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Pyomo is a Python-based, open-source optimization modeling language
with a diverse set of optimization capabilities.



	Installation
	Using CONDA

	Using PIP

	Conditional Dependencies





	Citing Pyomo
	Pyomo

	PySP





	Pyomo Overview
	Mathematical Modeling

	Overview of Modeling Components and Processes

	Abstract Versus Concrete Models

	Simple Models





	Pyomo Modeling Components
	Sets

	Parameters

	Variables

	Objectives

	Constraints

	Expressions

	Suffixes





	Solving Pyomo Models
	Solving ConcreteModels

	Solving AbstractModels

	pyomo solve Command

	Supported Solvers





	Working with Pyomo Models
	Repeated Solves

	Changing the Model or Data and Re-solving

	Fixing Variables and Re-solving

	Extending the Objective Function

	Activating and Deactivating Objectives

	Activating and Deactivating Constraints

	Accessing Variable Values

	Accessing Parameter Values

	Accessing Duals

	Accessing Slacks

	Accessing Solver Status

	Display of Solver Output

	Sending Options to the Solver

	Specifying the Path to a Solver

	Warm Starts

	Solving Multiple Instances in Parallel

	Changing the temporary directory





	Working with Abstract Models
	Instantiating Models

	Managing Data in AbstractModels

	The pyomo Command

	BuildAction and BuildCheck





	Modeling Extensions
	Bilevel Programming

	Dynamic Optimization with pyomo.DAE

	Generalized Disjunctive Programming

	MPEC

	Stochastic Programming in Pyomo

	Pyomo Network





	Pyomo Tutorial Examples

	Debugging Pyomo Models
	Interrogating Pyomo Models

	FAQ

	Getting Help





	Advanced Topics
	Persistent Solvers

	Units Handling in Pyomo

	LinearExpression





	Common Warnings/Errors
	Warnings

	Errors

	Exceptions





	Developer Reference
	The Pyomo Configuration System

	Pyomo Expressions





	Library Reference
	Common Utilities

	AML Library Reference

	Expression Reference

	Solver Interfaces

	Model Data Management

	APPSI (Auto-Persistent Pyomo Solver Interfaces)

	The Kernel Library





	Contributing to Pyomo
	Contribution Requirements

	Working on Forks and Branches

	Review Process

	Where to put contributed code

	pyomo.contrib





	Third-Party Contributions
	Community Detection for Pyomo models

	GDPopt logic-based solver

	MindtPy Solver

	Multistart Solver

	Nonlinear Preprocessing Transformations

	Parameter Estimation with parmest

	PyNumero

	PyROS Solver

	Sensitivity Toolbox

	Trust Region Framework Method Solver

	MC++ Interface

	z3 SMT Sat Solver Interface





	Related Packages
	Modeling Extensions

	Solvers and Solution Strategies

	Domain-Specific Applications





	Bibliography






Indices and Tables


	Index

	Module Index

	Search Page






Pyomo Resources

The Pyomo home page provides resources for Pyomo users:


	http://pyomo.org



Pyomo development is hosted at GitHub:


	https://github.com/Pyomo/pyomo



See the Pyomo Forum for online discussions of Pyomo:


	http://groups.google.com/group/pyomo-forum/









            

          

      

      

    

  

    
      
          
            
  
Installation

Pyomo currently supports the following versions of Python:


	CPython: 3.7, 3.8, 3.9, 3.10

	PyPy: 3




Using CONDA

We recommend installation with conda, which is included with the
Anaconda distribution of Python. You can install Pyomo in your system
Python installation by executing the following in a shell:

conda install -c conda-forge pyomo





Optimization solvers are not installed with Pyomo, but some open source
optimization solvers can be installed with conda as well:

conda install -c conda-forge ipopt glpk








Using PIP

The standard utility for installing Python packages is pip.  You
can install Pyomo in your system Python installation by executing
the following in a shell:

pip install pyomo








Conditional Dependencies

Extensions to Pyomo, and many of the contributions in pyomo.contrib,
often have conditional dependencies on a variety of third-party Python
packages including but not limited to: matplotlib, networkx, numpy,
openpyxl, pandas, pint, pymysql, pyodbc, pyro4, scipy, sympy, and
xlrd.

A full list of conditional dependencies can be found in Pyomo’s
setup.py and displayed using:

python setup.py dependencies --extra optional





Pyomo extensions that require any of these packages will generate
an error message for missing dependencies upon use.

When using pip, all conditional dependencies can be installed at once
using the following command:

pip install 'pyomo[optional]'





When using conda, many of the conditional dependencies are included
with the standard Anaconda installation.

You can check which Python packages you have installed using the command
conda list or pip list. Additional Python packages may be
installed as needed.







            

          

      

      

    

  

    
      
          
            
  
Citing Pyomo
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Mathematical Modeling

This section provides an introduction to Pyomo: Python Optimization
Modeling Objects.  A more complete description is contained in the
[PyomoBookII] book. Pyomo supports the formulation and analysis of
mathematical models for complex optimization applications.  This
capability is commonly associated with commercially available algebraic
modeling languages (AMLs) such as [AMPL], [AIMMS], and [GAMS].
Pyomo’s modeling objects are embedded within Python, a full-featured,
high-level programming language that contains a rich set of supporting
libraries.

Modeling is a fundamental process in many aspects of scientific
research, engineering and business.  Modeling involves the formulation
of a simplified representation of a system or real-world object.  Thus,
modeling tools like Pyomo can be used in a variety of ways:


	Explain phenomena that arise in a system,

	Make predictions about future states of a system,

	Assess key factors that influence phenomena in a system,

	Identify extreme states in a system, that might represent worst-case
scenarios or minimal cost plans, and

	Analyze trade-offs to support human decision makers.



Mathematical models represent system knowledge with a formalized
language.  The following mathematical concepts are central to modern
modeling activities:


Variables


Variables represent unknown or changing parts of a model (e.g.,
whether or not to make a decision, or the characteristic of a system
outcome). The values taken by the variables are often referred to as
a solution and are usually an output of the optimization process.





Parameters


Parameters represents the data that must be supplied to perform the
optimization. In fact, in some settings the word data is used in
place of the word parameters.





Relations


These are equations, inequalities or other mathematical
relationships that define how different parts of a model are
connected to each other.





Goals


These are functions that reflect goals and objectives for the system
being modeled.


The widespread availability of computing resources has made the
numerical analysis of mathematical models a commonplace activity.
Without a modeling language, the process of setting up input files,
executing a solver and extracting the final results from the solver
output is tedious and error-prone.  This difficulty is compounded in
complex, large-scale real-world applications which are difficult to
debug when errors occur.  Additionally, there are many different formats
used by optimization software packages, and few formats are recognized
by many optimizers.  Thus the application of multiple optimization
solvers to analyze a model introduces additional complexities.

Pyomo is an AML that extends Python to include objects for mathematical
modeling. [PyomoBookI], [PyomoBookII], and [PyomoJournal] compare
Pyomo with other AMLs.  Although many good AMLs have been developed for
optimization models, the following are motivating factors for the
development of Pyomo:


	Open Source


Pyomo is developed within Pyomo’s open source project to promote
transparency of the modeling framework and encourage community
development of Pyomo capabilities.






	Customizable Capability


Pyomo supports a customizable capability through the extensive use
of plug-ins to modularize software components.






	Solver Integration


Pyomo models can be optimized with solvers that are written either
in Python or in compiled, low-level languages.






	Programming Language


Pyomo leverages a high-level programming language, which has several
advantages over custom AMLs: a very robust language, extensive
documentation, a rich set of standard libraries, support for modern
programming features like classes and functions, and portability to
many platforms.














            

          

      

      

    

  

    
      
          
            
  
Overview of Modeling Components and Processes

Pyomo supports an object-oriented design for the definition of
optimization models.  The basic steps of a simple modeling process are:


	Create model and declare components

	Instantiate the model

	Apply solver

	Interrogate solver results



In practice, these steps may be applied repeatedly with different data
or with different constraints applied to the model.  However, we focus
on this simple modeling process to illustrate different strategies for
modeling with Pyomo.

A Pyomo model consists of a collection of modeling components that
define different aspects of the model.  Pyomo includes the modeling
components that are commonly supported by modern AMLs: index sets,
symbolic parameters, decision variables, objectives, and constraints.
These modeling components are defined in Pyomo through the following
Python classes:


Set


set data that is used to define a model instance





Param


parameter data that is used to define a model instance





Var


decision variables in a model





Objective


expressions that are minimized or maximized in a model





Constraint


constraint expressions that impose restrictions on variable values in a model








            

          

      

      

    

  

    
      
          
            
  
Abstract Versus Concrete Models

A mathematical model can be defined using symbols that represent data
values.  For example, the following equations represent a linear program
(LP) to find optimal values for the vector \(x\) with parameters
\(n\) and \(b\), and parameter vectors \(a\) and \(c\):


 \begin{array}{lll}
 \min       & \sum_{j=1}^n c_j x_j &\\
  \mathrm{s.t.} & \sum_{j=1}^n a_{ij} x_j \geq b_i & \forall i = 1 \ldots m\\
            & x_j \geq 0 & \forall j = 1 \ldots n
  \end{array}

Note

As a convenience, we use the symbol \(\forall\) to mean “for all”
or “for each.”



We call this an abstract or symbolic mathematical model since it
relies on unspecified parameter values.  Data values can be used to
specify a model instance.  The AbstractModel class provides a
context for defining and initializing abstract optimization models in
Pyomo when the data values will be supplied at the time a solution is to
be obtained.

In many contexts, a mathematical model can and should be directly
defined with the data values supplied at the time of the model
definition.  We call these concrete mathematical models.  For example,
the following LP model is a concrete instance of the previous abstract
model:


 \begin{array}{ll}
 \min       & 2 x_1 + 3 x_2\\
  \mathrm{s.t.} & 3 x_1 + 4 x_2 \geq 1\\
            & x_1, x_2 \geq 0
 \end{array}
The ConcreteModel class is used to define concrete optimization
models in Pyomo.


Note

Python programmers will probably prefer to write concrete models,
while users of some other algebraic modeling languages may tend to
prefer to write abstract models.  The choice is largely a matter of
taste; some applications may be a little more straightforward using
one or the other.







            

          

      

      

    

  

    
      
          
            
  
Simple Models


A Simple Concrete Pyomo Model

It is possible to get the same flexible behavior from models
declared to be abstract and models declared to be concrete in Pyomo;
however, we will focus on a straightforward concrete example here where
the data is hard-wired into the model file. Python programmers will
quickly realize that the data could have come from other sources.

Given the following model from the previous section:


 \begin{array}{ll}
  \min       & 2 x_1 + 3 x_2\\
  \mathrm{s.t.} & 3 x_1 + 4 x_2 \geq 1\\
             & x_1, x_2 \geq 0
  \end{array}
This can be implemented as a concrete model as follows:

import pyomo.environ as pyo

model = pyo.ConcreteModel()

model.x = pyo.Var([1,2], domain=pyo.NonNegativeReals)

model.OBJ = pyo.Objective(expr = 2*model.x[1] + 3*model.x[2])

model.Constraint1 = pyo.Constraint(expr = 3*model.x[1] + 4*model.x[2] >= 1)





Although rule functions can also be used to specify constraints and
objectives, in this example we use the expr option that is available
only in concrete models. This option gives a direct specification of the
expression.




A Simple Abstract Pyomo Model

We repeat the abstract model from the previous section:


 \begin{array}{lll}
 \min       & \sum_{j=1}^n c_j x_j &\\
  \mathrm{s.t.} & \sum_{j=1}^n a_{ij} x_j \geq b_i & \forall i = 1 \ldots m\\
            & x_j \geq 0 & \forall j = 1 \ldots n
 \end{array}
One way to implement this in Pyomo is as shown as follows:

from __future__ import division
import pyomo.environ as pyo

model = pyo.AbstractModel()

model.m = pyo.Param(within=pyo.NonNegativeIntegers)
model.n = pyo.Param(within=pyo.NonNegativeIntegers)

model.I = pyo.RangeSet(1, model.m)
model.J = pyo.RangeSet(1, model.n)

model.a = pyo.Param(model.I, model.J)
model.b = pyo.Param(model.I)
model.c = pyo.Param(model.J)

# the next line declares a variable indexed by the set J
model.x = pyo.Var(model.J, domain=pyo.NonNegativeReals)

def obj_expression(m):
    return pyo.summation(m.c, m.x)

model.OBJ = pyo.Objective(rule=obj_expression)

def ax_constraint_rule(m, i):
    # return the expression for the constraint for i
    return sum(m.a[i,j] * m.x[j] for j in m.J) >= m.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = pyo.Constraint(model.I, rule=ax_constraint_rule)






Note

Python is interpreted one line at a time.  A line continuation
character, \ (backslash), is used for Python statements that need to span
multiple lines.  In Python, indentation has meaning and must be
consistent. For example, lines inside a function definition must be
indented and the end of the indentation is used by Python to signal
the end of the definition.



We will now examine the lines in this example.  The first import line is
used to ensure that int or long division arguments are converted
to floating point values before division is performed.

from __future__ import division





In Python versions before 3.0, division returns the floor of the
mathematical result of division if arguments are int or long.
This import line avoids unexpected behavior when developing mathematical
models with integer values in Python 2.x (and is not necessary in Python
3.x).

The next import line that is required in every Pyomo model. Its purpose
is to make the symbols used by Pyomo known to Python.

import pyomo.environ as pyo





The declaration of a model is also required. The use of the name model
is not required. Almost any name could be used, but we will use the name
model in most of our examples. In this example, we are declaring
that it will be an abstract model.

model = pyo.AbstractModel()





We declare the parameters \(m\) and \(n\) using the Pyomo
Param component. This component can take a variety of arguments; this
example illustrates use of the within option that is used by Pyomo
to validate the data value that is assigned to the parameter. If this
option were not given, then Pyomo would not object to any type of data
being assigned to these parameters. As it is, assignment of a value that
is not a non-negative integer will result in an error.

model.m = pyo.Param(within=pyo.NonNegativeIntegers)
model.n = pyo.Param(within=pyo.NonNegativeIntegers)





Although not required, it is convenient to define index sets. In this
example we use the RangeSet component to declare that the sets will
be a sequence of integers starting at 1 and ending at a value specified
by the the parameters model.m and model.n.

model.I = pyo.RangeSet(1, model.m)
model.J = pyo.RangeSet(1, model.n)





The coefficient and right-hand-side data are defined as indexed
parameters. When sets are given as arguments to the Param component,
they indicate that the set will index the parameter.

model.a = pyo.Param(model.I, model.J)
model.b = pyo.Param(model.I)
model.c = pyo.Param(model.J)





The next line that is interpreted by Python as part of the model
declares the variable \(x\). The first argument to the Var
component is a set, so it is defined as an index set for the variable. In
this case the variable has only one index set, but multiple sets could
be used as was the case for the declaration of the parameter
model.a. The second argument specifies a domain for the
variable. This information is part of the model and will passed to the
solver when data is provided and the model is solved. Specification of
the NonNegativeReals domain implements the requirement that the
variables be greater than or equal to zero.

# the next line declares a variable indexed by the set J
model.x = pyo.Var(model.J, domain=pyo.NonNegativeReals)






Note

In Python, and therefore in Pyomo, any text after pound sign is
considered to be a comment.



In abstract models, Pyomo expressions are usually provided to objective
and constraint declarations via a function defined with a
Python def statement. The def statement establishes a name for a
function along with its arguments. When Pyomo uses a function to get
objective or constraint expressions, it always passes in the
model (i.e., itself) as the the first argument so the model is always
the first formal argument when declaring such functions in Pyomo.
Additional arguments, if needed, follow. Since summation is an extremely
common part of optimization models, Pyomo provides a flexible function
to accommodate it. When given two arguments, the summation() function
returns an expression for the sum of the product of the two arguments
over their indexes. This only works, of course, if the two arguments
have the same indexes. If it is given only one argument it returns an
expression for the sum over all indexes of that argument. So in this
example, when summation() is passed the arguments m.c, m.x
it returns an internal representation of the expression
\(\sum_{j=1}^{n}c_{j} x_{j}\).

def obj_expression(m):
    return pyo.summation(m.c, m.x)





To declare an objective function, the Pyomo component called
Objective is used. The rule argument gives the name of a
function that returns the objective expression. The default sense is
minimization. For maximization, the sense=pyo.maximize argument must be
used. The name that is declared, which is OBJ in this case, appears
in some reports and can be almost any name.

model.OBJ = pyo.Objective(rule=obj_expression)





Declaration of constraints is similar. A function is declared to generate
the constraint expression. In this case, there can be multiple
constraints of the same form because we index the constraints by
\(i\) in the expression \(\sum_{j=1}^n a_{ij} x_j \geq b_i
\;\;\forall i = 1 \ldots m\), which states that we need a constraint for
each value of \(i\) from one to \(m\). In order to parametrize
the expression by \(i\) we include it as a formal parameter to the
function that declares the constraint expression. Technically, we could
have used anything for this argument, but that might be confusing. Using
an i for an \(i\) seems sensible in this situation.

def ax_constraint_rule(m, i):
    # return the expression for the constraint for i
    return sum(m.a[i,j] * m.x[j] for j in m.J) >= m.b[i]






Note

In Python, indexes are in square brackets and function arguments are
in parentheses.



In order to declare constraints that use this expression, we use the
Pyomo Constraint component that takes a variety of arguments. In this
case, our model specifies that we can have more than one constraint of
the same form and we have created a set, model.I, over which these
constraints can be indexed so that is the first argument to the
constraint declaration. The next argument gives the rule that
will be used to generate expressions for the constraints. Taken as a
whole, this constraint declaration says that a list of constraints
indexed by the set model.I will be created and for each member of
model.I, the function ax_constraint_rule will be called and it
will be passed the model object as well as the member of model.I

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = pyo.Constraint(model.I, rule=ax_constraint_rule)





In the object oriented view of all of this, we would say that model
object is a class instance of the AbstractModel class, and
model.J is a Set object that is contained by this model.  Many
modeling components in Pyomo can be optionally specified as indexed
components: collections of components that are referenced using one or
more values.  In this example, the parameter model.c is indexed with
set model.J.

In order to use this model, data must be given for the values of the
parameters. Here is one file that provides data (in AMPL “.dat” format).

# one way to input the data in AMPL format
# for indexed parameters, the indexes are given before the value

param m := 1 ;
param n := 2 ;

param a :=
1 1 3
1 2 4
;

param c:=
1 2
2 3
;

param b := 1 1 ;





There are multiple formats that can be used to provide data to a Pyomo
model, but the AMPL format works well for our purposes because it
contains the names of the data elements together with the data. In AMPL
data files, text after a pound sign is treated as a comment. Lines
generally do not matter, but statements must be terminated with a
semi-colon.

For this particular data file, there is one constraint, so the value of
model.m will be one and there are two variables (i.e., the vector
model.x is two elements long) so the value of model.n will be
two. These two assignments are accomplished with standard
assignments. Notice that in AMPL format input, the name of the model is
omitted.

param m := 1 ;
param n := 2 ;





There is only one constraint, so only two values are needed for
model.a. When assigning values to arrays and vectors in AMPL format,
one way to do it is to give the index(es) and the the value. The line 1
2 4 causes model.a[1,2] to get the value
4. Since model.c has only one index, only one index value is needed
so, for example, the line 1 2 causes model.c[1] to get the
value 2. Line breaks generally do not matter in AMPL format data files,
so the assignment of the value for the single index of model.b is
given on one line since that is easy to read.

param a :=
 1 1 3
 1 2 4
 ;

 param c:=
 1 2
 2 3
 ;

 param b := 1 1 ;








Symbolic Index Sets

When working with Pyomo (or any other AML), it is convenient to write
abstract models in a somewhat more abstract way by using index sets that
contain strings rather than index sets that are implied by
\(1,\ldots,m\) or the summation from 1 to \(n\). When this is
done, the size of the set is implied by the input, rather than specified
directly. Furthermore, the index entries may have no real order.  Often,
a mixture of integers and indexes and strings as indexes is needed in
the same model. To start with an illustration of general indexes,
consider a slightly different Pyomo implementation of the model we just
presented.

