ActiveComponentData
from pyomo.core.base.indexed_component import \
( ActiveIndexedComponent,
UnindexedComponent_set)
from pyomo.core.base.misc import (tabular_writer)
from pyomo.core.base.set import Set
from pyomo.core.base.util import (
disable_methods, Initializer,
IndexedCallInitializer, CountedCallInitializer
)
logger = logging.getLogger('pyomo.core')
_simple_constraint_rule_types = set([ type(None), bool ])
_rule_returned_none_error = """Constraint '%s': rule returned None.
Constraint rules must return either a valid expression, a 2- or 3-member
tuple, or one of Constraint.Skip, Constraint.Feasible, or
Constraint.Infeasible. The most common cause of this error is
forgetting to include the "return" statement at the end of your rule.
"""
def _map_constraint_result(fn, none_val, args, kwargs):
if fn.__class__ in _simple_constraint_rule_types:
#
# If the argument is a boolean or None, then this is a
# trivial constraint expression.
#
value = fn
else:
#
# Otherwise, the argument is a functor, so call it to
# generate the constraint expression.
#
value = fn( *args, **kwargs )
#
# Map the value to a constant:
# None to none_val
# True Feasible constraint
# False Infeasible constraint
#
if value.__class__ in _simple_constraint_rule_types:
if value is None:
return none_val
elif value is True:
return Constraint.Feasible
elif value is False:
return Constraint.Infeasible
return value
_map_constraint_funcdef = \
"""def wrapper_function%s:
args, varargs, kwds, local_env = inspect.getargvalues(
inspect.currentframe())
args = tuple(local_env[_] for _ in args) + (varargs or ())
return _map_constraint_result(fn, %s, args, (kwds or {}))
"""
def simple_constraint_rule( fn ):
"""
This is a decorator that translates None/True/False return
values into Constraint.Skip/Constraint.Feasible/Constraint.Infeasible.
This supports a simpler syntax in constraint rules, though these
can be more difficult to debug when errors occur.
Example use:
@simple_constraint_rule
def C_rule(model, i, j):
...
model.c = Constraint(rule=simple_constraint_rule(...))
"""
if type(fn) in _simple_constraint_rule_types:
return _map_constraint_result(fn, Constraint.Skip, None, None)
# Because some of our processing of initializer functions relies on
# knowing the number of positional arguments, we will go to extra
# effort here to preserve the original function signature.
_funcdef = _map_constraint_funcdef % (
str(inspect.signature(fn)), 'ConstraintList.Skip'
)
# Create the wrapper in a temporary environment that mimics this
# function's environment.
_env = dict(globals())
_env.update(locals())
exec(_funcdef, _env)
return _env['wrapper_function']
def simple_constraintlist_rule( fn ):
"""
This is a decorator that translates None/True/False return values
into ConstraintList.End/Constraint.Feasible/Constraint.Infeasible.
This supports a simpler syntax in constraint rules, though these can be
more difficult to debug when errors occur.
Example use:
@simple_constraintlist_rule
def C_rule(model, i, j):
...
model.c = ConstraintList(expr=simple_constraintlist_rule(...))
"""
if type(fn) in _simple_constraint_rule_types:
return _map_constraint_result(fn, ConstraintList.End, None, None)
# Because some of our processing of initializer functions relies on
# knowing the number of positional arguments, we will go to extra
# effort here to preserve the original function signature.
_funcdef = _map_constraint_funcdef % (
str(inspect.signature(fn)), 'ConstraintList.End'
)
# Create the wrapper in a temporary environment that mimics this
# function's environment.
_env = dict(globals())
_env.update(locals())
exec(_funcdef, _env)
return _env['wrapper_function']
#
# This class is a pure interface
#
class _ConstraintData(ActiveComponentData):
"""
This class defines the data for a single constraint.
Constructor arguments:
component The Constraint object that owns this data.
Public class attributes:
active A boolean that is true if this constraint is
active in the model.
body The Pyomo expression for this constraint
lower The Pyomo expression for the lower bound
upper The Pyomo expression for the upper bound
equality A boolean that indicates whether this is an
equality constraint
strict_lower A boolean that indicates whether this
constraint uses a strict lower bound
strict_upper A boolean that indicates whether this
constraint uses a strict upper bound
Private class attributes:
_component The objective component.
