Sensitivity Toolbox

The sensitivity toolbox provides a Pyomo interface to sIPOPT to very quickly compute approximate solutions to nonlinear programs with a small perturbation in model parameters. See the sIPOPT documentation or the following paper for additional details:

  1. Pirnay, R. Lopez-Negrete, and L.T. Biegler, Optimal Sensitivity based on IPOPT, Math. Prog. Comp., 4(4):307–331, 2012.

Using the Sensitivity Toolbox

We will start with a motivating example:

\[\begin{split}\begin{align*} \min_{x_1,x_2,x_3} \quad & x_1^2 + x_2^2 + x_3^2 \\ \mathrm{s.t.} \qquad & 6 x_1 + 3 x_2 + 2 x_3 - p_1 = 0 \\ & p_2 x_1 + x_2 - x_3 - 1 = 0 \\ & x_1, x_2, x_3 \geq 0 \end{align*}\end{split}\]

Here \(x_1\), \(x_2\), and \(x_3\) are the decision variables while \(p_1\) and \(p_2\) are parameters. At first, let’s consider \(p_1 = 4.5\) and \(p_2 = 1.0\). Below is the model implemented in Pyomo.

Import Pyomo and sipopt from the sensitivity toolbox

>>> from pyomo.environ import *
>>> from pyomo.contrib.sensitivity_toolbox.sens import sipopt

Create a concrete model

>>> m = ConcreteModel()

Define the variables with bounds and initial values

>>> m.x1 = Var(initialize = 0.15, within=NonNegativeReals)
>>> m.x2 = Var(initialize = 0.15, within=NonNegativeReals)
>>> m.x3 = Var(initialize = 0.0, within=NonNegativeReals)

Define the parameters

>>> m.eta1 = Param(initialize=4.5,mutable=True)
>>> m.eta2 = Param(initialize=1.0,mutable=True)

Define the constraints and objective

>>> m.const1 = Constraint(expr=6*m.x1+3*m.x2+2*m.x3-m.eta1 ==0)
>>> m.const2 = Constraint(expr=m.eta2*m.x1+m.x2-m.x3-1 ==0)
>>> m.cost = Objective(expr=m.x1**2+m.x2**2+m.x3**2)

The solution of this optimization problem is \(x_1^* = 0.15\), \(x_2^* = 0.15\), and \(x_3^* = 0.0\). But what if we change the parameter values to \(\hat{p}_1 = 4.0\) and \(\hat{p}_2 = 1.0\)? Is there a quick way to approximate the new solution \(\hat{x}_1^*\), \(\hat{x}_2^*\), and \(\hat{x}_3^*\)? Yes! This is the main functionality of sIPOPT.

Next we define the perturbed parameter values \(\hat{p}_1\) and \(\hat{p}_2\):

>>> m.perturbed_eta1 = Param(initialize = 4.0)
>>> m.perturbed_eta2 = Param(initialize = 1.0)

And finally we call sIPOPT:

>>> m_sipopt = sipopt(m,[m.eta1,m.eta2], [m.perturbed_eta1,m.perturbed_eta2], streamSoln=True)
Ipopt ...: run_sens=yes
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit
EXIT: Optimal Solution Found.

The first argument is the Pyomo model. The second argument is a list of the original parameters. The third argument is a list of the perturbed parameters. sIPOPT requires these two lists are the same length. The `...` represents extra lines of output that were cut from this page for brevity.

We can now inspect the solution \(x_1^*\), \(x_2^*\), and \(x_3^*\):

Original parameter values

>>> print("eta1 =",m.eta1())
eta1 = 4.5

>>> print("eta2 =",m.eta2())
eta2 = 1.0

Solution with the original parameter values:

>>> print("x1 =",m.x1())
x1 = 0.15

>>> print("x2 =",m.x2())
x2 = 0.15

>>> print("x3 =",m.x3())
x3 = 0.0

Likewise, we can inspect the approximate solution \(\hat{x}_1^*\), \(\hat{x}_2^*\), and \(\hat{x}_3^*\):

New parameter values:

>>> print("eta1 =",m_sipopt.perturbed_eta1())
eta1 = 4.0

>>> print("eta2 =",m_sipopt.perturbed_eta2())
eta2 = 1.0

(Approximate) solution with the new parameter values:

>>> print("x1 =",m_sipopt.x1())
x1 = 0.5000000037913185

>>> print("x2 =",m_sipopt.x2())
x2 = 0.4999999939338906

>>> print("x3 =",m_sipopt.x3())
x3 = 0.0

Installing sIPOPT

The sensitivity toolbox requires sIPOPT is installed and available in your system PATH. See the IPOPT documentation for detailed instructions:


If you get an error that ipopt_sens cannot be found, you need to make sure sIPOPT was installed and that it is in the system path.

Sensitivity Toolbox Interface

pyomo.contrib.sensitivity_toolbox.sens.sipopt(instance, paramSubList, perturbList, cloneModel=True, streamSoln=False, keepfiles=False)[source]

This function accepts a Pyomo ConcreteModel, a list of parameters, along with their corresponding perterbation list. The model is then converted into the design structure required to call sipopt to get an approximation perturbed solution with updated bounds on the decision variable.

  • instance (ConcreteModel) – pyomo model object
  • paramSubList (list) – list of mutable parameters
  • perturbList (list) – list of perturbed parameter values
  • cloneModel (bool, optional) – indicator to clone the model. If set to False, the original model will be altered
  • streamSoln (bool, optional) – indicator to stream IPOPT solution
  • keepfiles (bool, optional) – preserve solver interface files

model – The model modified for use with sipopt. The returned model has three Suffix members defined:

  • model.sol_state_1: the approximated results at the perturbation point
  • model.sol_state_1_z_L: the updated lower bound
  • model.sol_state_1_z_U: the updated upper bound

Return type:


  • ValueError – perturbList argument is expecting a List of Params
  • ValueError – length(paramSubList) must equal length(perturbList)
  • ValueError – paramSubList will not map to perturbList