# abstract2.py

from __future__ import division
from pyomo.environ import *

model = AbstractModel()

model.I = Set()
model.J = Set()

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals)

def obj_expression(model):
    return summation(model.c, model.x)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)





To get the same instantiated model, the following data file can be used.

# abstract2a.dat AMPL format

set I := 1 ;
set J := 1 2 ;

param a :=
1 1 3
1 2 4
;

param c:=
1 2
2 3
;

param b := 1 1 ;





However, this model can also be fed different data for problems of the
same general form using meaningful indexes.

# abstract2.dat AMPL data format

set I := TV Film ;
set J := Graham John Carol ;

param a :=
TV  Graham 3
TV John 4.4
TV Carol 4.9
Film Graham 1
Film John 2.4
Film Carol 1.1
;

param c := [*]
 Graham 2.2
 John 3.1416
 Carol 3
;

param b := TV 1 Film 1 ;









Solving the Simple Examples

Pyomo supports modeling and scripting but does not install a solver
automatically. In order to solve a model, there must be a solver
installed on the computer to be used. If there is a solver, then the
pyomo command can be used to solve a problem instance.

Suppose that the solver named glpk (also known as glpsol) is installed
on the computer.  Suppose further that an abstract model is in the file
named abstract1.py and a data file for it is in the file named
abstract1.dat. From the command prompt, with both files in the
current directory, a solution can be obtained with the command:

pyomo solve abstract1.py abstract1.dat --solver=glpk





Since glpk is the default solver, there really is no need specify it so
the --solver option can be dropped.


Note

There are two dashes before the command line option names such as
solver.



To continue the example, if CPLEX is installed then it can be listed as
the solver. The command to solve with CPLEX is

pyomo solve abstract1.py abstract1.dat --solver=cplex





This yields the following output on the screen:

[    0.00] Setting up Pyomo environment
[    0.00] Applying Pyomo preprocessing actions
[    0.07] Creating model
[    0.15] Applying solver
[    0.37] Processing results
Number of solutions: 1
Solution Information
Gap: 0.0
Status: optimal
Function Value: 0.666666666667
Solver results file: results.json
[    0.39] Applying Pyomo postprocessing actions
[    0.39] Pyomo Finished





The numbers in square brackets indicate how much time was required for
each step. Results are written to the file named results.json, which
has a special structure that makes it useful for post-processing. To see
a summary of results written to the screen, use the --summary
option:

pyomo solve abstract1.py abstract1.dat --solver=cplex --summary





To see a list of Pyomo command line options, use:

pyomo solve --help






Note

There are two dashes before help.



For a concrete model, no data file is specified on the Pyomo command line.







            

          

      

      

    

  

    
      
          
            
  
Pyomo Modeling Components



	Sets

	Parameters

	Variables

	Objectives

	Constraints

	Expressions

	Suffixes









            

          

      

      

    

  

    
      
          
            
  
Sets


Declaration

Sets can be declared using instances of the Set and RangeSet
classes or by
assigning set expressions.  The simplest set declaration creates a set
and postpones creation of its members:

model.A = pyo.Set()





The Set class takes optional arguments such as:


	dimen = Dimension of the members of the set

	doc = String describing the set

	filter = A Boolean function used during construction to indicate if a
potential new member should be assigned to the set

	initialize = An iterable containing the initial members of the Set, or
function that returns an iterable of the initial members the set.

	ordered = A Boolean indicator that the set is ordered; the default is True

	validate = A Boolean function that validates new member data

	within = Set used for validation; it is a super-set of the set being declared.



In general, Pyomo attempts to infer the “dimensionality” of Set
components (that is, the number of apparent indices) when they are
constructed.  However, there are situations where Pyomo either cannot
detect a dimensionality (e.g., a Set that was not initialized with any
members), or you the user may want to assert the dimensionality of the
set.  This can be accomplished through the dimen keyword.  For
example, to create a set whose members will be tuples with two items, one
could write:

model.B = pyo.Set(dimen=2)





To create a set of all the numbers in set model.A doubled, one could
use

def DoubleA_init(model):
    return (i*2 for i in model.A)
model.C = pyo.Set(initialize=DoubleA_init)





As an aside we note that as always in Python, there are lot of ways to
accomplish the same thing. Also, note that this will generate an error
if model.A contains elements for which multiplication times two is
not defined.

The initialize option can accept any Python iterable, including a
set, list, or tuple.  This data may be returned from a
function or specified directly as in

model.D = pyo.Set(initialize=['red', 'green', 'blue'])





The initialize option can also specify either a generator or a
function to specify the Set members.  In the case of a generator, all
data yielded by the generator will become the initial set members:

def X_init(m):
    for i in range(10):
        yield 2*i+1
model.X = pyo.Set(initialize=X_init)





For initialization functions, Pyomo supports two signatures.  In the
first, the function returns an iterable (set, list, or
tuple) containing the data with which to initialize the Set:

def Y_init(m):
    return [2*i+1 for i in range(10)]
model.Y = pyo.Set(initialize=Y_init)





In the second signature, the function is called for each element,
passing the element number in as an extra argument.  This is repeated
until the function returns the special value Set.End:

def Z_init(model, i):
    if i > 10:
        return pyo.Set.End
    return 2*i+1
model.Z = pyo.Set(initialize=Z_init)





Note that the element number starts with 1 and not 0:

>>> model.X.pprint()
X : Size=1, Index=None, Ordered=Insertion
    Key  : Dimen : Domain : Size : Members
    None :     1 :    Any :   10 : {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
>>> model.Y.pprint()
Y : Size=1, Index=None, Ordered=Insertion
    Key  : Dimen : Domain : Size : Members
    None :     1 :    Any :   10 : {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
>>> model.Z.pprint()
Z : Size=1, Index=None, Ordered=Insertion
    Key  : Dimen : Domain : Size : Members
    None :     1 :    Any :   10 : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21}





Additional information about iterators for set initialization is in the
[PyomoBookII] book.


Note

For Abstract models, data specified in an input file or through the
data argument to AbstractModel.create_instance() will
override the data
specified by the initialize options.



If sets are given as arguments to Set without keywords, they are
interpreted as indexes for an array of sets. For example, to create an
array of sets that is indexed by the members of the set model.A, use:

model.E = pyo.Set(model.A)





Arguments can be combined. For example, to create an array of sets,
indexed by set model.A where each set contains three dimensional
members, use:

model.F = pyo.Set(model.A, dimen=3)





The initialize option can be used to create a set that contains a
sequence of numbers, but the RangeSet class provides a concise
mechanism for simple sequences. This class takes as its arguments a
start value, a final value, and a step size. If the RangeSet has
only a single argument, then that value defines the final value in the
sequence; the first value and step size default to one. If two values
given, they are the first and last value in the sequence and the step
size defaults to one. For example, the following declaration creates a
set with the numbers 1.5, 5 and 8.5:

model.G = pyo.RangeSet(1.5, 10, 3.5)








Operations

Sets may also be created by storing the result of set operations using
other Pyomo sets.  Pyomo supports set operations including union, intersection,
difference, and symmetric difference:

model.I = model.A | model.D # union
model.J = model.A & model.D # intersection
model.K = model.A - model.D # difference
model.L = model.A ^ model.D # exclusive-or





For example, the cross-product operator is the asterisk (*).  To define
a new set M that is the cross product of sets B and C, one
could use

model.M = model.B * model.C





This creates a virtual set that holds references to the original sets,
so any updates to the original sets (B and C) will be reflected
in the new set (M).  In contrast, you can also create a concrete
set, which directly stores the values of the cross product at the time
of creation and will not reflect subsequent changes in the original
sets with:

model.M_concrete = pyo.Set(initialize=model.B * model.C)





Finally, you can indicate that the members of a set are restricted to be in the
cross product of two other sets, one can use the within keyword:

model.N = pyo.Set(within=model.B * model.C)








Predefined Virtual Sets

For use in specifying domains for sets, parameters and variables, Pyomo
provides the following pre-defined virtual sets:


	Any = all possible values

	Reals = floating point values

	PositiveReals = strictly positive floating point values

	NonPositiveReals = non-positive floating point values

	NegativeReals = strictly negative floating point values

	NonNegativeReals = non-negative floating point values

	PercentFraction = floating point values in the interval [0,1]

	UnitInterval = alias for PercentFraction

	Integers = integer values

	PositiveIntegers = positive integer values

	NonPositiveIntegers = non-positive integer values

	NegativeIntegers = negative integer values

	NonNegativeIntegers = non-negative integer values

	Boolean = Boolean values, which can be represented as False/True, 0/1,
’False’/’True’ and ’F’/’T’

	Binary = the integers {0, 1}



For example, if the set model.O is declared to be within the virtual
set NegativeIntegers then an attempt to add anything other than a
negative integer will result in an error. Here is the declaration:

model.O = pyo.Set(within=pyo.NegativeIntegers)








Sparse Index Sets

Sets provide indexes for parameters, variables and other sets. Index set
issues are important for modelers in part because of efficiency
considerations, but primarily because the right choice of index sets can
result in very natural formulations that are conducive to understanding
and maintenance. Pyomo leverages Python to provide a rich collection of
options for index set creation and use.

The choice of how to represent indexes often depends on the application
and the nature of the instance data that are expected. To illustrate
some of the options and issues, we will consider problems involving
networks. In many network applications, it is useful to declare a set of
nodes, such as

model.Nodes = pyo.Set()





and then a set of arcs can be created with reference to the nodes.

Consider the following simple version of minimum cost flow problem:


     \begin{array}{lll}
     \mbox{minimize} & \sum_{a \in \mathcal{A}} c_{a}x_{a} \\
     \mbox{subject to:} & S_{n} + \sum_{(i,n) \in \mathcal{A}}x_{(i,n)} &  \\
                                     & -D_{n} - \sum_{(n,j) \in \mathcal{A}}x_{(n,j)} & n \in \mathcal{N} \\
                                     & x_{a} \geq 0, &  a \in \mathcal{A}
     \end{array}
where


	Set: Nodes \(\equiv \mathcal{N}\)

	Set: Arcs \(\equiv \mathcal{A} \subseteq \mathcal{N} \times \mathcal{N}\)

	Var: Flow on arc \((i,j)\) \(\equiv x_{i,j},\; (i,j) \in \mathcal{A}\)

	Param: Flow Cost on arc \((i,j)\) \(\equiv c_{i,j},\; (i,j) \in \mathcal{A}\)

	Param: Demand at node latexmath:i \(\equiv D_{i},\; i \in \mathcal{N}\)

	Param: Supply at node latexmath:i \(\equiv S_{i},\; i \in \mathcal{N}\)



In the simplest case, the arcs can just be the cross product of the
nodes, which is accomplished by the definition

model.Arcs = model.Nodes*model.Nodes





that creates a set with two dimensional members.  For applications where
all nodes are always connected to all other nodes this may
suffice. However, issues can arise when the network is not fully
dense. For example, the burden of avoiding flow on arcs that do not
exist falls on the data file where high-enough costs must be provided
for those arcs.  Such a scheme is not very elegant or robust.

For many network flow applications, it might be better to declare the
arcs using

model.Arcs = pyo.Set(dimen=2)





or

model.Arcs = pyo.Set(within=model.Nodes*model.Nodes)





where the difference is that the first version will provide error
checking as data is assigned to the set elements. This would enable
specification of a sparse network in a natural way. But this results in
a need to change the FlowBalance constraint because as it was
written in the simple example, it sums over the entire set of nodes for
each node. One way to remedy this is to sum only over the members of the
set model.arcs as in

def FlowBalance_rule(m, node):
    return m.Supply[node] \
        + sum(m.Flow[i, node] for i in m.Nodes if (i,node) in m.Arcs) \
        - m.Demand[node] \
        - sum(m.Flow[node, j] for j in m.Nodes if (j,node) in m.Arcs) \
        == 0





This will be OK unless the number of nodes becomes very large for a
sparse network, then the time to generate this constraint might become
an issue (admittely, only for very large networks, but such networks do
exist).

Another method, which comes in handy in many network applications, is to
have a set for each node that contain the nodes at the other end of arcs
going to the node at hand and another set giving the nodes on out-going
arcs. If these sets are called model.NodesIn and model.NodesOut
respectively, then the flow balance rule can be re-written as

def FlowBalance_rule(m, node):
    return m.Supply[node] \
        + sum(m.Flow[i, node] for i in m.NodesIn[node]) \
        - m.Demand[node] \
        - sum(m.Flow[node, j] for j in m.NodesOut[node]) \
        == 0





The data for NodesIn and NodesOut could be added to the input
file, and this may be the most efficient option.

For all but the largest networks, rather than reading Arcs,
NodesIn and NodesOut from a data file, it might be more elegant
to read only Arcs from a data file and declare model.NodesIn
with an initialize option specifying the creation as follows:

def NodesIn_init(m, node):
    for i, j in m.Arcs:
        if j == node:
            yield i
model.NodesIn = pyo.Set(model.Nodes, initialize=NodesIn_init)





with a similar definition for model.NodesOut.  This code creates a
list of sets for NodesIn, one set of nodes for each node. The full
model is:

import pyomo.environ as pyo

model = pyo.AbstractModel()

model.Nodes = pyo.Set()
model.Arcs = pyo.Set(dimen=2)

def NodesOut_init(m, node):
    for i, j in m.Arcs:
        if i == node:
            yield j
model.NodesOut = pyo.Set(model.Nodes, initialize=NodesOut_init)

def NodesIn_init(m, node):
    for i, j in m.Arcs:
        if j == node:
            yield i
model.NodesIn = pyo.Set(model.Nodes, initialize=NodesIn_init)

model.Flow = pyo.Var(model.Arcs, domain=pyo.NonNegativeReals)
model.FlowCost = pyo.Param(model.Arcs)

model.Demand = pyo.Param(model.Nodes)
model.Supply = pyo.Param(model.Nodes)

def Obj_rule(m):
    return pyo.summation(m.FlowCost, m.Flow)
model.Obj = pyo.Objective(rule=Obj_rule, sense=pyo.minimize)

def FlowBalance_rule(m, node):
    return m.Supply[node] \
        + sum(m.Flow[i, node] for i in m.NodesIn[node]) \
        - m.Demand[node] \
        - sum(m.Flow[node, j] for j in m.NodesOut[node]) \
        == 0
model.FlowBalance = pyo.Constraint(model.Nodes, rule=FlowBalance_rule)





for this model, a toy data file (in AMPL “.dat” format) would be:

set Nodes := CityA CityB CityC ;

set Arcs :=
CityA CityB
CityA CityC
CityC CityB
;

param : FlowCost :=
CityA CityB 1.4
CityA CityC 2.7
CityC CityB 1.6
 ;

param Demand :=
CityA 0
CityB 1
CityC 1
;

param Supply :=
CityA 2
CityB 0
CityC 0
;





This can also be done somewhat more efficiently, and perhaps more clearly,
using a BuildAction (for more information, see BuildAction and BuildCheck):

model.NodesOut = pyo.Set(model.Nodes, within=model.Nodes)
model.NodesIn = pyo.Set(model.Nodes, within=model.Nodes)

def Populate_In_and_Out(model):
    # loop over the arcs and record the end points
    for i, j in model.Arcs:
        model.NodesIn[j].add(i)
        model.NodesOut[i].add(j)

model.In_n_Out = pyo.BuildAction(rule=Populate_In_and_Out)






Sparse Index Sets Example

One may want to have a constraint that holds


\[\forall \; i \in I, k \in K, v \in V_k\]

There are many ways to accomplish this, but one good way is to create a
set of tuples composed of all model.k, model.V[k] pairs.  This
can be done as follows:

def kv_init(m):
    return ((k,v) for k in m.K for v in m.V[k])
model.KV = pyo.Set(dimen=2, initialize=kv_init)





We can now create the constraint \(x_{i,k,v} \leq a_{i,k}y_i
\;\forall\; i \in I, k \in K, v \in V_k\) with:

model.a = pyo.Param(model.I, model.K, default=1)

model.y = pyo.Var(model.I)
model.x = pyo.Var(model.I, model.KV)

def c1_rule(m, i, k, v):
    return m.x[i,k,v] <= m.a[i,k]*m.y[i]
model.c1 = pyo.Constraint(model.I, model.KV, rule=c1_rule)













            

          

      

      

    

  

    
      
          
            
  
Parameters

The word “parameters” is used in many settings. When discussing a Pyomo
model, we use the word to refer to data that must be provided in order
to find an optimal (or good) assignment of values to the decision
variables.  Parameters are declared as instances of a Param
class, which
takes arguments that are somewhat similar to the Set class. For
example, the following code snippet declares sets model.A and
model.B, and then a parameter model.P that is indexed by
model.A and model.B:

model.A = pyo.RangeSet(1,3)
model.B = pyo.Set()
model.P = pyo.Param(model.A, model.B)





In addition to sets that serve as indexes, Param takes
the following options:


	default = The parameter value absent any other specification.

	doc = A string describing the parameter.

	initialize = A function (or Python object) that returns data used to
initialize the parameter values.

	mutable = Boolean value indicating if the Param values are allowed
to change after the Param is initialized.

	validate = A callback function that takes the model, proposed
value, and indices of the proposed value; returning True if the value
is valid.  Returning False will generate an exception.

	within = Set used for validation; it specifies the domain of
valid parameter values.



These options perform in the same way as they do for Set. For
example, given model.A with values {1, 2, 3}, then there are many
ways to create a parameter that represents a square matrix with 9, 16, 25 on the
main diagonal and zeros elsewhere, here are two ways to do it. First using a
Python object to initialize:

v={}
v[1,1] = 9
v[2,2] = 16
v[3,3] = 25
model.S1 = pyo.Param(model.A, model.A, initialize=v, default=0)





And now using an initialization function that is automatically called
once for each index tuple (remember that we are assuming that
model.A contains {1, 2, 3})

def s_init(model, i, j):
    if i == j:
        return i*i
    else:
        return 0.0
model.S2 = pyo.Param(model.A, model.A, initialize=s_init)





In this example, the index set contained integers, but index sets need
not be numeric. It is very common to use strings.


Note

Data specified in an input file will override the data specified by
the initialize option.



Parameter values can be checked by a validation function. In the
following example, the every value of the parameter T (indexed by
model.A) is checked
to be greater than 3.14159. If a value is provided that is less than
that, the model instantation will be terminated and an error message
issued. The validation function should be written so as to return
True if the data is valid and False otherwise.

t_data = {1: 10, 2: 3, 3: 20}

def t_validate(model, v, i):
    return v > 3.14159

model.T = pyo.Param(model.A, validate=t_validate, initialize=t_data)





This example will prodice the following error, indicating that the value
provided for T[2] failed validation:

Traceback (most recent call last):
  ...
ValueError: Invalid parameter value: T[2] = '3', value type=<class 'int'>.
    Value failed parameter validation rule









            

          

      

      

    

  

    
      
          
            
  
Variables

Variables are intended to ultimately be given values by an optimization
package. They are declared and optionally bounded, given initial values,
and documented using the Pyomo Var function. If index sets are given
as arguments to this function they are used to index the variable. Other
optional directives include:


	bounds = A function (or Python object) that gives a (lower,upper)
bound pair for the variable

	domain = A set that is a super-set of the values the variable can take
on.

	initialize = A function (or Python object) that gives a starting value
for the variable; this is particularly important for non-linear models

	within = (synonym for domain)



The following code snippet illustrates some aspects of these options by
declaring a singleton (i.e. unindexed) variable named
model.LumberJack that will take on real values between zero and 6
and it initialized to be 1.5:

model.LumberJack = Var(within=NonNegativeReals, bounds=(0,6), initialize=1.5)





Instead of the initialize option, initialization is sometimes done
with a Python assignment statement as in

model.LumberJack = 1.5





For indexed variables, bounds and initial values are often specified by
a rule (a Python function) that itself may make reference to parameters
or other data. The formal arguments to these rules begins with the model
followed by the indexes. This is illustrated in the following code
snippet that makes use of Python dictionaries declared as lb and ub that
are used by a function to provide bounds:

model.A = Set(initialize=['Scones', 'Tea'])
lb = {'Scones':2, 'Tea':4}
ub = {'Scones':5, 'Tea':7}
def fb(model, i):
   return (lb[i], ub[i])
model.PriceToCharge = Var(model.A, domain=PositiveIntegers, bounds=fb)






Note

Many of the pre-defined virtual sets that are used as domains imply
bounds. A strong example is the set Boolean that implies bounds
of zero and one.