_active A boolean that indicates whether this data is active
"""
__slots__ = ()
# Set to true when a constraint class stores its expression
# in linear canonical form
_linear_canonical_form = False
def __init__(self, component=None):
#
# These lines represent in-lining of the
# following constructors:
# - _ConstraintData,
# - ActiveComponentData
# - ComponentData
self._component = weakref_ref(component) if (component is not None) \
else None
self._active = True
#
# Interface
#
def __call__(self, exception=True):
"""Compute the value of the body of this constraint."""
if self.body is None:
return None
return self.body(exception=exception)
def has_lb(self):
"""Returns :const:`False` when the lower bound is
:const:`None` or negative infinity"""
lb = self.lower
return (lb is not None) and \
(lb() != float('-inf'))
def has_ub(self):
"""Returns :const:`False` when the upper bound is
:const:`None` or positive infinity"""
ub = self.upper
return (ub is not None) and \
(ub() != float('inf'))
def lslack(self):
"""
Returns the value of f(x)-L for constraints of the form:
L <= f(x) (<= U)
(U >=) f(x) >= L
"""
if self.lower is None:
return float('inf')
else:
return self.body()-self.lower()
def uslack(self):
"""
Returns the value of U-f(x) for constraints of the form:
(L <=) f(x) <= U
U >= f(x) (>= L)
"""
if self.upper is None:
return float('inf')
else:
return self.upper()-self.body()
def slack(self):
"""
Returns the smaller of lslack and uslack values
"""
if self.lower is None:
return self.upper()-self.body()
elif self.upper is None:
return self.body()-self.lower()
return min(self.upper()-self.body(),
self.body()-self.lower())
#
# Abstract Interface
#
@property
def body(self):
"""Access the body of a constraint expression."""
raise NotImplementedError
@property
def lower(self):
"""Access the lower bound of a constraint expression."""
raise NotImplementedError
@property
def upper(self):
"""Access the upper bound of a constraint expression."""
raise NotImplementedError
@property
def equality(self):
"""A boolean indicating whether this is an equality constraint."""
raise NotImplementedError
@property
def strict_lower(self):
"""A boolean indicating whether this constraint has a strict lower bound."""
raise NotImplementedError
@property
def strict_upper(self):
"""A boolean indicating whether this constraint has a strict upper bound."""
raise NotImplementedError
def set_value(self, expr):
"""Set the expression on this constraint."""
raise NotImplementedError
def get_value(self):
"""Get the expression on this constraint."""
raise NotImplementedError
class _GeneralConstraintData(_ConstraintData):
"""
This class defines the data for a single general constraint.
Constructor arguments:
component The Constraint object that owns this data.
expr The Pyomo expression stored in this constraint.
Public class attributes:
active A boolean that is true if this constraint is
active in the model.
body The Pyomo expression for this constraint
lower The Pyomo expression for the lower bound
upper The Pyomo expression for the upper bound
equality A boolean that indicates whether this is an
equality constraint
strict_lower A boolean that indicates whether this
constraint uses a strict lower bound
strict_upper A boolean that indicates whether this
constraint uses a strict upper bound
Private class attributes:
_component The objective component.
_active A boolean that indicates whether this data is active
"""
__slots__ = ('_body', '_lower', '_upper', '_equality')
def __init__(self, expr=None, component=None):
#
# These lines represent in-lining of the
# following constructors:
# - _ConstraintData,
# - ActiveComponentData
# - ComponentData
self._component = weakref_ref(component) if (component is not None) \
else None
self._active = True
self._body = None
self._lower = None
self._upper = None
self._equality = False
if expr is not None:
self.set_value(expr)
def __getstate__(self):
"""
This method must be defined because this class uses slots.