            

          

      

      

    

  

    
      
          
            
  
Objectives

An objective is a function of variables that returns a value that an
optimization package attempts to maximize or minimize. The Objective
function in Pyomo declares an objective. Although other mechanisms are
possible, this function is typically passed the name of another function
that gives the expression. Here is a very simple version of such a
function that assumes model.x has previously been declared as a
Var:

>>> def ObjRule(model):
...     return 2*model.x[1] + 3*model.x[2]
>>> model.obj1 = pyo.Objective(rule=ObjRule)





It is more common for an objective function to refer to parameters as in
this example that assumes that model.p has been declared as a
Param and that model.x has been declared with the same index
set, while model.y has been declared as a singleton:

>>> def ObjRule(model):
...     return pyo.summation(model.p, model.x) + model.y
>>> model.obj2 = pyo.Objective(rule=ObjRule, sense=pyo.maximize)





This example uses the sense option to specify maximization. The
default sense is minimize.





            

          

      

      

    

  

    
      
          
            
  
Constraints

Most constraints are specified using equality or inequality expressions
that are created using a rule, which is a Python function. For example,
if the variable model.x has the indexes ‘butter’ and ‘scones’, then
this constraint limits the sum over these indexes to be exactly three:

def teaOKrule(model):
    return(model.x['butter'] + model.x['scones'] == 3)
model.TeaConst = Constraint(rule=teaOKrule)





Instead of expressions involving equality (==) or inequalities (<= or
>=), constraints can also be expressed using a 3-tuple if the form
(lb, expr, ub) where lb and ub can be None, which is interpreted as
lb <= expr <= ub. Variables can appear only in the middle expr. For
example, the following two constraint declarations have the same
meaning:

model.x = Var()

def aRule(model):
   return model.x >= 2
model.Boundx = Constraint(rule=aRule)

def bRule(model):
   return (2, model.x, None)
model.boundx = Constraint(rule=bRule)





For this simple example, it would also be possible to declare
model.x with a bounds option to accomplish the same thing.

Constraints (and objectives) can be indexed by lists or sets. When the
declaration contains lists or sets as arguments, the elements are
iteratively passed to the rule function. If there is more than one, then
the cross product is sent. For example the following constraint could be
interpreted as placing a budget of \(i\) on the
\(i^{\mbox{th}}\) item to buy where the cost per item is given by
the parameter model.a:

model.A = RangeSet(1,10)
model.a = Param(model.A, within=PositiveReals)
model.ToBuy = Var(model.A)
def bud_rule(model, i):
    return model.a[i]*model.ToBuy[i] <= i
aBudget = Constraint(model.A, rule=bud_rule)






Note

Python and Pyomo are case sensitive so model.a is not the same as
model.A.







            

          

      

      

    

  

    
      
          
            
  
Expressions

In this section, we use the word “expression” in two ways: first in the
general sense of the word and second to desribe a class of Pyomo objects
that have the name Expression as described in the subsection on
expression objects.


Rules to Generate Expressions

Both objectives and constraints make use of rules to generate
expressions. These are Python functions that return the appropriate
expression. These are first-class functions that can access
global data as well as data passed in, including the model object.

Operations on model elements results in expressions, which seems natural
in expressions like the constraints we have seen so far. It is also
possible to build up expressions. The following example illustrates
this, along with a reference to global Python data in the form of a
Python variable called switch:

switch = 3

model.A = RangeSet(1, 10)
model.c = Param(model.A)
model.d = Param()
model.x = Var(model.A, domain=Boolean)

def pi_rule(model):
    accexpr = summation(model.c, model.x)
    if switch >= 2:
        accexpr = accexpr - model.d
    return accexpr >= 0.5
PieSlice = Constraint(rule=pi_rule)





In this example, the constraint that is generated depends on the value
of the Python variable called switch. If the value is 2 or greater,
then the constraint is summation(model.c, model.x) - model.d >= 0.5;
otherwise, the model.d term is not present.


Warning

Because model elements result in expressions, not values, the
following does not work as expected in an abstract model!

model.A = RangeSet(1, 10)
model.c = Param(model.A)
model.d = Param()
model.x = Var(model.A, domain=Boolean)

def pi_rule(model):
    accexpr = summation(model.c, model.x)
    if model.d >= 2:  # NOT in an abstract model!!
        accexpr = accexpr - model.d
    return accexpr >= 0.5
PieSlice = Constraint(rule=pi_rule)





The trouble is that model.d >= 2 results in an expression, not
its evaluated value. Instead use if value(model.d) >= 2




Note

Pyomo supports non-linear expressions and can call non-linear solvers such as Ipopt.






Piecewise Linear Expressions

Pyomo has facilities to add piecewise constraints of the form y=f(x) for
a variety of forms of the function f.

The piecewise types other than SOS2, BIGM_SOS1, BIGM_BIN are implement
as described in the paper [Vielma_et_al].

There are two basic forms for the declaration of the constraint:

#model.pwconst = Piecewise(indexes, yvar, xvar, **Keywords)
#model.pwconst = Piecewise(yvar,xvar,**Keywords)





where pwconst can be replaced by a name appropriate for the
application. The choice depends on whether the x and y variables are
indexed. If so, they must have the same index sets and these sets are
give as the first arguments.


Keywords:


	pw_pts={ },[ ],( )

A dictionary of lists (where keys are the index set) or a single list
(for the non-indexed case or when an identical set of breakpoints is
used across all indices) defining the set of domain breakpoints for
the piecewise linear function.


Note

pw_pts is always required. These give the breakpoints for the
piecewise function and are expected to fully span the bounds for
the independent variable(s).





	pw_repn=<Option>

Indicates the type of piecewise representation to use. This can have a
major impact on solver performance.  Options: (Default “SOS2”)


	“SOS2” - Standard representation using sos2 constraints.

	“BIGM_BIN” - BigM constraints with binary variables. The
theoretically tightest M values are automatically determined.

	“BIGM_SOS1” - BigM constraints with sos1 variables. The
theoretically tightest M values are automatically determined.

	“DCC” - Disaggregated convex combination model.

	“DLOG” - Logarithmic disaggregated convex combination model.

	“CC” - Convex combination model.

	“LOG” - Logarithmic branching convex combination.

	“MC” - Multiple choice model.

	“INC” - Incremental (delta) method.




Note

Step functions are supported for all but the two BIGM
options. Refer to the ‘force_pw’ option.





	pw_constr_type= <Option>

Indicates the bound type of the piecewise function. Options:


	“UB” - y variable is bounded above by piecewise function.

	“LB” - y variable is bounded below by piecewise function.

	“EQ” - y variable is equal to the piecewise function.





	f_rule=f(model,i,j,…,x), { }, [ ], ( )

An object that returns a numeric value that is the range value
corresponding to each piecewise domain point. For functions, the first
argument must be a Pyomo model. The last argument is the domain value
at which the function evaluates (Not a Pyomo Var). Intermediate
arguments are the corresponding indices of the Piecewise component (if
any).  Otherwise, the object can be a dictionary of lists/tuples (with
keys the same as the indexing set) or a singe list/tuple (when no
indexing set is used or when all indices use an identical piecewise
function). Examples:

# A function that changes with index
def f(model,j,x):
   if (j == 2):
      return x**2 + 1.0
   else:
      return x**2 + 5.0

# A nonlinear function
f = lambda model,x : exp(x) + value(model.p)

# A step function
f = [0,0,1,1,2,2]







	force_pw=True/False

Using the given function rule and pw_pts, a check for
convexity/concavity is implemented. If (1) the function is convex and
the piecewise constraints are lower bounds or if (2) the function is
concave and the piecewise constraints are upper bounds then the
piecewise constraints will be substituted for linear
constraints. Setting ‘force_pw=True’ will force the use of the
original piecewise constraints even when one of these two cases
applies.



	warning_tol=<float>

To aid in debugging, a warning is printed when consecutive slopes of
piecewise segments are within <warning_tol> of each
other. Default=1e-8



	warn_domain_coverage=True/False

Print a warning when the feasible region of the domain variable is not
completely covered by the piecewise breakpoints. Default=True



	unbounded_domain_var=True/False

Allow an unbounded or partially bounded Pyomo Var to be used as the
domain variable. Default=False


Note

This does not imply unbounded piecewise segments will be
constructed. The outermost piecewise breakpoints will bound the
domain variable at each index. However, the Var attributes .lb and
.ub will not be modified.







Here is an example of an assignment to a Python dictionary variable that
has keywords for a picewise constraint:

kwds = {'pw_constr_type':'EQ','pw_repn':'SOS2','sense':maximize,'force_pw':True}





Here is a simple example based on the example given earlier in
Symbolic Index Sets. In this new example, the objective function is the
sum of c times x to the fourth. In this example, the keywords are passed
directly to the Piecewise function without being assigned to a
dictionary variable. The upper bound on the x variables was chosen
whimsically just to make the example. The important thing to note is
that variables that are going to appear as the independent variable in a
piecewise constraint must have bounds.

# abstract2piece.py
# Similar to abstract2.py, but the objective is now c times x to the fourth power

from pyomo.environ import *

model = AbstractModel()

model.I = Set()
model.J = Set()

Topx = 6.1 # range of x variables

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals, bounds=(0, Topx))
model.y = Var(model.J, domain=NonNegativeReals)

# to avoid warnings, we set breakpoints at or beyond the bounds
PieceCnt = 100
bpts = []
for i in range(PieceCnt+2):
    bpts.append(float((i*Topx)/PieceCnt))

def f4(model, j, xp):
    # we not need j, but it is passed as the index for the constraint
    return xp**4

model.ComputeObj = Piecewise(model.J, model.y, model.x, pw_pts=bpts, pw_constr_type='EQ', f_rule=f4)

def obj_expression(model):
    return summation(model.c, model.y)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)





A more advanced example is provided in abstract2piecebuild.py in
BuildAction and BuildCheck.






Expression Objects

Pyomo Expression objects are very similar to the Param component
(with mutable=True) except that the underlying values can be numeric
constants or Pyomo expressions. Here’s an illustration of expression
objects in an AbstractModel.  An expression object with an index set
that is the numbers 1, 2, 3 is created and initialized to be the model
variable x times the index. Later in the model file, just to illustrate
how to do it, the expression is changed but just for the first index to
be x squared.

model = ConcreteModel()
model.x = Var(initialize=1.0)
def _e(m,i):
    return m.x*i
model.e = Expression([1,2,3], rule=_e)

instance = model.create_instance()

print (value(instance.e[1])) # -> 1.0
print (instance.e[1]())           # -> 1.0
print (instance.e[1].value)  # -> a pyomo expression object

# Change the underlying expression
instance.e[1].value = instance.x**2

#... solve
#... load results

# print the value of the expression given the loaded optimal solution
print (value(instance.e[1]))





An alternative is to create Python functions that, potentially,
manipulate model objects. E.g., if you define a function

def f(x, p):
    return x + p





You can call this function with or without Pyomo modeling components as
the arguments. E.g., f(2,3) will return a number, whereas f(model.x, 3)
will return a Pyomo expression due to operator overloading.

If you take this approach you should note that anywhere a Pyomo
expression is used to generate another expression (e.g., f(model.x, 3) +
5), the initial expression is always cloned so that the new generated
expression is independent of the old. For example:

model = ConcreteModel()
model.x = Var()

# create a Pyomo expression
e1 = model.x + 5

# create another Pyomo expression
# e1 is copied when generating e2
e2 = e1 + model.x





If you want to create an expression that is shared between other
expressions, you can use the Expression component.







            

          

      

      

    

  

    
      
          
            
  
Suffixes

Suffixes provide a mechanism for declaring extraneous model data, which
can be used in a number of contexts. Most commonly, suffixes are used by
solver plugins to store extra information about the solution of a
model. This and other suffix functionality is made available to the
modeler through the use of the Suffix component class.  Uses of Suffix
include:


	Importing extra information from a solver about the solution of a
mathematical program (e.g., constraint duals, variable reduced costs,
basis information).

	Exporting information to a solver or algorithm to aid in solving a
mathematical program (e.g., warm-starting information, variable
branching priorities).

	Tagging modeling components with local data for later use in advanced
scripting algorithms.




Suffix Notation and the Pyomo NL File Interface

The Suffix component used in Pyomo has been adapted from the suffix
notation used in the modeling language AMPL [AMPL]. Therefore, it
follows naturally that AMPL style suffix functionality is fully
available using Pyomo’s NL file interface. For information on AMPL style
suffixes the reader is referred to the AMPL website:


http://www.ampl.com


A number of scripting examples that highlight the use AMPL style suffix
functionality are available in the examples/pyomo/suffixes directory
distributed with Pyomo.




Declaration

The effects of declaring a Suffix component on a Pyomo model are
determined by the following traits:


	direction: This trait defines the direction of information flow for
the suffix. A suffix direction can be assigned one of four possible
values:
	LOCAL - suffix data stays local to the modeling framework and
will not be imported or exported by a solver plugin (default)

	IMPORT - suffix data will be imported from the solver by its
respective solver plugin

	EXPORT - suffix data will be exported to a solver by its
respective solver plugin

	IMPORT_EXPORT - suffix data flows in both directions between the
model and the solver or algorithm





	datatype: This trait advertises the type of data held on the suffix
for those interfaces where it matters (e.g., the NL file interface). A
suffix datatype can be assigned one of three possible values:
	FLOAT - the suffix stores floating point data (default)

	INT - the suffix stores integer data

	None - the suffix stores any type of data








Note

Exporting suffix data through Pyomo’s NL file interface requires all
active export suffixes have a strict datatype (i.e.,
datatype=None is not allowed).



The following code snippet shows examples of declaring a Suffix
component on a Pyomo model:

import pyomo.environ as pyo

model = pyo.ConcreteModel()

# Export integer data
model.priority = pyo.Suffix(
    direction=pyo.Suffix.EXPORT, datatype=pyo.Suffix.INT)

# Export and import floating point data
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT_EXPORT)

# Store floating point data
model.junk = pyo.Suffix()





Declaring a Suffix with a non-local direction on a model is not
guaranteed to be compatible with all solver plugins in Pyomo. Whether a
given Suffix is acceptable or not depends on both the solver and solver
interface being used. In some cases, a solver plugin will raise an
exception if it encounters a Suffix type that it does not handle, but
this is not true in every situation. For instance, the NL file interface
is generic to all AMPL-compatible solvers, so there is no way to
validate that a Suffix of a given name, direction, and datatype is
appropriate for a solver. One should be careful in verifying that Suffix
declarations are being handled as expected when switching to a different
solver or solver interface.




Operations

The Suffix component class provides a dictionary interface for mapping
Pyomo modeling components to arbitrary data. This mapping functionality
is captured within the ComponentMap base class, which is also available
within Pyomo’s modeling environment. The ComponentMap can be used as a
more lightweight replacement for Suffix in cases where a simple mapping
from Pyomo modeling components to arbitrary data values is required.


Note

ComponentMap and Suffix use the built-in id() function for
hashing entry keys. This design decision arises from the fact that
most of the modeling components found in Pyomo are either not
hashable or use a hash based on a mutable numeric value, making them
unacceptable for use as keys with the built-in dict class.




Warning

The use of the built-in id() function for hashing entry keys in
ComponentMap and Suffix makes them inappropriate for use in
situations where built-in object types must be used as keys. It is
strongly recommended that only Pyomo modeling components be used as
keys in these mapping containers (Var, Constraint, etc.).




Warning

Do not attempt to pickle or deepcopy instances of ComponentMap or
Suffix unless doing so along with the components for which they hold
mapping entries. As an example, placing one of these objects on a
model and then cloning or pickling that model is an acceptable
scenario.



In addition to the dictionary interface provided through the
ComponentMap base class, the Suffix component class also provides a
number of methods whose default semantics are more convenient for
working with indexed modeling components.  The easiest way to highlight
this functionality is through the use of an example.

model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var([1,2,3])
model.foo = pyo.Suffix()





In this example we have a concrete Pyomo model with two different types
of variable components (indexed and non-indexed) as well as a Suffix
declaration (foo). The next code snippet shows examples of adding
entries to the suffix foo.

# Assign a suffix value of 1.0 to model.x
model.foo.set_value(model.x, 1.0)

# Same as above with dict interface
model.foo[model.x] = 1.0

# Assign a suffix value of 0.0 to all indices of model.y
# By default this expands so that entries are created for
# every index (y[1], y[2], y[3]) and not model.y itself
model.foo.set_value(model.y, 0.0)

# The same operation using the dict interface results in an entry only
# for the parent component model.y
model.foo[model.y] = 50.0

# Assign a suffix value of -1.0 to model.y[1]
model.foo.set_value(model.y[1], -1.0)

# Same as above with the dict interface
model.foo[model.y[1]] = -1.0





In this example we highlight the fact that the __setitem__ and
setValue entry methods can be used interchangeably except in the
case where indexed components are used (model.y). In the indexed case,
the __setitem__ approach creates a single entry for the parent
indexed component itself, whereas the setValue approach by default
creates an entry for each index of the component. This behavior can be
controlled using the optional keyword ‘expand’, where assigning it a
value of False results in the same behavior as __setitem__.

Other operations like accessing or removing entries in our mapping can
performed as if the built-in dict class is in use.

>>> print(model.foo.get(model.x))
1.0
>>> print(model.foo[model.x])
1.0

>>> print(model.foo.get(model.y[1]))
-1.0
>>> print(model.foo[model.y[1]])
-1.0

>>> print(model.foo.get(model.y[2]))
0.0
>>> print(model.foo[model.y[2]])
0.0

>>> print(model.foo.get(model.y))
50.0
>>> print(model.foo[model.y])
50.0

>>> del model.foo[model.y]
>>> print(model.foo.get(model.y))
None

>>> print(model.foo[model.y])
Traceback (most recent call last):
  ...
KeyError: "Component with id '...': y"





The non-dict method clear_value can be used in place of
__delitem__ to remove entries, where it inherits the same default
behavior as setValue for indexed components and does not raise a
KeyError when the argument does not exist as a key in the mapping.

>>> model.foo.clear_value(model.y)

>>> print(model.foo[model.y[1]])
Traceback (most recent call last):
  ...
KeyError: "Component with id '...': y[1]"

>>> del model.foo[model.y[1]]
Traceback (most recent call last):
  ...
KeyError: "Component with id '...': y[1]"

>>> model.foo.clear_value(model.y[1])





A summary non-dict Suffix methods is provided here:



clearAllValues()


Clears all suffix data.






clear_value(component, expand=True)


Clears suffix information for a component.






setAllValues(value)


Sets the value of this suffix on all components.






setValue(component, value, expand=True)


Sets the value of this suffix on the specified component.






updateValues(data_buffer, expand=True)


Updates the suffix data given a list of component,value tuples. Provides

an improvement in efficiency over calling setValue on every component.






getDatatype()


Return the suffix datatype.






setDatatype(datatype)


Set the suffix datatype.






getDirection()


Return the suffix direction.






setDirection(direction)


Set the suffix direction.






importEnabled()


Returns True when this suffix is enabled for import from solutions.






exportEnabled()


Returns True when this suffix is enabled for export to solvers.











Importing Suffix Data

Importing suffix information from a solver solution is achieved by
declaring a Suffix component with the appropriate name and
direction. Suffix names available for import may be specific to
third-party solvers as well as individual solver interfaces within
Pyomo. The most common of these, available with most solvers and solver
interfaces, is constraint dual multipliers. Requesting that duals be
imported into suffix data can be accomplished by declaring a Suffix
component on the model.

model = pyo.ConcreteModel()
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)
model.x = pyo.Var()
model.obj = pyo.Objective(expr=model.x)
model.con = pyo.Constraint(expr=model.x >= 1.0)





The existence of an active suffix with the name dual that has an import
style suffix direction will cause constraint dual information to be
collected into the solver results (assuming the solver supplies dual
information). In addition to this, after loading solver results into a
problem instance (using a python script or Pyomo callback functions in
conjunction with the pyomo command), one can access the dual values
associated with constraints using the dual Suffix component.

>>> results = pyo.SolverFactory('glpk').solve(model)
>>> pyo.assert_optimal_termination(results)
>>> print(model.dual[model.con])
1.0





Alternatively, the pyomo option --solver-suffixes can be used to
request suffix information from a solver. In the event that suffix names
are provided via this command-line option, the pyomo script will
automatically declare these Suffix components on the constructed
instance making these suffixes available for import.




Exporting Suffix Data

Exporting suffix data is accomplished in a similar manner as to that of
importing suffix data. One simply needs to declare a Suffix component on
the model with an export style suffix direction and associate modeling
component values with it. The following example shows how one can
declare a special ordered set of type 1 using AMPL-style suffix notation
in conjunction with Pyomo’s NL file interface.

model = pyo.ConcreteModel()
model.y = pyo.Var([1,2,3], within=pyo.NonNegativeReals)

model.sosno = pyo.Suffix(direction=pyo.Suffix.EXPORT)
model.ref = pyo.Suffix(direction=pyo.Suffix.EXPORT)

# Add entry for each index of model.y
model.sosno.set_value(model.y, 1)
model.ref[model.y[1]] = 0
model.ref[model.y[2]] = 1
model.ref[model.y[3]] = 2





Most AMPL-compatible solvers will recognize the suffix names sosno
and ref as declaring a special ordered set, where a positive value
for sosno indicates a special ordered set of type 1 and a negative
value indicates a special ordered set of type 2.


Note

Pyomo provides the SOSConstraint component for declaring special
ordered sets, which is recognized by all solver interfaces, including
the NL file interface.



Pyomo’s NL file interface will recognize an EXPORT style Suffix
component with the name ‘dual’ as supplying initializations for
constraint multipliers. As such it will be treated separately than all
other EXPORT style suffixes encountered in the NL writer, which are
treated as AMPL-style suffixes. The following example script shows how
one can warmstart the interior-point solver Ipopt by supplying both
primal (variable values) and dual (suffixes) solution information. This
dual suffix information can be both imported and exported using a single
Suffix component with an IMPORT_EXPORT direction.

model = pyo.ConcreteModel()
model.x1 = pyo.Var(bounds=(1,5),initialize=1.0)
model.x2 = pyo.Var(bounds=(1,5),initialize=5.0)
model.x3 = pyo.Var(bounds=(1,5),initialize=5.0)
model.x4 = pyo.Var(bounds=(1,5),initialize=1.0)
model.obj = pyo.Objective(
    expr=model.x1*model.x4*(model.x1 + model.x2 + model.x3) + model.x3)
model.inequality = pyo.Constraint(
    expr=model.x1*model.x2*model.x3*model.x4 >= 25.0)
model.equality = pyo.Constraint(
    expr=model.x1**2 + model.x2**2 + model.x3**2 + model.x4**2 == 40.0)

### Declare all suffixes
# Ipopt bound multipliers (obtained from solution)
model.ipopt_zL_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
model.ipopt_zU_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
# Ipopt bound multipliers (sent to solver)
model.ipopt_zL_in = pyo.Suffix(direction=pyo.Suffix.EXPORT)
model.ipopt_zU_in = pyo.Suffix(direction=pyo.Suffix.EXPORT)
# Obtain dual solutions from first solve and send to warm start
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT_EXPORT)

ipopt = pyo.SolverFactory('ipopt')





The difference in performance can be seen by examining Ipopt’s iteration
log with and without warm starting:


	Without Warmstart:

ipopt.solve(model, tee=True)





...
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  1.6109693e+01 1.12e+01 5.28e-01  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  1.6982239e+01 7.30e-01 1.02e+01  -1.0 6.11e-01    -  7.19e-02 1.00e+00f  1
   2  1.7318411e+01 3.60e-02 5.05e-01  -1.0 1.61e-01    -  1.00e+00 1.00e+00h  1
   3  1.6849424e+01 2.78e-01 6.68e-02  -1.7 2.85e-01    -  7.94e-01 1.00e+00h  1
   4  1.7051199e+01 4.71e-03 2.78e-03  -1.7 6.06e-02    -  1.00e+00 1.00e+00h  1
   5  1.7011979e+01 7.19e-03 8.50e-03  -3.8 3.66e-02    -  9.45e-01 9.98e-01h  1
   6  1.7014271e+01 1.74e-05 9.78e-06  -3.8 3.33e-03    -  1.00e+00 1.00e+00h  1
   7  1.7014021e+01 1.23e-07 1.82e-07  -5.7 2.69e-04    -  1.00e+00 1.00e+00h  1
   8  1.7014017e+01 1.77e-11 2.52e-11  -8.6 3.32e-06    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 8
...







	With Warmstart:

### Set Ipopt options for warm-start
# The current values on the ipopt_zU_out and ipopt_zL_out suffixes will
# be used as initial conditions for the bound multipliers to solve the
# new problem
model.ipopt_zL_in.update(model.ipopt_zL_out)
model.ipopt_zU_in.update(model.ipopt_zU_out)
ipopt.options['warm_start_init_point'] = 'yes'
ipopt.options['warm_start_bound_push'] = 1e-6
ipopt.options['warm_start_mult_bound_push'] = 1e-6
ipopt.options['mu_init'] = 1e-6

ipopt.solve(model, tee=True)





...
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  1.7014032e+01 2.00e-06 4.07e-06  -6.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  1.7014019e+01 3.65e-12 1.00e-11  -6.0 2.50e-01    -  1.00e+00 1.00e+00h  1
   2  1.7014017e+01 4.48e-12 6.42e-12  -9.0 1.92e-06    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 2
...












Using Suffixes With an AbstractModel

In order to allow the declaration of suffix data within the framework of
an AbstractModel, the Suffix component can be initialized with an
optional construction rule. As with constraint rules, this function will
be executed at the time of model construction. The following simple
example highlights the use of the rule keyword in suffix
initialization. Suffix rules are expected to return an iterable of
(component, value) tuples, where the expand=True semantics are
applied for indexed components.

model = pyo.AbstractModel()
model.x = pyo.Var()
model.c = pyo.Constraint(expr=model.x >= 1)

def foo_rule(m):
   return ((m.x, 2.0), (m.c, 3.0))
model.foo = pyo.Suffix(rule=foo_rule)





>>> # Instantiate the model
>>> inst = model.create_instance()

>>> print(inst.foo[inst.x])
2.0
>>> print(inst.foo[inst.c])
3.0

>>> # Note that model.x and inst.x are not the same object
>>> print(inst.foo[model.x])
Traceback (most recent call last):
  ...
KeyError: "Component with id '...': x"





The next example shows an abstract model where suffixes are attached
only to the variables:

model = pyo.AbstractModel()
model.I = pyo.RangeSet(1,4)
model.x = pyo.Var(model.I)
def c_rule(m, i):
    return m.x[i] >= i
model.c = pyo.Constraint(model.I, rule=c_rule)

def foo_rule(m):
    return ((m.x[i], 3.0*i) for i in m.I)
model.foo = pyo.Suffix(rule=foo_rule)





>>> # instantiate the model
>>> inst = model.create_instance()
>>> for i in inst.I:
...     print((i, inst.foo[inst.x[i]]))
(1, 3.0)
(2, 6.0)
(3, 9.0)
(4, 12.0)











            

          

      

      

    

  

    
      
          
            
  
Solving Pyomo Models


Solving ConcreteModels

If you have a ConcreteModel, add these lines at the bottom of your
Python script to solve it

>>> opt = pyo.SolverFactory('glpk')
>>> opt.solve(model) 








Solving AbstractModels

If you have an AbstractModel, you must create a concrete instance of
your model before solving it using the same lines as above:

>>> instance = model.create_instance()
>>> opt = pyo.SolverFactory('glpk')
>>> opt.solve(instance) 








pyomo solve Command

To solve a ConcreteModel contained in the file my_model.py using the
pyomo command and the solver GLPK, use the following line in a
terminal window:

pyomo solve my_model.py --solver='glpk'





To solve an AbstractModel contained in the file my_model.py with data
in the file my_data.dat using the pyomo command and the solver GLPK,
use the following line in a terminal window:

pyomo solve my_model.py my_data.dat --solver='glpk'








Supported Solvers

Pyomo supports a wide variety of solvers.  Pyomo has specialized
interfaces to some solvers (for example, BARON, CBC, CPLEX, and Gurobi).
It also has generic interfaces that support calling any solver that can
read AMPL “.nl” and write “.sol” files and the ability to
generate GAMS-format models and retrieve the results.  You can get the
current list of supported solvers using the pyomo command:

pyomo help --solvers











            

          

      

      

    

  

    
      
          
            
  
Working with Pyomo Models

This section gives an overview of commonly used scripting commands when
working with Pyomo models. These commands must be applied to a concrete
model instance or in other words an instantiated model.


Repeated Solves

>>> import pyomo.environ as pyo
>>> from pyomo.opt import SolverFactory
>>> model = pyo.ConcreteModel()
>>> model.nVars = pyo.Param(initialize=4)
>>> model.N = pyo.RangeSet(model.nVars)
>>> model.x = pyo.Var(model.N, within=pyo.Binary)
>>> model.obj = pyo.Objective(expr=pyo.summation(model.x))
>>> model.cuts = pyo.ConstraintList()
>>> opt = SolverFactory('glpk')
>>> opt.solve(model) 

>>> # Iterate, adding a cut to exclude the previously found solution
>>> for i in range(5):
...    expr = 0
...    for j in model.x:
...        if pyo.value(model.x[j]) < 0.5:
...            expr += model.x[j]
...        else:
...            expr += (1 - model.x[j])
...    model.cuts.add( expr >= 1 )
...    results = opt.solve(model)
...    print ("\n===== iteration",i)
...    model.display() 





To illustrate Python scripts for Pyomo we consider an example that is in
the file iterative1.py and is executed using the command

python iterative1.py






Note

This is a Python script that contains elements of Pyomo, so it is
executed using the python command.  The pyomo command can be
used, but then there will be some strange messages at the end when
Pyomo finishes the script and attempts to send the results to a
solver, which is what the pyomo command does.



This script creates a model, solves it, and then adds a constraint to
preclude the solution just found. This process is repeated, so the
script finds and prints multiple solutions.  The particular model it
creates is just the sum of four binary variables. One does not need a
computer to solve the problem or even to iterate over solutions. This
example is provided just to illustrate some elementary aspects of
scripting.

# iterative1.py
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

# Create a solver
opt = pyo.SolverFactory('glpk')

#
# A simple model with binary variables and
# an empty constraint list.
#
model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
def o_rule(model):
    return pyo.summation(model.x)
model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

# Create a model instance and optimize
instance = model.create_instance()
results = opt.solve(instance)
instance.display()

# Iterate to eliminate the previously found solution
for i in range(5):
    expr = 0
    for j in instance.x:
        if pyo.value(instance.x[j]) == 0:
            expr += instance.x[j]
        else:
            expr += (1-instance.x[j])
    instance.c.add( expr >= 1 )
    results = opt.solve(instance)
    print ("\n===== iteration",i)
    instance.display()





Let us now analyze this script. The first line is a comment that happens
to give the name of the file. This is followed by two lines that import
symbols for Pyomo. The pyomo namespace is imported as
pyo. Therefore, pyo. must precede each use of a Pyomo name.

# iterative1.py
import pyomo.environ as pyo
from pyomo.opt import SolverFactory





An object to perform optimization is created by calling
SolverFactory with an argument giving the name of the solver. The
argument would be 'gurobi' if, e.g., Gurobi was desired instead of
glpk:

# Create a solver
opt = pyo.SolverFactory('glpk')





The next lines after a comment create a model. For our discussion here,
we will refer to this as the base model because it will be extended by
adding constraints later. (The words “base model” are not reserved
words, they are just being introduced for the discussion of this
example).  There are no constraints in the base model, but that is just
to keep it simple.  Constraints could be present in the base model.
Even though it is an abstract model, the base model is fully specified
by these commands because it requires no external data:

model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
def o_rule(model):
    return pyo.summation(model.x)
model.o = pyo.Objective(rule=o_rule)





The next line is not part of the base model specification. It creates an
empty constraint list that the script will use to add constraints.

model.c = pyo.ConstraintList()





The next non-comment line creates the instantiated model and refers to
the instance object with a Python variable instance.  Models run
using the pyomo script do not typically contain this line because
model instantiation is done by the pyomo script. In this example,
the create function is called without arguments because none are
needed; however, the name of a file with data commands is given as an
argument in many scripts.

instance = model.create_instance()





The next line invokes the solver and refers to the object contain
results with the Python variable results.

results = opt.solve(instance)





The solve function loads the results into the instance, so the next line
writes out the updated values.

instance.display()





The next non-comment line is a Python iteration command that will
successively assign the integers from 0 to 4 to the Python variable
i, although that variable is not used in script. This loop is what
causes the script to generate five more solutions:

for i in range(5):





An expression is built up in the Python variable named expr.  The
Python variable j will be iteratively assigned all of the indexes of
the variable x. For each index, the value of the variable (which was
loaded by the load method just described) is tested to see if it is
zero and the expression in expr is augmented accordingly.  Although
expr is initialized to 0 (an integer), its type will change to be a
Pyomo expression when it is assigned expressions involving Pyomo
variable objects:

    expr = 0
    for j in instance.x:
        if pyo.value(instance.x[j]) == 0:
            expr += instance.x[j]
        else:
            expr += (1-instance.x[j])





During the first iteration (when i is 0), we know that all values of
x will be 0, so we can anticipate what the expression will look
like. We know that x is indexed by the integers from 1 to 4 so we
know that j will take on the values from 1 to 4 and we also know
that all value of x will be zero for all indexes so we know that the
value of expr will be something like

0 + instance.x[1] + instance.x[2] + instance.x[3] + instance.x[4]





The value of j will be evaluated because it is a Python variable;
however, because it is a Pyomo variable, the value of instance.x[j]
not be used, instead the variable object will appear in the
expression. That is exactly what we want in this case. When we wanted to
use the current value in the if statement, we used the value
function to get it.

The next line adds to the constaint list called c the requirement
that the expression be greater than or equal to one:

    instance.c.add( expr >= 1 )





The proof that this precludes the last solution is left as an exerise
for the reader.

The final lines in the outer for loop find a solution and display it:

    results = opt.solve(instance)
    print ("\n===== iteration",i)
    instance.display()






Note

The assignment of the solve output to a results object is somewhat
anachronistic. Many scripts just use

>>> opt.solve(instance) 





since the results are moved to the instance by default, leaving
the results object with little of interest. If, for some reason,
you want the results to stay in the results object and not be
moved to the instance, you would use

>>> results = opt.solve(instance, load_solutions=False) 





This approach can be usefull if there is a concern that the solver
did not terminate with an optimal solution. For example,

>>> results = opt.solve(instance, load_solutions=False) 
>>> if results.solver.termination_condition == TerminationCondition.optimal: 
...     instance.solutions.load_from(results) 










Changing the Model or Data and Re-solving

The iterative1.py example above illustrates how a model can be changed and
then re-solved. In that example, the model is changed by adding a
constraint, but the model could also be changed by altering the values
of parameters. Note, however, that in these examples, we make the
changes to the concrete model instances.  This is particularly important
for AbstractModel users, as this implies working with the
instance object rather than the model object, which allows us to
avoid creating a new model object for each solve. Here is the basic
idea for users of an AbstractModel:


	Create an AbstractModel (suppose it is called model)

	Call model.create_instance() to create an instance (suppose it is called instance)

	Solve instance

	Change someting in instance

	Solve instance again




Note

Users of ConcreteModel typically name their models model, which
can cause confusion to novice readers of documentation. Examples based on
an AbstractModel will refer to instance where users of a
ConcreteModel would typically use the name model.



If instance has a parameter whose name is Theta that was
declared to be mutable (i.e., mutable=True) with an
index that contains idx, then the value in NewVal can be assigned to
it using

>>> instance.Theta[idx] = NewVal





For a singleton parameter named sigma (i.e., if it is not
indexed), the assignment can be made using

>>> instance.sigma = NewVal






Note

If the Param is not declared to be mutable, an error will occur if an assignment to it is attempted.



For more information about access to Pyomo parameters, see the section
in this document on Param access Accessing Parameter Values. Note that for
concrete models, the model is the instance.




Fixing Variables and Re-solving

Instead of changing model data, scripts are often used to fix variable
values. The following example illustrates this.

# iterative2.py

import pyomo.environ as pyo
from pyomo.opt import SolverFactory

# Create a solver
opt = pyo.SolverFactory('cplex')

#
# A simple model with binary variables and
# an empty constraint list.
#
model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
def o_rule(model):
    return summation(model.x)
model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

# Create a model instance and optimize
instance = model.create_instance()
results = opt.solve(instance)
instance.display()

# "flip" the value of x[2] (it is binary)
# then solve again

if pyo.value(instance.x[2]) == 0:
    instance.x[2].fix(1)
else:
    instance.x[2].fix(0)

results = opt.solve(instance)
instance.display()





In this example, the variables are binary. The model is solved and then
the value of model.x[2] is flipped to the opposite value before
solving the model again. The main lines of interest are:


if pyo.value(instance.x[2]) == 0:
    instance.x[2].fix(1)
else:
    instance.x[2].fix(0)

results = opt.solve(instance)





This could also have been accomplished by setting the upper and lower
bounds:

>>> if instance.x[2].value == 0:
...     instance.x[2].setlb(1)
...     instance.x[2].setub(1)
... else:
...     instance.x[2].setlb(0)
...     instance.x[2].setub(0)





Notice that when using the bounds, we do not set fixed to True
because that would fix the variable at whatever value it presently has
and then the bounds would be ignored by the solver.

For more information about access to Pyomo variables, see the section in
this document on Var access Accessing Variable Values.