"""
result = super(_GeneralConstraintData, self).__getstate__()
for i in _GeneralConstraintData.__slots__:
result[i] = getattr(self, i)
return result
# Since this class requires no special processing of the state
# dictionary, it does not need to implement __setstate__()
#
# Abstract Interface
#
@property
def body(self):
"""Access the body of a constraint expression."""
return self._body
@property
def lower(self):
"""Access the lower bound of a constraint expression."""
return self._lower
@property
def upper(self):
"""Access the upper bound of a constraint expression."""
return self._upper
@property
def equality(self):
"""A boolean indicating whether this is an equality constraint."""
return self._equality
@property
def strict_lower(self):
"""A boolean indicating whether this constraint has a strict lower bound."""
return False
@property
def strict_upper(self):
"""A boolean indicating whether this constraint has a strict upper bound."""
return False
@property
def expr(self):
"""Return the expression associated with this constraint."""
return self.get_value()
def set_value(self, expr):
"""Set the expression on this constraint."""
_expr_type = expr.__class__
if hasattr(expr, 'is_relational'):
relational_expr = expr.is_relational()
if not relational_expr:
raise ValueError(
"Constraint '%s' does not have a proper "
"value. Found '%s'\nExpecting a tuple or "
"equation. Examples:"
"\n sum(model.costs) == model.income"
"\n (0, model.price[item], 50)"
% (self.name, str(expr)))
elif _expr_type is tuple: # or expr_type is list:
#
# Form equality expression
#
if len(expr) == 2:
arg0 = expr[0]
if arg0 is not None:
arg0 = as_numeric(arg0)
arg1 = expr[1]
if arg1 is not None:
arg1 = as_numeric(arg1)
self._equality = True
if arg1 is None or (not arg1.is_potentially_variable()):
self._lower = self._upper = arg1
self._body = arg0
elif arg0 is None or (not arg0.is_potentially_variable()):
self._lower = self._upper = arg0
self._body = arg1
else:
self._lower = self._upper = ZeroConstant
self._body = arg0 - arg1
#
# Form inequality expression
#
elif len(expr) == 3:
arg0 = expr[0]
if arg0 is not None:
arg0 = as_numeric(arg0)
if arg0.is_potentially_variable():
raise ValueError(
"Constraint '%s' found a 3-tuple (lower,"
" expression, upper) but the lower "
"value was not data or an expression "
"restricted to storage of data."
% (self.name))
arg1 = expr[1]
if arg1 is not None:
arg1 = as_numeric(arg1)
arg2 = expr[2]
if arg2 is not None:
arg2 = as_numeric(arg2)
if arg2.is_potentially_variable():
raise ValueError(
"Constraint '%s' found a 3-tuple (lower,"
" expression, upper) but the upper "
"value was not data or an expression "
"restricted to storage of data."
% (self.name))
self._lower = arg0
self._body = arg1
self._upper = arg2
else:
raise ValueError(
"Constructor rule for constraint '%s' returned "
"a tuple of length %d. Expecting a tuple of "
"length 2 or 3:\n"
"Equality: (left, right)\n"
"Inequality: (lower, expression, upper)"
% (self.name, len(expr)))
relational_expr = False
#
# Ignore an 'empty' constraint
#
elif _expr_type is type:
self._body = None
self._lower = None
self._upper = None
self._equality = False
if expr is Constraint.Skip:
del self.parent_component()[self.index()]
return
elif expr is Constraint.Infeasible:
del self.parent_component()[self.index()]
raise ValueError(
"Constraint '%s' is always infeasible"
% (self.name,) )
else:
raise ValueError(
"Constraint '%s' does not have a proper "
"value. Found '%s'\nExpecting a tuple or "
"equation. Examples:"
"\n sum(model.costs) == model.income"
"\n (0, model.price[item], 50)"
% (self.name, str(expr)))
elif expr is None:
raise ValueError(_rule_returned_none_error % (self.name,))
elif _expr_type is bool:
#
# There are cases where a user thinks they are generating
# a valid 2-sided inequality, but Python's internal
# systems for handling chained inequalities is doing
# something very different and resolving it to True /
# False. In this case, chainedInequality will be
# non-None, but the expression will be a bool. For
# example, model.a < 1 > 0.
#
if logical_expr._using_chained_inequality \
and logical_expr._chainedInequality.prev is not None:
buf = io.StringIO()
logical_expr._chainedInequality.prev.pprint(buf)
#
# We are about to raise an exception, so it's OK to
# reset chainedInequality
#
logical_expr._chainedInequality.prev = None
raise ValueError(
"Invalid chained (2-sided) inequality detected. "
"The expression is resolving to %s instead of a "
"Pyomo Expression object. This can occur when "
"the middle term of a chained inequality is a "
"constant or immutable parameter, for example, "
"'model.a <= 1 >= 0'. The proper form for "
"2-sided inequalities is '0 <= model.a <= 1'."