Note that

>>> instance.x.fix(1)





is equivalent to

>>> instance.x.value = 1
>>> instance.x.fixed = True






	and
	>>> instance.x.fix()









is equivalent to

>>> instance.x.fixed = True








Extending the Objective Function

One can add terms to an objective function of a ConcreteModel (or
and instantiated AbstractModel) using the expr attribute
of the objective function object. Here is a simple example:

>>> import pyomo.environ as pyo
>>> from pyomo.opt import SolverFactory

>>> model = pyo.ConcreteModel()

>>> model.x = pyo.Var(within=pyo.PositiveReals)
>>> model.y = pyo.Var(within=pyo.PositiveReals)

>>> model.sillybound = pyo.Constraint(expr = model.x + model.y <= 2)

>>> model.obj = pyo.Objective(expr = 20 * model.x)

>>> opt = SolverFactory('glpk') 
>>> opt.solve(model) 

>>> model.pprint() 

>>> print ("------------- extend obj --------------") 
>>> model.obj.expr += 10 * model.y

>>> opt = SolverFactory('cplex') 
>>> opt.solve(model) 
>>> model.pprint() 








Activating and Deactivating Objectives

Multiple objectives can be declared, but only one can be active at a
time (at present, Pyomo does not support any solvers that can be given
more than one objective). If both model.obj1 and model.obj2 have
been declared using Objective, then one can ensure that
model.obj2 is passed to the solver as shown in this simple example:

>>> model = pyo.ConcreteModel()
>>> model.obj1 = pyo.Objective(expr = 0)
>>> model.obj2 = pyo.Objective(expr = 0)

>>> model.obj1.deactivate()
>>> model.obj2.activate()





For abstract models this would be done prior to instantiation or else
the activate and deactivate calls would be on the instance
rather than the model.




Activating and Deactivating Constraints

Constraints can be temporarily disabled using the deactivate() method.
When the model is sent to a solver inactive constraints are not included.
Disabled constraints can be re-enabled using the activate() method.

>>> model = pyo.ConcreteModel()
>>> model.v = pyo.Var()
>>> model.con = pyo.Constraint(expr=model.v**2 + model.v >= 3)
>>> model.con.deactivate()
>>> model.con.activate()





Indexed constraints can be deactivated/activated as a whole or by
individual index:

>>> model = pyo.ConcreteModel()
>>> model.s = pyo.Set(initialize=[1,2,3])
>>> model.v = pyo.Var(model.s)
>>> def _con(m, s):
...    return m.v[s]**2 + m.v[s] >= 3
>>> model.con = pyo.Constraint(model.s, rule=_con)
>>> model.con.deactivate()   # Deactivate all indices
>>> model.con[1].activate()  # Activate single index








Accessing Variable Values


Primal Variable Values

Often, the point of optimization is to get optimal values of
variables. Some users may want to process the values in a script. We
will describe how to access a particular variable from a Python script
as well as how to access all variables from a Python script and from a
callback. This should enable the reader to understand how to get the
access that they desire. The Iterative example given above also
illustrates access to variable values.




One Variable from a Python Script

Assuming the model has been instantiated and solved and the results have
been loded back into the instance object, then we can make use of the
fact that the variable is a member of the instance object and its value
can be accessed using its value member. For example, suppose the
model contains a variable named quant that is a singleton (has no
indexes) and suppose further that the name of the instance object is
instance. Then the value of this variable can be accessed using
pyo.value(instance.quant). Variables with indexes can be referenced
by supplying the index.

Consider the following very simple example, which is similar to the
iterative example. This is a concrete model. In this example, the value
of x[2] is accessed.

# noiteration1.py

import pyomo.environ as pyo
from pyomo.opt import SolverFactory

# Create a solver
opt = SolverFactory('glpk')

#
# A simple model with binary variables and
# an empty constraint list.
#
model = pyo.ConcreteModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
def o_rule(model):
    return summation(model.x)
model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

results = opt.solve(model)

if pyo.value(model.x[2]) == 0:
    print("The second index has a zero")
else:
    print("x[2]=",pyo.value(model.x[2]))







Note

If this script is run without modification, Pyomo is likely to issue
a warning because there are no constraints. The warning is because
some solvers may fail if given a problem instance that does not have
any constraints.






All Variables from a Python Script

As with one variable, we assume that the model has been instantiated
and solved. Assuming the instance object has the name instance,
the following code snippet displays all variables and their values:

>>> for v in instance.component_objects(pyo.Var, active=True):
...     print("Variable",v)  
...     for index in v:
...         print ("   ",index, pyo.value(v[index]))  





Alternatively,

>>> for v in instance.component_data_objects(pyo.Var, active=True):
...     print(v, pyo.value(v))  





This code could be improved by checking to see if the variable is not
indexed (i.e., the only index value is None), then the code could
print the value without the word None next to it.

Assuming again that the model has been instantiated and solved and the
results have been loded back into the instance object. Here is a code
snippet for fixing all integers at their current value:

>>> for var in instance.component_data_objects(pyo.Var, active=True):
...     if not var.is_continuous():
...         print ("fixing "+str(v))  
...         var.fixed = True # fix the current value





Another way to access all of the variables (particularly if there are
blocks) is as follows (this particular snippet assumes that instead of
import pyomo.environ as pyo from pyo.environ import * was used):

for v in model.component_objects(Var, descend_into=True):
    print("FOUND VAR:" + v.name)
    v.pprint()

for v_data in model.component_data_objects(Var, descend_into=True):
    print("Found: "+v_data.name+", value = "+str(value(v_data)))










Accessing Parameter Values

Accessing parameter values is completely analogous to accessing variable
values. For example, here is a code snippet to print the name and value
of every Parameter in a model:

>>> for parmobject in instance.component_objects(pyo.Param, active=True):
...     nametoprint = str(str(parmobject.name))
...     print ("Parameter ", nametoprint)  
...     for index in parmobject:
...         vtoprint = pyo.value(parmobject[index])
...         print ("   ",index, vtoprint)  








Accessing Duals

Access to dual values in scripts is similar to accessing primal variable
values, except that dual values are not captured by default so
additional directives are needed before optimization to signal that
duals are desired.

To get duals without a script, use the pyomo option
--solver-suffixes='dual' which will cause dual values to be included
in output.  Note: In addition to duals (dual) , reduced costs
(rc) and slack values (slack) can be requested. All suffixes can
be requested using the pyomo option --solver-suffixes='.*'


Warning

Some of the duals may have the value None, rather than 0.




Access Duals in a Python Script

To signal that duals are desired, declare a Suffix component with the
name “dual” on the model or instance with an IMPORT or IMPORT_EXPORT
direction.

# Create a 'dual' suffix component on the instance
# so the solver plugin will know which suffixes to collect
instance.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)





See the section on Suffixes Suffixes for more information on
Pyomo’s Suffix component. After the results are obtained and loaded into
an instance, duals can be accessed in the following fashion.

# display all duals
print ("Duals")
for c in instance.component_objects(pyo.Constraint, active=True):
    print ("   Constraint",c)
    for index in c:
        print ("      ", index, instance.dual[c[index]])





The following snippet will only work, of course, if there is a
constraint with the name AxbConstraint that has and index, which is
the string Film.

# access one dual
print ("Dual for Film=", instance.dual[instance.AxbConstraint['Film']])





Here is a complete example that relies on the file abstract2.py to
provide the model and the file abstract2.dat to provide the
data. Note that the model in abstract2.py does contain a constraint
named AxbConstraint and abstract2.dat does specify an index for
it named Film.

# driveabs2.py
from __future__ import division
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

# Create a solver
opt = SolverFactory('cplex')

# get the model from another file
from abstract2 import model

# Create a model instance and optimize
instance = model.create_instance('abstract2.dat')

# Create a 'dual' suffix component on the instance
# so the solver plugin will know which suffixes to collect
instance.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)

results = opt.solve(instance)
# also puts the results back into the instance for easy access

# display all duals
print ("Duals")
for c in instance.component_objects(pyo.Constraint, active=True):
    print ("   Constraint",c)
    for index in c:
        print ("      ", index, instance.dual[c[index]])

# access one dual
print ("Dual for Film=", instance.dual[instance.AxbConstraint['Film']])





Concrete models are slightly different because the model is the
instance. Here is a complete example that relies on the file
concrete1.py to provide the model and instantiate it.

# driveconc1.py
from __future__ import division
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

# Create a solver
opt = SolverFactory('cplex')

# get the model from another file
from concrete1 import model

# Create a 'dual' suffix component on the instance
# so the solver plugin will know which suffixes to collect
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)

results = opt.solve(model) # also load results to model

# display all duals
print ("Duals")
for c in model.component_objects(pyo.Constraint, active=True):
    print ("   Constraint",c)
    for index in c:
        print ("      ", index, model.dual[c[index]])













Accessing Slacks

The functions lslack() and uslack() return the upper and lower
slacks, respectively, for a constraint.




Accessing Solver Status

After a solve, the results object has a member Solution.Status that
contains the solver status. The following snippet shows an example of
access via a print statement:

results = opt.solve(instance)
#print ("The solver returned a status of:"+str(results.solver.status))





The use of the Python str function to cast the value to a be string
makes it easy to test it. In particular, the value ‘optimal’ indicates
that the solver succeeded. It is also possible to access Pyomo data that
can be compared with the solver status as in the following code snippet:

from pyomo.opt import SolverStatus, TerminationCondition

#...

if (results.solver.status == SolverStatus.ok) and (results.solver.termination_condition == TerminationCondition.optimal):
     print ("this is feasible and optimal")
elif results.solver.termination_condition == TerminationCondition.infeasible:
     print ("do something about it? or exit?")
else:
     # something else is wrong
     print (str(results.solver))





Alternatively,

from pyomo.opt import TerminationCondition

...

results = opt.solve(model, load_solutions=False)
if results.solver.termination_condition == TerminationCondition.optimal:
    model.solutions.load_from(results)
else:
    print ("Solution is not optimal")
    # now do something about it? or exit? ...








Display of Solver Output

To see the output of the solver, use the option tee=True as in

results = opt.solve(instance, tee=True)





This can be useful for troubleshooting solver difficulties.




Sending Options to the Solver

Most solvers accept options and Pyomo can pass options through to a
solver. In scripts or callbacks, the options can be attached to the
solver object by adding to its options dictionary as illustrated by this
snippet:

optimizer = pyo.SolverFactory['cbc']
optimizer.options["threads"] = 4





If multiple options are needed, then multiple dictionary entries should
be added.

Sometimes it is desirable to pass options as part of the call to the
solve function as in this snippet:

results = optimizer.solve(instance, options="threads=4", tee=True)





The quoted string is passed directly to the solver. If multiple options
need to be passed to the solver in this way, they should be separated by
a space within the quoted string. Notice that tee is a Pyomo option
and is solver-independent, while the string argument to options is
passed to the solver without very little processing by Pyomo. If the
solver does not have a “threads” option, it will probably complain, but
Pyomo will not.

There are no default values for options on a SolverFactory
object. If you directly modify its options dictionary, as was done
above, those options will persist across every call to
optimizer.solve(…) unless you delete them from the options
dictionary. You can also pass a dictionary of options into the
opt.solve(…) method using the options keyword. Those options
will only persist within that solve and temporarily override any
matching options in the options dictionary on the solver object.




Specifying the Path to a Solver

Often, the executables for solvers are in the path; however, for
situations where they are not, the SolverFactory function accepts the
keyword executable, which you can use to set an absolute or relative
path to a solver executable. E.g.,

opt = pyo.SolverFactory("ipopt", executable="../ipopt")








Warm Starts

Some solvers support a warm start based on current values of
variables. To use this feature, set the values of variables in the
instance and pass warmstart=True to the solve() method. E.g.,

instance = model.create()
instance.y[0] = 1
instance.y[1] = 0

opt = pyo.SolverFactory("cplex")

results = opt.solve(instance, warmstart=True)






Note

The Cplex and Gurobi LP file (and Python) interfaces will generate an
MST file with the variable data and hand this off to the solver in
addition to the LP file.




Warning

Solvers using the NL file interface (e.g., “gurobi_ampl”, “cplexamp”)
do not accept warmstart as a keyword to the solve() method as the NL
file format, by default, includes variable initialization data (drawn
from the current value of all variables).






Solving Multiple Instances in Parallel

Building and solving Pyomo models in parallel is a common requirement
for many applications. We recommend using MPI for Python (mpi4py) for
this purpose. For more information on mpi4py, see the mpi4py
documentation (https://mpi4py.readthedocs.io/en/stable/). The example
below demonstrates how to use mpi4py to solve two pyomo models in
parallel. The example can be run with the following command:

mpirun -np 2 python -m mpi4py parallel.py





# parallel.py
# run with mpirun -np 2 python -m mpi4py parallel.py
import pyomo.environ as pyo
from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
assert size == 2, 'This example only works with 2 processes; please us mpirun -np 2 python -m mpi4py parallel.py'

# Create a solver
opt = pyo.SolverFactory('cplex_direct')

#
# A simple model with binary variables
#
model = pyo.ConcreteModel()
model.n = pyo.Param(initialize=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
model.obj = pyo.Objective(expr=sum(model.x.values()))

if rank == 1:
    model.x[1].fix(1)

results = opt.solve(model)
print('rank: ', rank, '    objective: ', pyo.value(model.obj.expr))








Changing the temporary directory

A “temporary” directory is used for many intermediate files. Normally,
the name of the directory for temporary files is provided by the
operating system, but the user can specify their own directory name.
The pyomo command-line --tempdir option propagates through to the
TempFileManager service. One can accomplish the same through the
following few lines of code in a script:

from pyomo.common.tempfiles import TempfileManager
TempfileManager.tempdir = YourDirectoryNameGoesHere
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Instantiating Models

If you start with a ConcreteModel, each component
you add to the model will be fully constructed and initialized at the
time it attached to the model.  However, if you are starting with an
AbstractModel, construction occurs in two
phases.  When you first declare and attach components to the model,
those components are empty containers and not fully constructed, even
if you explicitly provide data.

>>> import pyomo.environ as pyo
>>> model = pyo.AbstractModel()
>>> model.is_constructed()
False

>>> model.p = pyo.Param(initialize=5)
>>> model.p.is_constructed()
False

>>> model.I = pyo.Set(initialize=[1,2,3])
>>> model.x = pyo.Var(model.I)
>>> model.x.is_constructed()
False





If you look at the model at this point, you will see that everything
is “empty”:

>>> model.pprint()
1 Set Declarations
    I : Size=0, Index=None, Ordered=Insertion
        Not constructed

1 Param Declarations
    p : Size=0, Index=None, Domain=Any, Default=None, Mutable=False
        Not constructed

1 Var Declarations
    x : Size=0, Index=I
        Not constructed

3 Declarations: p I x





Before you can manipulate modeling components or solve the model, you
must first create a concrete instance by applying data to your
abstract model.  This can be done using the
create_instance() method, which takes
the abstract model and optional data and returns a new concrete
instance by constructing each of the model components in the order in
which they were declared (attached to the model).  Note that the
instance creation is performed “out of place”; that is, the original
abstract model is left untouched.

>>> instance = model.create_instance()
>>> model.is_constructed()
False
>>> type(instance)
<class 'pyomo.core.base.PyomoModel.ConcreteModel'>
>>> instance.is_constructed()
True
>>> instance.pprint()
1 Set Declarations
    I : Size=1, Index=None, Ordered=Insertion
        Key  : Dimen : Domain : Size : Members
        None :     1 :    Any :    3 : {1, 2, 3}

1 Param Declarations
    p : Size=1, Index=None, Domain=Any, Default=None, Mutable=False
        Key  : Value
        None :     5

1 Var Declarations
    x : Size=3, Index=I
        Key : Lower : Value : Upper : Fixed : Stale : Domain
          1 :  None :  None :  None : False :  True :  Reals
          2 :  None :  None :  None : False :  True :  Reals
          3 :  None :  None :  None : False :  True :  Reals

3 Declarations: p I x






Note

AbstractModel users should note that in some examples, your concrete
model instance is called “instance” and not “model”. This
is the case here, where we are explicitly calling
instance = model.create_instance().



The create_instance() method can also
take a reference to external data, which overrides any data specified in
the original component declarations.  The data can be provided from
several sources, including using a dict,
DataPortal, or DAT file.  For example:

>>> instance2 = model.create_instance({None: {'I': {None: [4,5]}}})
>>> instance2.pprint()
1 Set Declarations
    I : Size=1, Index=None, Ordered=Insertion
        Key  : Dimen : Domain : Size : Members
        None :     1 :    Any :    2 : {4, 5}

1 Param Declarations
    p : Size=1, Index=None, Domain=Any, Default=None, Mutable=False
        Key  : Value
        None :     5

1 Var Declarations
    x : Size=2, Index=I
        Key : Lower : Value : Upper : Fixed : Stale : Domain
          4 :  None :  None :  None : False :  True :  Reals
          5 :  None :  None :  None : False :  True :  Reals

3 Declarations: p I x









            

          

      

      

    

  

    
      
          
            
  
Managing Data in AbstractModels

There are roughly three ways of using data to construct a Pyomo
model:


	use standard Python objects,

	initialize a model with data loaded with a
DataPortal object, and

	load model data from a Pyomo data command file.



Standard Python data objects include native Python data types (e.g.
lists, sets, and dictionaries) as well as standard data formats
like numpy arrays and Pandas data frames.  Standard Python data
objects can be used to define constant values in a Pyomo model, and
they can be used to initialize Set
and Param components.
However, initializing Set
and Param components in
this manner provides few advantages over direct use of standard
Python data objects.  (An import exception is that components indexed
by Set objects use less
memory than components indexed by native Python data.)

The DataPortal
class provides a generic facility for loading data from disparate
sources.  A DataPortal
object can load data in a consistent manner, and this data can be
used to simply initialize all Set
and Param components in
a model.  DataPortal
objects can be used to initialize both concrete and abstract models
in a uniform manner, which is important in some scripting applications.
But in practice, this capability is only necessary for abstract
models, whose data components are initialized after being constructed.  (In fact,
all abstract data components in an abstract model are loaded from
DataPortal objects.)

Finally, Pyomo data command files provide a convenient mechanism
for initializing Set and
Param components with a
high-level data specification.  Data command files can be used with
both concrete and abstract models, though in a different manner.
Data command files are parsed using a DataPortal object, which must be done
explicitly for a concrete model.  However, abstract models can load
data from a data command file directly, after the model is constructed.
Again, this capability is only necessary for abstract models, whose
data components are initialized after being constructed.

The following sections provide more detail about how data can be
used to initialize Pyomo models.



	Using Standard Data Types

	Using a Python Dictionary

	Data Command Files

	Data Portals

	Storing Data from Pyomo Models









            

          

      

      

    

  

    
      
          
            
  
Using Standard Data Types


Defining Constant Values

In many cases, Pyomo models can be constructed without Set and Param data components.  Native Python data types
class can be simply used to define constant values in Pyomo expressions.
Consequently, Python sets, lists and dictionaries can be used to
construct Pyomo models, as well as a wide range of other Python classes.


TODO

More examples here:  set, list, dict, numpy, pandas.






Initializing Set and Parameter Components

The Set and Param components used in a Pyomo model
can also be initialized with standard Python data types.  This
enables some modeling efficiencies when manipulating sets (e.g.
when re-using sets for indices), and it supports validation of set
and parameter data values.  The Set
and Param components are
initialized with Python data using the initialize option.