"\n\nError thrown for Constraint '%s'"
"\n\nUnresolved (dangling) inequality "
"expression: %s"
% (expr, self.name, buf))
else:
raise ValueError(
"Invalid constraint expression. The constraint "
"expression resolved to a trivial Boolean (%s) "
"instead of a Pyomo object. Please modify your "
"rule to return Constraint.%s instead of %s."
"\n\nError thrown for Constraint '%s'"
% ( expr, "Feasible" if expr else "Infeasible",
expr, self.name ))
else:
msg = ("Constraint '%s' does not have a proper "
"value. Found '%s'\nExpecting a tuple or "
"equation. Examples:"
"\n sum(model.costs) == model.income"
"\n (0, model.price[item], 50)"
% (self.name, str(expr)))
if type(expr) is bool:
msg += ("\nNote: constant Boolean expressions "
"are not valid constraint expressions. "
"Some apparently non-constant compound "
"inequalities (e.g. 'expr >= 0 <= 1') "
"can return boolean values; the proper "
"form for compound inequalities is "
"always 'lb <= expr <= ub'.")
raise ValueError(msg)
#
# Special check for chainedInequality errors like "if var <
# 1:" within rules. Catching them here allows us to provide
# the user with better (and more immediate) debugging
# information. We don't want to check earlier because we
# want to provide a specific debugging message if the
# construction rule returned True/False; for example, if the
# user did ( var < 1 > 0 ) (which also results in a non-None
# chainedInequality value)
#
if logical_expr._using_chained_inequality \
and logical_expr._chainedInequality.prev is not None:
raise TypeError(logical_expr._chainedInequality.error_message())
#
# Process relational expressions
# (i.e. explicit '==', '<', and '<=')
#
if relational_expr:
if _expr_type is logical_expr.EqualityExpression:
# Equality expression: only 2 arguments!
self._equality = True
if expr.arg(1).__class__ in native_numeric_types or not expr.arg(1).is_potentially_variable():
self._lower = self._upper = as_numeric(expr.arg(1))
self._body = expr.arg(0)
elif expr.arg(0).__class__ in native_numeric_types or not expr.arg(0).is_potentially_variable():
self._lower = self._upper = as_numeric(expr.arg(0))
self._body = expr.arg(1)
else:
self._lower = self._upper = ZeroConstant
self._body = expr.arg(0) - expr.arg(1)
elif _expr_type is logical_expr.InequalityExpression:
if expr._strict:
raise ValueError(
"Constraint '%s' encountered a strict "
"inequality expression ('>' or '<'). All"
" constraints must be formulated using "
"using '<=', '>=', or '=='."
% (self.name))
arg0 = as_numeric(expr.arg(0))
arg1 = as_numeric(expr.arg(1))
if not arg1.is_potentially_variable():
self._lower = None
self._body = arg0
self._upper = arg1
elif not arg0.is_potentially_variable():
self._lower = arg0
self._body = arg1
self._upper = None
else:
self._lower = None
self._body = arg0
self._body -= arg1
self._upper = ZeroConstant
else: # RangedExpression
if any(expr._strict):
raise ValueError(
"Constraint '%s' encountered a strict "
"inequality expression ('>' or '<'). All"
" constraints must be formulated using "
"using '<=', '>=', or '=='."