Set Components

In general, Set components
can be initialized with iterable data.  For example, simple sets
can be initialized with:


	list, set and tuple data:


model.A = Set(initialize=[2,3,5])
model.B = Set(initialize=set([2,3,5]))
model.C = Set(initialize=(2,3,5))










	generators:


model.D = Set(initialize=range(9))
model.E = Set(initialize=(i for i in model.B if i%2 == 0))










	numpy arrays:


f = numpy.array([2, 3, 5])
model.F = Set(initialize=f)












Sets can also be indirectly initialized with functions that return
native Python data:

def g(model):
    return [2,3,5]
model.G = Set(initialize=g)





Indexed sets can be initialized with dictionary data where the
dictionary values are iterable data:

H_init = {}
H_init[2] = [1,3,5]
H_init[3] = [2,4,6]
H_init[4] = [3,5,7]
model.H = Set([2,3,4],initialize=H_init)








Parameter Components

When a parameter is a single value, then a Param component can be simply initialized with a
value:

model.a = Param(initialize=1.1)





More generally, Param
components can be initialized with dictionary data where the dictionary
values are single values:

model.b = Param([1,2,3], initialize={1:1, 2:2, 3:3})





Parameters can also be indirectly initialized with functions that
return native Python data:

def c(model):
    return {1:1, 2:2, 3:3}
model.c = Param([1,2,3], initialize=c)













            

          

      

      

    

  

    
      
          
            
  
Using a Python Dictionary

Data can be passed to the model
create_instance() method
through a series of nested native Python dictionaries.  The structure
begins with a dictionary of namespaces, with the only required entry
being the None namespace.  Each namespace contains a dictionary that
maps component names to dictionaries of component values.  For scalar
components, the required data dictionary maps the implicit index
None to the desired value:


>>> from pyomo.environ import *
>>> m = AbstractModel()
>>> m.I = Set()
>>> m.p = Param()
>>> m.q = Param(m.I)
>>> m.r = Param(m.I, m.I, default=0)
>>> data = {None: {
...     'I': {None: [1,2,3]},
...     'p': {None: 100},
...     'q': {1: 10, 2:20, 3:30},
...     'r': {(1,1): 110, (1,2): 120, (2,3): 230},
... }}
>>> i = m.create_instance(data)
>>> i.pprint()
2 Set Declarations
    I : Size=1, Index=None, Ordered=Insertion
        Key  : Dimen : Domain : Size : Members
        None :     1 :    Any :    3 : {1, 2, 3}
    r_index : Size=1, Index=None, Ordered=True
        Key  : Dimen : Domain : Size : Members
        None :     2 :    I*I :    9 : {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

3 Param Declarations
    p : Size=1, Index=None, Domain=Any, Default=None, Mutable=False
        Key  : Value
        None :   100
    q : Size=3, Index=I, Domain=Any, Default=None, Mutable=False
        Key : Value
          1 :    10
          2 :    20
          3 :    30
    r : Size=9, Index=r_index, Domain=Any, Default=0, Mutable=False
        Key    : Value
        (1, 1) :   110
        (1, 2) :   120
        (2, 3) :   230

5 Declarations: I p q r_index r












            

          

      

      

    

  

    
      
          
            
  
Data Command Files


Note

The discussion and presentation below are adapted from Chapter 6 of
the “Pyomo Book” [PyomoBookII].  The discussion of the
DataPortal
class uses these same examples to illustrate how data can be loaded
into Pyomo models within Python scripts (see the
Data Portals section).




Model Data

Pyomo’s data command files employ a domain-specific language whose
syntax closely resembles the syntax of AMPL’s data commands [AMPL].  A
data command file consists of a sequence of commands that either (a)
specify set and parameter data for a model, or (b) specify where such
data is to be obtained from external sources (e.g. table files, CSV
files, spreadsheets and databases).

The following commands are used to declare data:


	The set command declares set data.

	The param command declares a table of parameter data, which
can also include the declaration of the set data used to index the
parameter data.

	The table command declares a two-dimensional table of parameter
data.

	The load command defines how set and parameter data is loaded from
external data sources, including ASCII table files, CSV files, XML
files, YAML files, JSON files, ranges in spreadsheets, and database
tables.



The following commands are also used in data command files:


	The include command specifies a data command file that is
processed immediately.

	The data and end commands do not perform any actions, but they
provide compatibility with AMPL scripts that define data commands.

	The namespace keyword allows data commands to be organized into
named groups that can be enabled or disabled during model
construction.



The following data types can be represented in a data command file:


	Numeric value: Any Python numeric value (e.g. integer, float,
scientific notation, or boolean).

	Simple string: A sequence of alpha-numeric characters.

	Quoted string: A simple string that is included in a pair of
single or double quotes.  A quoted string can include quotes within
the quoted string.



Numeric values are automatically converted to Python integer or floating
point values when a data command file is parsed. Additionally, if a
quoted string can be intepreted as a numeric value, then it will be
converted to Python numeric types when the data is parsed.  For example,
the string “100” is converted to a numeric value automatically.


Warning

Pyomo data commands do not exactly correspond to AMPL data
commands.  The set and param commands are designed to
closely match AMPL’s syntax and semantics, though these commands
only support a subset of the corresponding declarations in AMPL.
However, other Pyomo data commands are not generally designed to
match the semantics of AMPL.




Note

Pyomo data commands are terminated with a semicolon, and the syntax
of data commands does not depend on whitespace.  Thus, data commands
can be broken across multiple lines – newlines and tab characters
are ignored – and data commands can be formatted with whitespace
with few restrictions.






The set Command


Simple Sets

The set data command explicitly specifies the members of either a
single set or an array of sets, i.e., an indexed set.  A single set is
specified with a list of data values that are included in this set.  The
formal syntax for the set data command is:

set <setname> := [<value>] ... ;





A set may be empty, and it may contain any combination of numeric and
non-numeric string values.  For example, the following are valid set
commands:

# An empty set
set A := ;

# A set of numbers
set A := 1 2 3;

# A set of strings
set B := north south east west;

# A set of mixed types
set C :=
0
-1.0e+10
'foo bar'
infinity
"100"
;








Sets of Tuple Data

The set data command can also specify tuple data with the standard
notation for tuples.  For example, suppose that set A contains
3-tuples:

model.A = Set(dimen=3)





The following set data command then specifies that A is the set
containing the tuples (1,2,3) and (4,5,6):

set A := (1,2,3) (4,5,6) ;





Alternatively, set data can simply be listed in the order that the tuple
is represented:

set A := 1 2 3 4 5 6 ;





Obviously, the number of data elements specified using this syntax
should be a multiple of the set dimension.

Sets with 2-tuple data can also be specified in a matrix denoting set
membership.  For example, the following set data command declares
2-tuples in A using plus (+) to denote valid tuples and minus
(-) to denote invalid tuples:

set A : A1 A2 A3 A4 :=
    1   +  -  -  +
    2   +  -  +  -
    3   -  +  -  - ;





This data command declares the following five 2-tuples: ('A1',1),
('A1',2), ('A2',3), ('A3',2), and ('A4',1).

Finally, a set of tuple data can be concisely represented with tuple
templates that represent a slice of tuple data.  For example,
suppose that the set A contains 4-tuples:

model.A = Set(dimen=4)





The following set data command declares groups of tuples that are
defined by a template and data to complete this template:

set A := 
    (1,2,*,4) A B
    (*,2,*,4) A B C D ;





A tuple template consists of a tuple that contains one or more asterisk
(*) symbols instead of a value.  These represent indices where the
tuple value is replaced by the values from the list of values that
follows the tuple template.  In this example, the following tuples are
in set A:

(1, 2, 'A', 4)
(1, 2, 'B', 4)
('A', 2, 'B', 4)
('C', 2, 'D', 4)








Set Arrays

The set data command can also be used to declare data for a set
array.  Each set in a set array must be declared with a separate set
data command with the following syntax:

set <set-name>[<index>] := [<value>] ... ;





Because set arrays can be indexed by an arbitrary set, the index value
may be a numeric value, a non-numeric string value, or a comma-separated
list of string values.

Suppose that a set A is used to index a set B as follows:

model.A = Set()
model.B = Set(model.A)





Then set B is indexed using the values declared for set A:

set A := 1 aaa 'a b';

set B[1] := 0 1 2;
set B[aaa] := aa bb cc;
set B['a b'] := 'aa bb cc';










The param Command

Simple or non-indexed parameters are declared in an obvious way, as
shown by these examples:

param A := 1.4;
param B := 1;
param C := abc;
param D := true;
param E := 1.0e+04;





Parameters can be defined with numeric data, simple strings and quoted
strings.  Note that parameters cannot be defined without data, so there
is no analog to the specification of an empty set.


One-dimensional Parameter Data

Most parameter data is indexed over one or more sets, and there are a
number of ways the param data command can be used to specify indexed
parameter data.  One-dimensional parameter data is indexed over a single
set.  Suppose that the parameter B is a parameter indexed by the set
A:

model.A = Set()
model.B = Param(model.A)





A param data command can specify values for B with a list of
index-value pairs:

set A := a c e;

param B := a 10 c 30 e 50;





Because whitespace is ignored, this example data command file can be
reorganized to specify the same data in a tabular format:

set A := a c e;

param B := 
a 10
c 30
e 50
;





Multiple parameters can be defined using a single param data
command. For example, suppose that parameters B, C, and D
are one-dimensional parameters all indexed by the set A:

model.A = Set()
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)





Values for these parameters can be specified using a single param
data command that declares these parameter names followed by a list of
index and parameter values:

set A := a c e;

param : B C D := 
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;





The values in the param data command are interpreted as a list of
sublists, where each sublist consists of an index followed by the
corresponding numeric value.

Note that parameter values do not need to be defined for all indices.
For example, the following data command file is valid:

set A := a c e g;

param : B C D := 
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;





The index g is omitted from the param command, and consequently
this index is not valid for the model instance that uses this data.
More complex patterns of missing data can be specified using the period
(.) symbol to indicate a missing value.  This syntax is useful when
specifying multiple parameters that do not necessarily have the same
index values:

set A := a c e;

param : B C D := 
a  . -1 1.1
c 30  . 3.3
e 50 -5   .
;





This example provides a concise representation of parameters that share
a common index set while using different index values.

Note that this data file specifies the data for set A twice:
(1) when A is defined and (2) implicitly when the parameters are
defined.  An alternate syntax for param allows the user to concisely
specify the definition of an index set along with associated parameters:

param : A : B C D := 
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;





Finally, we note that default values for missing data can also be
specified using the default keyword:

set A := a c e;

param B default 0.0 := 
c 30
e 50
;





Note that default values can only be specified in param commands
that define values for a single parameter.




Multi-Dimensional Parameter Data

Multi-dimensional parameter data is indexed over either multiple sets or
a single multi-dimensional set.  Suppose that parameter B is a
parameter indexed by set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)





The syntax of the param data command remains essentially the same
when specifying values for B with a list of index and parameter
values:

set A := a 1 c 2 e 3;

param B := 
a 1 10
c 2 30
e 3 50;





Missing and default values are also handled in the same way with
multi-dimensional index sets:

set A := a 1 c 2 e 3;

param B default 0 := 
a 1 10
c 2 .
e 3 50;





Similarly, multiple parameters can defined with a single param data
command.  Suppose that parameters B, C, and D are parameters
indexed over set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)





These parameters can be defined with a single param command that
declares the parameter names followed by a list of index and parameter
values:

set A := a 1 c 2 e 3;

param : B C D := 
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;





Similarly, the following param data command defines the index set
along with the parameters:

param : A : B C D := 
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;





The param command also supports a matrix syntax for specifying the
values in a parameter that has a 2-dimensional index.  Suppose parameter
B is indexed over set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)





The following param command defines a matrix of parameter values:

set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;

param B : a c e := 
1 1 2 3
2 4 5 6
3 7 8 9
;





Additionally, the following syntax can be used to specify a transposed
matrix of parameter values:

set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;

param B (tr) : 1 2 3 := 
a 1 4 7
c 2 5 8
e 3 6 9
;





This functionality facilitates the presentation of parameter data in a
natural format.  In particular, the transpose syntax may allow the
specification of tables for which the rows comfortably fit within a
single line.  However, a matrix may be divided column-wise into shorter
rows since the line breaks are not significant in Pyomo data commands.

For parameters with three or more indices, the parameter data values may
be specified as a series of slices.  Each slice is defined by a template
followed by a list of index and parameter values.  Suppose that
parameter B is indexed over set A that has dimension 4:

model.A = Set(dimen=4)
model.B = Param(model.A)





The following param command defines a matrix of parameter values
with multiple templates:

set A := (a,1,a,1) (a,2,a,2) (b,1,b,1) (b,2,b,2);

param B :=

  [*,1,*,1] a a 10 b b 20
  [*,2,*,2] a a 30 b b 40
;





The B parameter consists of four values: B[a,1,a,1]=10,
B[b,1,b,1]=20, B[a,2,a,2]=30, and B[b,2,b,2]=40.






The table Command

The table data command explicitly specifies a two-dimensional array
of parameter data.  This command provides a more flexible and complete
data declaration than is possible with a param declaration.  The
following example illustrates a simple table command that declares
data for a single parameter:

table M(A) :
A  B  M   N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





The parameter M is indexed by column A, which must be
pre-defined unless declared separately (see below).  The column labels
are provided after the colon and before the colon-equal (:=).
Subsequently, the table data is provided.  The syntax is not sensitive
to whitespace, so the following is an equivalent table command:

table M(A) :
A  B  M   N :=
A1 B1 4.3 5.3 A2 B2 4.4 5.4 A3 B3 4.5 5.5 ;





Multiple parameters can be declared by simply including additional
parameter names.  For example:

table M(A) N(A,B) :
A  B  M   N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





This example declares data for the M and N parameters, which
have different indexing columns.  The indexing columns represent set
data, which is specified separately.  For example:

table A={A} Z={A,B} M(A) N(A,B) :
A  B  M   N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





This example declares data for the M and N parameters, along
with the A and Z indexing sets.  The correspondence between the
index set Z and the indices of parameter N can be made more
explicit by indexing N by Z:

table A={A} Z={A,B} M(A) N(Z) :
A  B  M   N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





Set data can also be specified independent of parameter data:

table Z={A,B} Y={M,N} :
A  B  M   N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;






Warning

If a table command does not explicitly indicate the indexing
sets, then these are assumed to be initialized separately.  A
table command can separately initialize sets and parameters in a
Pyomo model, and there is no presumed association between the data
that is initialized.  For example, the table command initializes
a set Z and a parameter M that are not related:

table Z={A,B} M(A):
A  B  M   N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;







Finally, simple parameter values can also be specified with a table
command:

table pi := 3.1416 ;





The previous examples considered examples of the table command where
column labels are provided.  The table command can also be used
without column labels.  For example, the first example can be revised to
omit column labels as follows:

table columns=4 M(1)={3} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





The columns=4 is a keyword-value pair that defines the number of
columns in this table; this must be explicitly specified in tables
without column labels.  The default column labels are integers starting
from 1; the labels are columns 1, 2, 3, and 4 in
this example.  The M parameter is indexed by column 1.  The
braces syntax declares the column where the M data is provided.

Similarly, set data can be declared referencing the integer column
labels:

table columns=4 A={1} Z={1,2} M(1)={3} N(1,2)={4} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





Declared set names can also be used to index parameters:

table columns=4 A={1} Z={1,2} M(A)={3} N(Z)={4} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;





Finally, we compare and contrast the table and param commands.
Both commands can be used to declare parameter and set data, and both
commands can be used to declare a simple parameter.  However, there are
some important differences between these data commands:


	The param command can declare a single set that is used to index
one or more parameters.  The table command can declare data for
any number of sets, independent of whether they are used to index
parameter data.

	The param command can declare data for multiple parameters only if
they share the same index set.  The table command can declare data
for any number of parameters that are may be indexed separately.

	The table syntax unambiguously describes the dimensionality of
indexing sets.  The param command must be interpreted with a model
that provides the dimension of the indexing set.



This last point provides a key motivation for the table command.
Specifically, the table command can be used to reliably initialize
concrete models using Pyomo’s DataPortal class.  By contrast, the
param command can only be used to initialize concrete models with
parameters that are indexed by a single column (i.e., a simple set).




The load Command

The load command provides a mechanism for loading data from a
variety of external tabular data sources.  This command loads a table of
data that represents set and parameter data in a Pyomo model.  The table
consists of rows and columns for which all rows have the same length,
all columns have the same length, and the first row represents labels
for the column data.

The load command can load data from a variety of different external
data sources:


	TAB File: A text file format that uses whitespace to separate
columns of values in each row of a table.

	CSV File: A text file format that uses comma or other delimiters
to separate columns of values in each row of a table.

	XML File: An extensible markup language for documents and data
structures.  XML files can represent tabular data.

	Excel File: A spreadsheet data format that is primarily used by
the Microsoft Excel application.

	Database: A relational database.



This command uses a data manager that coordinates how data is
extracted from a specified data source.  In this way, the load
command provides a generic mechanism that enables Pyomo models to
interact with standard data repositories that are maintained in an
application-specific manner.


Simple Load Examples

The simplest illustration of the load command is specifying data for
an indexed parameter.  Consider the file Y.tab:

A  Y
A1 3.3
A2 3.4
A3 3.5





This file specifies the values of parameter Y which is indexed by
set A.  The following load command loads the parameter data:

load Y.tab : [A] Y;





The first argument is the filename.  The options after the colon
indicate how the table data is mapped to model data.  Option [A]
indicates that set A is used as the index, and option Y
indicates the parameter that is initialized.

Similarly, the following load command loads both the parameter data as
well as the index set A:

load Y.tab : A=[A] Y;





The difference is the specification of the index set, A=[A], which
indicates that set A is initialized with the index loaded from the
ASCII table file.

Set data can also be loaded from a ASCII table file that contains a
single column of data:

A
A1
A2
A3





The format option must be specified to denote the fact that the
relational data is being interpreted as a set:

load A.tab format=set : A;





Note that this allows for specifying set data that contains tuples.
Consider file C.tab:

A  B
A1 1
A1 2
A1 3
A2 1
A2 2
A2 3
A3 1
A3 2
A3 3





A similar load syntax will load this data into set C:

load C.tab format=set : C;





Note that this example requires that C be declared with dimension
two.




Load Syntax Options

The syntax of the load command is broken into two parts.  The first
part ends with the colon, and it begins with a filename, database URL,
or DSN (data source name).  Additionally, this first part can contain
option value pairs.  The following options are recognized:



	format
	A string that denotes how the relational table is interpreted


	password
	The password that is used to access a database


	query
	The query that is used to request data from a database


	range
	The subset of a spreadsheet that is requestedindex{spreadsheet}


	user
	The user name that is used to access the data source


	using
	The data manager that is used to process the data source


	table
	The database table that is requested





The format option is the only option that is required for all data
managers.  This option specifies how a relational table is interpreted
to represent set and parameter data.  If the using option is
omitted, then the filename suffix is used to select the data manager.
The remaining options are specific to spreadsheets and relational
databases (see below).

The second part of the load command consists of the specification of
column names for indices and data.  The remainder of this section
describes different specifications and how they define how data is
loaded into a model.  Suppose file ABCD.tab defines the following
relational table:

A  B  C D
A1 B1 1 10
A2 B2 2 20
A3 B3 3 30





There are many ways to interpret this relational table.  It could
specify a set of 4-tuples, a parameter indexed by 3-tuples, two
parameters indexed by 2-tuples, and so on.  Additionally, we may wish to
select a subset of this table to initialize data in a model.
Consequently, the load command provides a variety of syntax options
for specifying how a table is interpreted.

A simple specification is to interpret the relational table as a set:

load ABCD.tab format=set : Z ;





Note that Z is a set in the model that the data is being loaded
into.  If this set does not exist, an error will occur while loading
data from this table.

Another simple specification is to interpret the relational table as a
parameter with indexed by 3-tuples:

load ABCD.tab : [A,B,C] D ;





Again, this requires that D be a parameter in the model that the
data is being loaded into.  Additionally, the index set for D must
contain the indices that are specified in the table.  The load
command also allows for the specification of the index set:

load ABCD.tab : Z=[A,B,C] D ;





This specifies that the index set is loaded into the Z set in the
model.  Similarly, data can be loaded into another parameter than what
is specified in the relational table:

load ABCD.tab : Z=[A,B,C] Y=D ;





This specifies that the index set is loaded into the Z set and that
the data in the D column in the table is loaded into the Y
parameter.