% (self.name))
#if expr.arg(0).is_potentially_variable():
# raise ValueError(
# "Constraint '%s' found a double-sided "
# "inequality expression (lower <= "
# "expression <= upper) but the lower "
# "bound was not data or an expression "
# "restricted to storage of data."
# % (self.name))
#if expr.arg(2).is_potentially_variable():
# raise ValueError(
# "Constraint '%s' found a double-sided "\
# "inequality expression (lower <= "
# "expression <= upper) but the upper "
# "bound was not data or an expression "
# "restricted to storage of data."
# % (self.name))
self._lower = as_numeric(expr.arg(0))
self._body = expr.arg(1)
self._upper = as_numeric(expr.arg(2))
#
# Reset the values to 'None' if they are 'infinite'
#
if (self._lower is not None) and is_constant(self._lower):
val = self._lower if self._lower.__class__ in native_numeric_types else self._lower()
if not math.isfinite(val):
if val > 0:
raise ValueError(
"Constraint '%s' created with a +Inf lower "
"bound." % (self.name))
self._lower = None
elif bool(val > 0) == bool(val <= 0):
raise ValueError(
"Constraint '%s' created with a non-numeric "
"lower bound." % (self.name))
if (self._upper is not None) and is_constant(self._upper):
val = self._upper if self._upper.__class__ in native_numeric_types else self._upper()
if not math.isfinite(val):
if val < 0:
raise ValueError(
"Constraint '%s' created with a -Inf upper "
"bound." % (self.name))
self._upper = None
elif bool(val > 0) == bool(val <= 0):
raise ValueError(
"Constraint '%s' created with a non-numeric "
"upper bound." % (self.name))
#
# Error check, to ensure that we don't have a constraint that
# doesn't depend on any variables / parameters.
#
# Error check, to ensure that we don't have an equality
# constraint with 'infinite' RHS
#
if self._equality:
if self._lower is None:
raise ValueError(
"Equality constraint '%s' defined with "
"non-finite term." % (self.name))
assert self._lower is self._upper
def get_value(self):
"""Get the expression on this constraint."""
if self._equality:
return self._body == self._lower
else:
if self._lower is None:
return self._body <= self._upper
elif self._upper is None:
return self._lower <= self._body
return self._lower <= self._body <= self._upper
[docs]@ModelComponentFactory.register("General constraint expressions.")
class Constraint(ActiveIndexedComponent):
"""
This modeling component defines a constraint expression using a
rule function.
Constructor arguments:
expr
A Pyomo expression for this constraint
rule
A function that is used to construct constraint expressions
doc
A text string describing this component
name
A name for this component
Public class attributes:
doc
A text string describing this component
name
A name for this component
active
A boolean that is true if this component will be used to
construct a model instance
rule
The rule used to initialize the constraint(s)
Private class attributes:
_constructed
A boolean that is true if this component has been constructed
_data
A dictionary from the index set to component data objects
_index
The set of valid indices
_implicit_subsets
A tuple of set objects that represents the index set
_model
A weakref to the model that owns this component
_parent
A weakref to the parent block that owns this component
_type
The class type for the derived subclass
"""
_ComponentDataClass = _GeneralConstraintData
class Infeasible(object): pass
Feasible = ActiveIndexedComponent.Skip
NoConstraint = ActiveIndexedComponent.Skip
Violated = Infeasible
Satisfied = Feasible
def __new__(cls, *args, **kwds):
if cls != Constraint:
return super(Constraint, cls).__new__(cls)
if not args or (args[0] is UnindexedComponent_set and len(args)==1):
return super(Constraint, cls).__new__(AbstractSimpleConstraint)
else:
return super(Constraint, cls).__new__(IndexedConstraint)
def __init__(self, *args, **kwargs):
_init = tuple( _arg for _arg in (
kwargs.pop('rule', None),
kwargs.pop('expr', None) ) if _arg is not None )
if len(_init) == 1:
_init = _init[0]
elif not _init:
_init = None
else:
raise ValueError("Duplicate initialization: Constraint() only "
"accepts one of 'rule=' and 'expr='")
kwargs.setdefault('ctype', Constraint)
ActiveIndexedComponent.__init__(self, *args, **kwargs)
self.rule = Initializer(_init, treat_sequences_as_mappings=False)
[docs] def construct(self, data=None):
"""
Construct the expression(s) for this constraint.