This syntax allows the load command to provide an arbitrary
specification of data mappings from columns in a relational table into
index sets and parameters.  For example, suppose that a model is defined
with set Z and parameters Y and W:

model.Z = Set()
model.Y = Param(model.Z)
model.W = Param(model.Z)





Then the following command defines how these data items are loaded using
columns B, C and D:

load ABCD.tab : Z=[B] Y=D W=C;





When the using option is omitted the data manager is inferred from
the filename suffix.  However, the filename suffix does not always
reflect the format of the data it contains.  For example, consider the
relational table in the file ABCD.txt:

A,B,C,D
A1,B1,1,10
A2,B2,2,20
A3,B3,3,30





We can specify the using option to load from this file into
parameter D and set Z:

load ABCD.txt using=csv : Z=[A,B,C] D ;






Note

The data managers supported by Pyomo can be listed with the
pyomo help subcommand

pyomo help --data-managers





The following data managers are supported in Pyomo 5.1:


Pyomo Data Managers
-------------------
  csv
      CSV file interface
  dat
      Pyomo data command file interface
  json
      JSON file interface
  pymysql
      pymysql database interface
  pyodbc
      pyodbc database interface
  pypyodbc
      pypyodbc database interface
  sqlite3
      sqlite3 database interface
  tab
      TAB file interface
  xls
      Excel XLS file interface
  xlsb
      Excel XLSB file interface
  xlsm
      Excel XLSM file interface
  xlsx
      Excel XLSX file interface
  xml
      XML file interface
  yaml
      YAML file interface













Interpreting Tabular Data

By default, a table is interpreted as columns of one or more parameters
with associated index columns.  The format option can be used to
specify other interpretations of a table:



	array
	The table is a matrix representation of a two dimensional
parameter.


	param
	The data is a simple parameter value.


	set
	Each row is a set element.


	set_array
	The table is a matrix representation of a set of 2-tuples.


	transposed_array
	The table is a transposed matrix representation of a two
dimensional parameter.





We have previously illustrated the use of the set format value to
interpret a relational table as a set of values or tuples.  The
following examples illustrate the other format values.

A table with a single value can be interpreted as a simple parameter
using the param format value.  Suppose that Z.tab contains the
following table:

1.1





The following load command then loads this value into parameter p:

load Z.tab format=param: p;





Sets with 2-tuple data can be represented with a matrix format that
denotes set membership.  The set_array format value interprets a
relational table as a matrix that defines a set of 2-tuples where +
denotes a valid tuple and - denotes an invalid tuple.  Suppose that
D.tab contains the following relational table:

B  A1  A2  A3
1  +   -   -
2  -   +   -
3  -   -   +





Then the following load command loads data into set B:

load D.tab format=set_array: B;





This command declares the following 2-tuples: ('A1',1),
('A2',2), and ('A3',3).

Parameters with 2-tuple indices can be interpreted with a matrix format
that where rows and columns are different indices.  Suppose that
U.tab contains the following table:

I  A1  A2  A3
I1 1.3 2.3 3.3
I2 1.4 2.4 3.4
I3 1.5 2.5 3.5
I4 1.6 2.6 3.6





Then the following load command loads this value into parameter U
with a 2-dimensional index using the array format value.:

load U.tab format=array: A=[X] U;





The transpose_array format value also interprets the table as a
matrix, but it loads the data in a transposed format:

load U.tab format=transposed_array: A=[X] U;





Note that these format values do not support the initialization of the
index data.




Loading from Spreadsheets and Relational Databases

Many of the options for the load command are specific to
spreadsheets and relational databases.  The range option is used to
specify the range of cells that are loaded from a spreadsheet.  The
range of cells represents a table in which the first row of cells
defines the column names for the table.

Suppose that file ABCD.xls contains the range ABCD that is shown
in the following figure:
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The following command loads this data to initialize parameter D and
index Z:

load ABCD.xls range=ABCD : Z=[A,B,C] Y=D ;





Thus, the syntax for loading data from spreadsheets only differs from
CSV and ASCII text files by the use of the range option.

When loading from a relational database, the data source specification
is a filename or data connection string.  Access to a database may be
restricted, and thus the specification of username and password
options may be required.  Alternatively, these options can be specified
within a data connection string.

A variety of database interface packages are available within Python.
The using option is used to specify the database interface package
that will be used to access a database.  For example, the pyodbc
interface can be used to connect to Excel spreadsheets.  The following
command loads data from the Excel spreadsheet ABCD.xls using the
pyodbc interface.  The command loads this data to initialize
parameter D and index Z:

load ABCD.xls using=pyodbc table=ABCD : Z=[A,B,C] Y=D ;





The using option specifies that the pyodbc package will be
used to connect with the Excel spreadsheet.  The table option
specifies that the table ABCD is loaded from this spreadsheet.
Similarly, the following command specifies a data connection string
to specify the ODBC driver explicitly:

load "Driver={Microsoft Excel Driver (*.xls)}; Dbq=ABCD.xls;" 
    using=pyodbc 
    table=ABCD : Z=[A,B,C] Y=D ;





ODBC drivers are generally tailored to the type of data source that
they work with;  this syntax illustrates how the load command
can be tailored to the details of the database that a user is working
with.

The previous examples specified the table option, which declares the
name of a relational table in a database.  Many databases support the
Structured Query Language (SQL), which can be used to dynamically
compose a relational table from other tables in a database.  The classic
diet problem will be used to illustrate the use of SQL queries to
initialize a Pyomo model.  In this problem, a customer is faced with the
task of minimizing the cost for a meal at a fast food restaurant – they
must purchase a sandwich, side, and a drink for the lowest cost.  The
following is a Pyomo model for this problem:

# diet1.py
from pyomo.environ import *

infinity = float('inf')
MAX_FOOD_SUPPLY = 20.0 # There is a finite food supply

model = AbstractModel()

# --------------------------------------------------------

model.FOOD = Set()
model.cost = Param(model.FOOD, within=PositiveReals)
model.f_min = Param(model.FOOD, within=NonNegativeReals, default=0.0)
def f_max_validate (model, value, j):
    return model.f_max[j] > model.f_min[j]
model.f_max = Param(model.FOOD, validate=f_max_validate, default=MAX_FOOD_SUPPLY)

model.NUTR = Set()
model.n_min = Param(model.NUTR, within=NonNegativeReals, default=0.0)
model.n_max = Param(model.NUTR, default=infinity)
model.amt = Param(model.NUTR, model.FOOD, within=NonNegativeReals)

# --------------------------------------------------------

def Buy_bounds(model, i):
    return (model.f_min[i], model.f_max[i])
model.Buy = Var(model.FOOD, bounds=Buy_bounds, within=NonNegativeIntegers)

# --------------------------------------------------------

def Total_Cost_rule(model):
    return sum(model.cost[j] * model.Buy[j] for j in model.FOOD)
model.Total_Cost = Objective(rule=Total_Cost_rule, sense=minimize)

# --------------------------------------------------------

def Entree_rule(model):
    entrees = ['Cheeseburger', 'Ham Sandwich', 'Hamburger', 'Fish Sandwich', 'Chicken Sandwich']
    return sum(model.Buy[e] for e in entrees) >= 1
model.Entree = Constraint(rule=Entree_rule)

def Side_rule(model):
    sides = ['Fries', 'Sausage Biscuit']
    return sum(model.Buy[s] for s in sides) >= 1
model.Side = Constraint(rule=Side_rule)

def Drink_rule(model):
    drinks = ['Lowfat Milk', 'Orange Juice']
    return sum(model.Buy[d] for d in drinks) >= 1
model.Drink = Constraint(rule=Drink_rule)





Suppose that the file diet1.sqlite be a SQLite database file that
contains the following data in the Food table:



	FOOD
	cost




	Cheeseburger
	1.84


	Ham Sandwich
	2.19


	Hamburger
	1.84


	Fish Sandwich
	1.44


	Chicken Sandwich
	2.29


	Fries
	0.77


	Sausage Biscuit
	1.29


	Lowfat Milk
	0.60


	Orange Juice
	0.72





In addition, the Food table has two additional columns, f_min
and f_max, with no data for any row. These columns exist to match
the structure for the parameters used in the model.

We can solve the diet1 model using the Python definition in
diet1.py and the data from this database.  The file
diet.sqlite.dat specifies a load command that uses that
sqlite3 data manager and embeds a SQL query to retrieve the data:

# File diet.sqlite.dat

load "diet.sqlite" 
     using=sqlite3 
     query="SELECT FOOD,cost,f_min,f_max FROM Food" 
     : FOOD=[FOOD] cost f_min f_max ;





The PyODBC driver module will pass the SQL query through an Access ODBC
connector, extract the data from the diet1.mdb file, and return it
to Pyomo. The Pyomo ODBC handler can then convert the data received into
the proper format for solving the model internally.  More complex SQL
queries are possible, depending on the underlying database and ODBC
driver in use. However, the name and ordering of the columns queried are
specified in the Pyomo data file; using SQL wildcards (e.g., SELECT
*) or column aliasing (e.g., SELECT f AS FOOD) may cause errors in
Pyomo’s mapping of relational data to parameters.






The include Command

The include command allows a data command file to execute data
commands from another file.  For example, the following command file
executes data commands from ex1.dat and then ex2.dat:

include ex1.dat;
include ex2.dat;





Pyomo is sensitive to the order of execution of data commands, since
data commands can redefine set and parameter values.  The include
command respects this data ordering; all data commands in the included
file are executed before the remaining data commands in the current file
are executed.




The namespace Keyword

The namespace keyword is not a data command, but instead it is used
to structure the specification of Pyomo’s data commands.  Specifically,
a namespace declaration is used to group data commands and to provide a
group label. Consider the following data command file:

set C := 1 2 3 ;

namespace ns1
{
    set C := 4 5 6 ;
}

namespace ns2
{
    set C := 7 8 9 ;
}






This data file defines two namespaces: ns1 and ns2 that
initialize a set C.  By default, data commands contained within a
namespace are ignored during model construction; when no namespaces are
specified, the set C has values 1,2,3.  When namespace ns1
is specified, then the set C values are overridden with the set
4,5,6.







            

          

      

      

    

  

    
      
          
            
  
Data Portals

Pyomo’s DataPortal
class standardizes the process of constructing model instances by
managing the process of loading data from different data sources in a
uniform manner.  A DataPortal object can load data from the
following data sources:


	TAB File: A text file format that uses whitespace to separate
columns of values in each row of a table.

	CSV File: A text file format that uses comma or other delimiters
to separate columns of values in each row of a table.

	JSON File: A popular lightweight data-interchange format that is
easily parsed.

	YAML File:  A human friendly data serialization standard.

	XML File: An extensible markup language for documents and data
structures.  XML files can represent tabular data.

	Excel File: A spreadsheet data format that is primarily used by
the Microsoft Excel application.

	Database: A relational database.

	DAT File: A Pyomo data command file.



Note that most of these data formats can express tabular data.


Warning

The DataPortal
class requires the installation of Python packages to support some
of these data formats:


	YAML File: pyyaml



	Excel File: win32com, openpyxl or xlrd


These packages support different data Excel data formats:
the win32com package supports .xls, .xlsm
and .xlsx, the openpyxl package supports
.xlsx and the xlrd package supports .xls.






	Database: pyodbc, pypyodbc, sqlite3 or pymysql


These packages support different database interface APIs:
the pyodbc and pypyodbc packages support the ODBC
database API, the sqlite3 package uses the SQLite C
library to directly interface with databases using the
DB-API 2.0 specification, and pymysql is a pure-Python
MySQL client.










DataPortal objects
can be used to initialize both concrete and abstract Pyomo models.
Consider the file A.tab, which defines a simple set with a tabular
format:

A
A1
A2
A3





The load method is used to load data into a DataPortal object.  Components in a
concrete model can be explicitly initialized with data loaded by a
DataPortal object:

data = DataPortal()
data.load(filename='A.tab', set="A", format="set")

model = ConcreteModel()
model.A = Set(initialize=data['A'])





All data needed to initialize an abstract model must be provided by a
DataPortal object,
and the use of the DataPortal object to initialize components
is automated for the user:

model = AbstractModel()
model.A = Set()
data = DataPortal()
data.load(filename='A.tab', set=model.A)
instance = model.create_instance(data)





Note the difference in the execution of the load method in these two
examples: for concrete models data is loaded by name and the format must
be specified, and for abstract models the data is loaded by component,
from which the data format can often be inferred.

The load method opens the data file, processes it, and loads the
data in a format that can be used to construct a model instance.  The
load method can be called multiple times to load data for different
sets or parameters, or to override data processed earlier.  The load
method takes a variety of arguments that define how data is loaded:


	filename: This option specifies the source data file.

	format: This option specifies the how to interpret data within a
table.  Valid formats are: set, set_array, param,
table, array, and transposed_array.

	set: This option is either a string or model compent that defines
a set that will be initialized with this data.

	param: This option is either a string or model compent that
defines a parameter that will be initialized with this data.  A list
or tuple of strings or model components can be used to define multiple
parameters that are initialized.

	index: This option is either a string or model compent that
defines an index set that will be initialized with this data.

	using: This option specifies the Python package used to load this
data source.  This option is used when loading data from databases.

	select: This option defines the columns that are selected from the
data source.  The column order may be changed from the data source,
which allows the DataPortal object to define

	namespace: This option defines the data namespace that will
contain this data.



The use of these options is illustrated below.

The DataPortal
class also provides a simple API for accessing set and parameter data
that are loaded from different data sources.  The [] operator is
used to access set and parameter values.  Consider the following
example, which loads data and prints the value of the [] operator:

data = DataPortal()
data.load(filename='A.tab', set="A", format="set")
print(data['A'])    #['A1', 'A2', 'A3']

data.load(filename='Z.tab', param="z", format="param")
print(data['z'])    #1.1

data.load(filename='Y.tab', param="y", format="table")
for key in sorted(data['y']):
    print("%s %s" % (key, data['y'][key]))





The DataPortal
class also has several methods for iterating over the data that has been
loaded:


	keys(): Returns an iterator of the data keys.

	values(): Returns an iterator of the data values.

	items(): Returns an iterator of (name, value) tuples from the
data.



Finally, the data() method provides a generic mechanism for
accessing the underlying data representation used by DataPortal objects.


Loading Structured Data

JSON and YAML files are structured data formats that are well-suited for
data serialization.  These data formats do not represent data in tabular
format, but instead they directly represent set and parameter values
with lists and dictionaries:


	Simple Set: a list of string or numeric value

	Indexed Set: a dictionary that maps an index to a list of string
or numeric value

	Simple Parameter: a string or numeric value

	Indexed Parameter: a dictionary that maps an index to a numeric
value



For example, consider the following JSON file:

{   "A": ["A1", "A2", "A3"],
    "B": [[1, "B1"], [2, "B2"], [3, "B3"]],
    "C": {"A1": [1, 2, 3], "A3": [10, 20, 30]},
    "p": 0.1,
    "q": {"A1": 3.3, "A2": 3.4, "A3": 3.5},
    "r": [   {"index": [1, "B1"], "value": 3.3},
             {"index": [2, "B2"], "value": 3.4},
             {"index": [3, "B3"], "value": 3.5}]}





The data in this file can be used to load the following model:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.B = Set(dimen=2)
model.C = Set(model.A)
model.p = Param()
model.q = Param(model.A)
model.r = Param(model.B)
data.load(filename='T.json')





Note that no set or param option needs to be specified when
loading a JSON or YAML file.  All of the set and parameter
data in the file are loaded by the DataPortal>
object, and only the data
needed for model construction is used.

The following YAML file has a similar structure:

A: [A1, A2, A3]
B:
- [1, B1]
- [2, B2]
- [3, B3]
C:
  'A1': [1, 2, 3]
  'A3': [10, 20, 30]
p: 0.1
q: {A1: 3.3, A2: 3.4, A3: 3.5}
r:
- index: [1, B1]
  value: 3.3
- index: [2, B2]
  value: 3.4
- index: [3, B3]
  value: 3.5





The data in this file can be used to load a Pyomo model with the
same syntax as a JSON file:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.B = Set(dimen=2)
model.C = Set(model.A)
model.p = Param()
model.q = Param(model.A)
model.r = Param(model.B)
data.load(filename='T.yaml')








Loading Tabular Data

Many data sources supported by Pyomo are tabular data formats.  Tabular
data is numerical or textual data that is organized into one or more
simple tables, where data is arranged in a matrix.  Each table consists
of a matrix of numeric string values, simple strings, and quoted
strings.  All rows have the same length, all columns have the same
length, and the first row typically represents labels for the column
data.

The following section describes the tabular data sources supported by
Pyomo, and the subsequent sections illustrate ways that data can be
loaded from tabular data using TAB files.  Subsequent sections describe
options for loading data from Excel spreadsheets and relational
databases.


Tabular Data

TAB files represent tabular data in an ascii file using whitespace as a
delimiter.  A TAB file consists of rows of values, where each row has
the same length.  For example, the file PP.tab has the format:

A  B  PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5





CSV files represent tabular data in a format that is very similar to TAB
files.  Pyomo assumes that a CSV file consists of rows of values, where
each row has the same length.  For example, the file PP.csv has the
format:

A,B,PP
A1,B1,4.3
A2,B2,4.4
A3,B3,4.5





Excel spreadsheets can express complex data relationships.  A range is
a contiguous, rectangular block of cells in an Excel spreadsheet.  Thus,
a range in a spreadsheet has the same tabular structure as is a TAB file
or a CSV file.  For example, consider the file excel.xls that has
the range PPtable:
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A relational database is an application that organizes data into one or
more tables (or relations) with a unique key in each row.  Tables both
reflect the data in a database as well as the result of queries within a
database.

XML files represent tabular using table and row elements.  Each
sub-element of a row element represents a different column, where
each row has the same length.  For example, the file PP.xml has the
format:

<table>
  <row>
    <A value="A1"/><B value="B1"/><PP value="4.3"/>
  </row>
  <row>
    <A value="A2"/><B value="B2"/><PP value="4.4"/>
  </row>
  <row>
    <A value="A3"/><B value="B3"/><PP value="4.5"/>
  </row>
</table>








Loading Set Data

The set option is used specify a Set component that is loaded
with data.


Loading a Simple Set

Consider the file A.tab, which defines a simple set:

A
A1
A2
A3





In the following example, a DataPortal object loads data for a simple
set A:

model = AbstractModel()
model.A = Set()
data = DataPortal()
data.load(filename='A.tab', set=model.A)
instance = model.create_instance(data)








Loading a Set of Tuples

Consider the file C.tab:

A  B
A1 1
A1 2
A1 3
A2 1
A2 2
A2 3
A3 1
A3 2
A3 3





In the following example, a DataPortal object loads data for a
two-dimensional set C:

model = AbstractModel()
model.C = Set(dimen=2)
data = DataPortal()
data.load(filename='C.tab', set=model.C)
instance = model.create_instance(data)





In this example, the column titles do not directly impact the process of
loading data.  Column titles can be used to select a subset of columns
from a table that is loaded (see below).




Loading a Set Array

Consider the file D.tab, which defines an array representation of a
two-dimensional set:

B  A1  A2  A3
1  +   -   -
2  -   +   -
3  -   -   +





In the following example, a DataPortal object loads data for a
two-dimensional set D:

model = AbstractModel()
model.D = Set(dimen=2)
data = DataPortal()
data.load(filename='D.tab', set=model.D, format='set_array')
instance = model.create_instance(data)





The format option indicates that the set data is declared in a array
format.






Loading Parameter Data

The param option is used specify a Param component that is
loaded with data.


Loading a Simple Parameter

The simplest parameter is simply a singleton value.  Consider the file
Z.tab:

1.1





In the following example, a DataPortal object loads data for a simple
parameter z:

model = AbstractModel()
data = DataPortal()
model.z = Param()
data.load(filename='Z.tab', param=model.z)
instance = model.create_instance(data)








Loading an Indexed Parameter

An indexed parameter can be defined by a single column in a table.  For
example, consider the file Y.tab:

A  Y
A1 3.3
A2 3.4
A3 3.5





In the following example, a DataPortal object loads data for an indexed
parameter y:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y)
instance = model.create_instance(data)





When column names are not used to specify the index and parameter data,
then the DataPortal
object assumes that the rightmost column defines parameter values.  In
this file, the A column contains the index values, and the Y
column contains the parameter values.