"""
if self._constructed:
return
self._constructed=True
timer = ConstructionTimer(self)
if is_debug_set(logger):
logger.debug("Constructing constraint %s"
% (self.name))
try:
# We do not (currently) accept data for constructing Constraints
assert data is None
if self.rule is None:
# If there is no rule, then we are immediately done.
return
if self.rule.constant() and self.is_indexed():
raise IndexError(
"Constraint '%s': Cannot initialize multiple indices "
"of a constraint with a single expression" %
(self.name,) )
index = None
block = self.parent_block()
if self.rule.contains_indices():
# The index is coming in externally; we need to validate it
for index in self.rule.indices():
self[index] = self.rule(block, index)
elif not self.index_set().isfinite():
# If the index is not finite, then we cannot iterate
# over it. Since the rule doesn't provide explicit
# indices, then there is nothing we can do (the
# assumption is that the user will trigger specific
# indices to be created at a later time).
pass
else:
# Bypass the index validation and create the member directly
for index in self.index_set():
self._setitem_when_not_present(
index, self.rule(block, index)
)
except Exception:
err = sys.exc_info()[1]
logger.error(
"Rule failed when generating expression for "
"constraint %s with index %s:\n%s: %s"
% (self.name,
str(index),
type(err).__name__,
err))
raise
finally:
timer.report()
def _getitem_when_not_present(self, idx):
if self.rule is None:
raise KeyError(idx)
con = self._setitem_when_not_present(
idx, self.rule(self.parent_block(), idx))
if con is None:
raise KeyError(idx)
return con
def _pprint(self):
"""
Return data that will be printed for this component.
"""
return (
[("Size", len(self)),
("Index", self._index if self.is_indexed() else None),
("Active", self.active),
],
self.items(),
( "Lower","Body","Upper","Active" ),
lambda k, v: [ "-Inf" if v.lower is None else v.lower,
v.body,
"+Inf" if v.upper is None else v.upper,
v.active,
]
)
[docs] def display(self, prefix="", ostream=None):
"""
Print component state information
This duplicates logic in Component.pprint()
"""
if not self.active:
return
if ostream is None:
ostream = sys.stdout
tab=" "
ostream.write(prefix+self.local_name+" : ")
ostream.write("Size="+str(len(self)))
ostream.write("\n")
tabular_writer( ostream, prefix+tab,
((k,v) for k,v in self._data.items() if v.active),
( "Lower","Body","Upper" ),
lambda k, v: [ value(v.lower),
v.body(),
value(v.upper),
] )
class SimpleConstraint(_GeneralConstraintData, Constraint):
"""
SimpleConstraint is the implementation representing a single,
non-indexed constraint.
"""
def __init__(self, *args, **kwds):
_GeneralConstraintData.__init__(self,
component=self,
expr=None)
Constraint.__init__(self, *args, **kwds)
#
# Since this class derives from Component and
# Component.__getstate__ just packs up the entire __dict__ into
# the state dict, we do not need to define the __getstate__ or
# __setstate__ methods. We just defer to the super() get/set
# state. Since all of our get/set state methods rely on super()
# to traverse the MRO, this will automatically pick up both the
# Component and Data base classes.
#
#
# Singleton constraints are strange in that we want them to be
# both be constructed but have len() == 0 when not initialized with
# anything (at least according to the unit tests that are
# currently in place). So during initialization only, we will
# treat them as "indexed" objects where things like
# Constraint.Skip are managed. But after that they will behave
# like _ConstraintData objects where set_value does not handle
# Constraint.Skip but expects a valid expression or None.
#
@property
def body(self):
"""Access the body of a constraint expression."""
if not self._data:
raise ValueError(
"Accessing the body of SimpleConstraint "
"'%s' before the Constraint has been assigned "
"an expression. There is currently "
"nothing to access." % (self.name))
return _GeneralConstraintData.body.fget(self)
@property
def lower(self):
"""Access the lower bound of a constraint expression."""
if not self._data:
raise ValueError(
"Accessing the lower bound of SimpleConstraint "
"'%s' before the Constraint has been assigned "
"an expression. There is currently "
"nothing to access." % (self.name))
return _GeneralConstraintData.lower.fget(self)
@property
def upper(self):
"""Access the upper bound of a constraint expression."""
if not self._data:
raise ValueError(
"Accessing the upper bound of SimpleConstraint "
"'%s' before the Constraint has been assigned "
"an expression. There is currently "
"nothing to access." % (self.name))
return _GeneralConstraintData.upper.fget(self)
@property
def equality(self):
"""A boolean indicating whether this is an equality constraint."""
if not self._data:
raise ValueError(
"Accessing the equality flag of SimpleConstraint "
"'%s' before the Constraint has been assigned "
"an expression. There is currently "
"nothing to access." % (self.name))
return _GeneralConstraintData.equality.fget(self)
@property
def strict_lower(self):
"""A boolean indicating whether this constraint has a strict lower bound."""
if not self._data:
raise ValueError(
"Accessing the strict_lower flag of SimpleConstraint "
"'%s' before the Constraint has been assigned "
"an expression. There is currently "
"nothing to access." % (self.name))
return _GeneralConstraintData.strict_lower.fget(self)
@property
def strict_upper(self):
"""A boolean indicating whether this constraint has a strict upper bound."""
if not self._data:
raise ValueError(
"Accessing the strict_upper flag of SimpleConstraint "
"'%s' before the Constraint has been assigned "
"an expression. There is currently "
"nothing to access." % (self.name))
return _GeneralConstraintData.strict_upper.fget(self)
def set_value(self, expr):
"""Set the expression on this constraint."""
if not self._data:
self._data[None] = self
return super(SimpleConstraint, self).set_value(expr)
#
# Leaving this method for backward compatibility reasons.
# (probably should be removed)
#
def add(self, index, expr):
"""Add a constraint with a given index."""
if index is not None:
raise ValueError(
"SimpleConstraint object '%s' does not accept "
"index values other than None. Invalid value: %s"
% (self.name, index))
self.set_value(expr)
return self
@disable_methods({'add', 'set_value', 'body', 'lower', 'upper', 'equality',
'strict_lower', 'strict_upper'})
class AbstractSimpleConstraint(SimpleConstraint):
pass
class IndexedConstraint(Constraint):
#
# Leaving this method for backward compatibility reasons
#
# Note: Beginning after Pyomo 5.2 this method will now validate that
# the index is in the underlying index set (through 5.2 the index
# was not checked).
#
def add(self, index, expr):
"""Add a constraint with a given index."""
return self.__setitem__(index, expr)
@ModelComponentFactory.register("A list of constraint expressions.")
class ConstraintList(IndexedConstraint):
"""
A constraint component that represents a list of constraints.
Constraints can be indexed by their index, but when they are
added an index value is not specified.
"""
class End(object): pass
def __init__(self, **kwargs):
"""Constructor"""
if 'expr' in kwargs:
raise ValueError(
"ConstraintList does not accept the 'expr' keyword")
_rule = kwargs.pop('rule', None)
args = (Set(dimen=1),)
super(ConstraintList, self).__init__(*args, **kwargs)
self.rule = Initializer(_rule,
treat_sequences_as_mappings=False,
allow_generators=True)
# HACK to make the "counted call" syntax work. We wait until
# after the base class is set up so that is_indexed() is
# reliable.
if self.rule is not None and type(self.rule) is IndexedCallInitializer:
self.rule = CountedCallInitializer(self, self.rule)
def construct(self, data=None):
"""
Construct the expression(s) for this constraint.
"""
if self._constructed:
return
self._constructed=True
if is_debug_set(logger):
logger.debug("Constructing constraint list %s"
% (self.name))
self.index_set().construct()
if self.rule is not None:
_rule = self.rule(self.parent_block(), ())
for cc in iter(_rule):
if cc is ConstraintList.End:
break
if cc is Constraint.Skip:
continue
self.add(cc)
def add(self, expr):
"""Add a constraint with an implicit index."""
next_idx = len(self._index) + 1
self._index.add(next_idx)
return self.__setitem__(next_idx, expr)