Loading Set and Parameter Values

Note that the data for set A is predefined in the previous example.
The index set can be loaded with the parameter data using the index
option.  In the following example, a DataPortal object loads data for set A
and the indexed parameter y

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y, index=model.A)
instance = model.create_instance(data)





An index set with multiple dimensions can also be loaded with an indexed
parameter.  Consider the file PP.tab:

A  B  PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5





In the following example, a DataPortal object loads data for a tuple
set and an indexed parameter:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='PP.tab', param=model.p, index=model.A)
instance = model.create_instance(data)








Loading a Parameter with Missing Values

Missing parameter data can be expressed in two ways.  First, parameter
data can be defined with indices that are a subset of valid indices in
the model.  The following example loads the indexed parameter y:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3','A4'])
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y)
instance = model.create_instance(data)





The model defines an index set with four values, but only three
parameter values are declared in the data file Y.tab.

Parameter data can also be declared with missing values using the period
(.) symbol.  For example, consider the file S.tab:

A  B  PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5





In the following example, a DataPortal object loads data for the index
set A and indexed parameter y:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.s = Param(model.A)
data.load(filename='S.tab', param=model.s, index=model.A)
instance = model.create_instance(data)





The period (.) symbol indicates a missing parameter value, but the
index set A contains the index value for the missing parameter.




Loading Multiple Parameters

Multiple parameters can be initialized at once by specifying a list (or
tuple) of component parameters.  Consider the file XW.tab:

A  X   W
A1 3.3 4.3
A2 3.4 4.4
A3 3.5 4.5





In the following example, a DataPortal object loads data for parameters
x and w:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.x = Param(model.A)
model.w = Param(model.A)
data.load(filename='XW.tab', param=(model.x,model.w))
instance = model.create_instance(data)








Selecting Parameter Columns

We have previously noted that the column names do not need to be
specified to load set and parameter data.  However, the select
option can be to identify the columns in the table that are used to load
parameter data.  This option specifies a list (or tuple) of column names
that are used, in that order, to form the table that defines the
component data.

For example, consider the following load declaration:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.w = Param(model.A)
data.load(filename='XW.tab', select=('A','W'), 
                param=model.w, index=model.A)
instance = model.create_instance(data)





The columns A and W are selected from the file XW.tab, and a
single parameter is defined.




Loading a Parameter Array

Consider the file U.tab, which defines an array representation of a
multiply-indexed parameter:

I  A1  A2  A3
I1 1.3 2.3 3.3
I2 1.4 2.4 3.4
I3 1.5 2.5 3.5
I4 1.6 2.6 3.6





In the following example, a DataPortal object loads data for a
two-dimensional parameter u:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.I = Set(initialize=['I1','I2','I3','I4'])
model.u = Param(model.I, model.A)
data.load(filename='U.tab', param=model.u, 
                                    format='array')
instance = model.create_instance(data)





The format option indicates that the parameter data is declared in a
array format.  The format option can also indicate that the
parameter data should be transposed.

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.I = Set(initialize=['I1','I2','I3','I4'])
model.t = Param(model.A, model.I)
data.load(filename='U.tab', param=model.t, 
                                    format='transposed_array')
instance = model.create_instance(data)





Note that the transposed parameter data changes the index set for the
parameter.






Loading from Spreadsheets and Databases

Tabular data can be loaded from spreadsheets and databases using
auxilliary Python packages that provide an interface to these data
formats.  Data can be loaded from Excel spreadsheets using the
win32com, xlrd and openpyxl packages.  For example, consider
the following range of cells, which is named PPtable:
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In the following example, a DataPortal object loads the named range
PPtable from the file excel.xls:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='excel.xls', range='PPtable', 
                    param=model.p, index=model.A)
instance = model.create_instance(data)





Note that the range option is required to specify the table of cell
data that is loaded from the spreadsheet.

There are a variety of ways that data can be loaded from a relational
database.  In the simplest case, a table can be specified within a
database:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='PP.sqlite', using='sqlite3',
                   table='PPtable',
                   param=model.p, index=model.A)
instance = model.create_instance(data)





In this example, the interface sqlite3 is used to load data from an
SQLite database in the file PP.sqlite.  More generally, an SQL query
can be specified to dynamicly generate a table.  For example:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.p = Param(model.A)
data.load(filename='PP.sqlite', using='sqlite3',
                   query="SELECT A,PP FROM PPtable",
                   param=model.p, index=model.A)
instance = model.create_instance(data)










Data Namespaces

The DataPortal
class supports the concept of a namespace to organize data into named
groups that can be enabled or disabled during model construction.
Various DataPortal
methods have an optional namespace argument that defaults to
None:


	data(name=None, namespace=None): Returns the data associated with
data in the specified namespace

	[]: For a DataPortal object data, the function
data['A'] returns data corresponding to A in the default
namespace, and data['ns1','A'] returns data corresponding to A
in namespace ns1.

	namespaces(): Returns an iteratore for the data namespaces.

	keys(namespace=None): Returns an iterator of the data keys in the
specified namespace.

	values(namespace=None): Returns and iterator of the data values in
the specified namespace.

	items(namespace=None): Returns an iterator of (name, value) tuples
in the specified namespace.



By default, data within a namespace are ignored during model
construction.  However, concrete models can be initialized with data
from a specific namespace.  Further, abstract models can be initialized
with a list of namespaces that define the data used to initialized model
components.  For example, the following script generates two model
instances from an abstract model using data loaded into different
namespaces:

model = AbstractModel()
model.C = Set(dimen=2)
data = DataPortal()
data.load(filename='C.tab', set=model.C, namespace='ns1')
data.load(filename='D.tab', set=model.C, namespace='ns2', 
                            format='set_array')
instance1 = model.create_instance(data, namespaces=['ns1'])
instance2 = model.create_instance(data, namespaces=['ns2'])











            

          

      

      

    

  

    
      
          
            
  
Storing Data from Pyomo Models

Currently, Pyomo has rather limited capabilities for storing model data
into standard Python data types and serialized data formats.  However,
this capability is under active development.


Storing Model Data in Excel


TODO

More here.









            

          

      

      

    

  

    
      
          
            
  
The pyomo Command

The pyomo command is issued to the DOS prompt or a Unix shell.  To
see a list of Pyomo command line options, use:

pyomo solve --help






Note

There are two dashes before help.



In this section we will detail some of the options.


Passing Options to a Solver

To pass arguments to a solver when using the pyomo solve command,
appned the Pyomo command line with the argument --solver-options=
followed by an argument that is a string to be sent to the solver
(perhaps with dashes added by Pyomo).  So for most MIP solvers, the mip
gap can be set using

--solver-options= "mipgap=0.01 "





Multiple options are separated by a space.  Options that do not take an
argument should be specified with the equals sign followed by either a
space or the end of the string.

For example, to specify that the solver is GLPK, then to specify a
mipgap of two percent and the GLPK cuts option, use

solver=glpk --solver-options="mipgap=0.02 cuts="





If there are multiple “levels” to the keyword, as is the case for some
Gurobi and CPLEX options, the tokens are separated by underscore.  For
example, mip cuts all would be specified as mip_cuts_all.  For
another example, to set the solver to be CPLEX, then to set a mip gap of
one percent and to specify ‘y’ for the sub-option numerical to the
option emphasis use

--solver=cplex --solver-options="mipgap=0.001 emphasis_numerical=y"





See Sending Options to the Solver for a discussion of passing options in a script.




Troubleshooting

Many of things that can go wrong are covered by error messages, but
sometimes they can be confusing or do not provide enough
information. Depending on what the troubles are, there might be ways to
get a little additional information.

If there are syntax errors in the model file, for example, it can
occasionally be helpful to get error messages directly from the Python
interpreter rather than through Pyomo. Suppose the name of the model
file is scuc.py, then

python scuc.py





can sometimes give useful information for fixing syntax errors.

When there are no syntax errors, but there troubles reading the data or
generating the information to pass to a solver, then the --verbose
option provides a trace of the execution of Pyomo. The user should be
aware that for some models this option can generate a lot of output.

If there are troubles with solver (i.e., after Pyomo has output
“Applying Solver”), it is often helpful to use the option
--stream-solver that causes the solver output to be displayed rather
than trapped. (See <<TeeTrue>> for information about getting this output
in a script). Advanced users may wish to examine the files that are
generated to be passed to a solver. The type of file generated is
controlled by the --solver-io option and the --keepfiles option
instructs pyomo to keep the files and output their names. However, the
--symbolic-solver-labels option should usually also be specified so
that meaningful names are used in these files.

When there seem to be troubles expressing the model, it is often useful
to embed print commands in the model in places that will yield helpful
information.  Consider the following snippet:

def ax_constraint_rule(model, i):
     # return the expression for the constraint for i
     print ("ax_constraint_rule was called for i=",str(i))
     return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)





The effect will be to output every member of the set model.I at the
time the constraint named model.AxbConstraint is constructed.




Direct Interfaces to Solvers

In many applications, the default solver interface works well. However,
in some cases it is useful to specify the interface using the
solver-io option. For example, if the solver supports a direct
Python interface, then the option would be specified on the command line
as

--solver-io=python





Here are some of the choices:


	lp: generate a standard linear programming format file with filename
extension lp

	nlp: generate a file with a standard format that supports linear and
nonlinear optimization with filename extension n1lp

	os: generate an OSiL format XML file.

	python: use the direct Python interface.




Note

Not all solvers support all interfaces.









            

          

      

      

    

  

    
      
          
            
  
BuildAction and BuildCheck

This is a somewhat advanced topic. In some cases, it is desirable to
trigger actions to be done as part of the model building process. The
BuildAction function provides this capability in a Pyomo model.  It
takes as arguments optional index sets and a function to peform the
action.  For example,

model.BuildBpts = BuildAction(model.J, rule=bpts_build)





calls the function bpts_build for each member of model.J. The
function bpts_build should have the model and a variable for the
members of model.J as formal arguments. In this example, the
following would be a valid declaration for the function:

def bpts_build(model, j):





A full example, which extends the Symbolic Index Sets and
Piecewise Linear Expressions examples, is

# abstract2piecebuild.py
# Similar to abstract2piece.py, but the breakpoints are created using a build action

from pyomo.environ import *

model = AbstractModel()

model.I = Set()
model.J = Set()

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

model.Topx = Param(default=6.1) # range of x variables
model.PieceCnt = Param(default=100)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals, bounds=(0,model.Topx))
model.y = Var(model.J, domain=NonNegativeReals)

# to avoid warnings, we set breakpoints beyond the bounds
# we are using a dictionary so that we can have different
# breakpoints for each index. But we won't.
model.bpts = {}
def bpts_build(model, j):
    model.bpts[j] = []
    for i in range(model.PieceCnt+2):
        model.bpts[j].append(float((i*model.Topx)/model.PieceCnt))
# The object model.BuildBpts is not refered to again;
# the only goal is to trigger the action at build time
model.BuildBpts = BuildAction(model.J, rule=bpts_build)

def f4(model, j, xp):
    # we not need j in this example, but it is passed as the index for the constraint
    return xp**4

model.ComputePieces = Piecewise(model.J, model.y, model.x, pw_pts=model.bpts, pw_constr_type='EQ', f_rule=f4)

def obj_expression(model):
    return summation(model.c, model.y)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)





This example uses the build action to create a model component with
breakpoints for a Piecewise Linear Expressions function.  The BuildAction is
triggered by the assignment to model.BuildBpts. This object is not
referenced again, the only goal is to cause the execution of
bpts_build, which places data in the model.bpts dictionary.
Note that if model.bpts had been a Set, then it could have been
created with an initialize argument to the Set
declaration. Since it is a special-purpose dictionary to support the
Piecewise Linear Expressions functionality in Pyomo, we use a BuildAction.

Another application of BuildAction can be intialization of Pyomo
model data from Python data structures, or efficient initialization of
Pyomo model data from other Pyomo model data. Consider the
Sparse Index Sets example. Rather than using an initialization for
each list of sets NodesIn and NodesOut separately using
initialize, it is a little more efficient and probably a little
clearer, to use a build action.

The full model is:

# Isinglebuild.py
# NodesIn and NodesOut are created by a build action using the Arcs
from pyomo.environ import *

model = AbstractModel()

model.Nodes = Set()
model.Arcs = Set(dimen=2)

model.NodesOut = Set(model.Nodes, within=model.Nodes, initialize=[])
model.NodesIn = Set(model.Nodes, within=model.Nodes, initialize=[])

def Populate_In_and_Out(model):
    # loop over the arcs and put the end points in the appropriate places
    for (i,j) in model.Arcs:
        model.NodesIn[j].add(i)
        model.NodesOut[i].add(j)

model.In_n_Out = BuildAction(rule = Populate_In_and_Out)

model.Flow = Var(model.Arcs, domain=NonNegativeReals)
model.FlowCost = Param(model.Arcs)

model.Demand = Param(model.Nodes)
model.Supply = Param(model.Nodes)

def Obj_rule(model):
    return summation(model.FlowCost, model.Flow)
model.Obj = Objective(rule=Obj_rule, sense=minimize)

def FlowBalance_rule(model, node):
    return model.Supply[node] \
     + sum(model.Flow[i, node] for i in model.NodesIn[node]) \
     - model.Demand[node] \
     - sum(model.Flow[node, j] for j in model.NodesOut[node]) \
     == 0
model.FlowBalance = Constraint(model.Nodes, rule=FlowBalance_rule)





for this model, the same data file can be used as for Isinglecomm.py in
Sparse Index Sets such as the toy data file:

set Nodes := CityA CityB CityC ;

set Arcs :=
CityA CityB
CityA CityC
CityC CityB
;

param : FlowCost :=
CityA CityB 1.4
CityA CityC 2.7
CityC CityB 1.6
 ;

param Demand :=
CityA 0
CityB 1
CityC 1
;

param Supply :=
CityA 2
CityB 0
CityC 0
;





Build actions can also be a way to implement data validation,
particularly when multiple Sets or Parameters must be analyzed. However,
the the BuildCheck component is prefered for this purpose. It
executes its rule just like a BuildAction but will terminate the
construction of the model instance if the rule returns False.





            

          

      

      

    

  

    
      
          
            
  
Modeling Extensions



	Bilevel Programming

	Dynamic Optimization with pyomo.DAE

	Generalized Disjunctive Programming

	MPEC

	Stochastic Programming in Pyomo

	Pyomo Network









            

          

      

      

    

  

    
      
          
            
  
Bilevel Programming

pyomo.bilevel provides extensions supporting modeling of multi-level
optimization problems.





            

          

      

      

    

  

    
      
          
            
  
Dynamic Optimization with pyomo.DAE

[image: ../_images/Pyomo-DAE-150.png]
The pyomo.DAE modeling extension [PyomoDAE] allows users to incorporate systems of
differential algebraic equations (DAE)s in a Pyomo model. The modeling
components in this extension are able to represent ordinary or partial
differential equations. The differential equations do not have to be
written in a particular format and the components are flexible enough to
represent higher-order derivatives or mixed partial
derivatives. Pyomo.DAE also includes model transformations which use
simultaneous discretization approaches to transform a DAE model into an
algebraic model. Finally, pyomo.DAE includes utilities for simulating
DAE models and initializing dynamic optimization problems.


Modeling Components

Pyomo.DAE introduces three new modeling components to Pyomo:



	pyomo.dae.ContinuousSet
	Represents a bounded continuous domain


	pyomo.dae.DerivativeVar
	Represents derivatives in a model and defines how a Var is differentiated


	pyomo.dae.Integral
	Represents an integral over a continuous domain





As will be shown later, differential equations can be declared using
using these new modeling components along with the standard Pyomo
Var and
Constraint components.


ContinuousSet

This component is used to define continuous bounded domains (for example
‘spatial’ or ‘time’ domains). It is similar to a Pyomo
Set  component and can be used to index things
like variables and constraints. Any number of
ContinuousSets can be used to index a
component and components can be indexed by both
Sets and
ContinuousSets in arbitrary order.

In the current implementation, models with
ContinuousSet components may not be solved
until every ContinuousSet has been
discretized. Minimally, a ContinuousSet
must be initialized with two numeric values representing the upper and lower
bounds of the continuous domain. A user may also specify additional points in
the domain to be used as finite element points in the discretization.


	
class pyomo.dae.ContinuousSet(*args, **kwds)

	Represents a bounded continuous domain

Minimally, this set must contain two numeric values defining the
bounds of a continuous range. Discrete points of interest may
be added to the continuous set. A continuous set is one
dimensional and may only contain numerical values.





	Parameters:	
	initialize (list) – Default discretization points to be included

	bounds (tuple) – The bounding points for the continuous domain. The bounds will
be included as discrete points in the ContinuousSet
and will be used to bound the points added to the
ContinuousSet through the ‘initialize’ argument,
a data file, or the add() method










	
_changed

	This keeps track of whether or not the ContinuousSet was changed
during discretization. If the user specifies all of the needed
discretization points before the discretization then there is no
need to go back through the model and reconstruct things indexed
by the ContinuousSet





	Type:	boolean










	
_fe

	This is a sorted list of the finite element points in the
ContinuousSet. i.e. this list contains all the
discrete points in the ContinuousSet that are not
collocation points. Points that are both finite element points
and collocation points will be included in this list.





	Type:	list










	
_discretization_info

	This is a dictionary which contains information on the
discretization transformation which has been applied to the
ContinuousSet.





	Type:	dict










	
construct(values=None)

	Constructs a ContinuousSet component






	
find_nearest_index(target, tolerance=None)

	Returns the index of the nearest point in the
ContinuousSet.

If a tolerance is specified, the index will only be returned
if the distance between the target and the closest point is
less than or equal to that tolerance. If there is a tie for
closest point, the index on the left is returned.





	Parameters:	
	target (float) – 

	tolerance (float or None) – 






	Return type:	float or None












	
get_changed()

	Returns flag indicating if the ContinuousSet was
changed during discretization

Returns “True” if additional points were added to the
ContinuousSet while applying a
discretization scheme





	Return type:	boolean










	
get_discretization_info()

	Returns a dict with information on the discretization scheme
that has been applied to the ContinuousSet.





	Return type:	dict










	
get_finite_elements()

	Returns the finite element points

If the ContinuousSet has been
discretizaed using a collocation scheme, this method will return a
list of the finite element discretization points but not the
collocation points within each finite element. If the
ContinuousSet has not been
discretized or a finite difference discretization was used,
this method returns a list of all the discretization points in the
ContinuousSet.





	Return type:	list of floats










	
get_lower_element_boundary(point)

	Returns the first finite element point that is less than or
equal to ‘point’





	Parameters:	point (float) – 


	Return type:	float [https://docs.python.org/3/library/functions.html#float]










	
get_upper_element_boundary(point)

	Returns the first finite element point that is greater or equal
to ‘point’





	Parameters:	point (float) – 


	Return type:	float [https://docs.python.org/3/library/functions.html#float]










	
set_changed(newvalue)

	Sets the _changed flag to ‘newvalue’





	Parameters:	newvalue (boolean) – 













The following code snippet shows examples of declaring a
ContinuousSet component on a
concrete Pyomo model:

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()

Declaration by providing bounds
>>> model.t = ContinuousSet(bounds=(0,5))

Declaration by initializing with desired discretization points
>>> model.x = ContinuousSet(initialize=[0,1,2,5])






Note

A ContinuousSet may not be
constructed unless at least two numeric points are provided to bound the
continuous domain.



The following code snippet shows an example of declaring a
ContinuousSet component on an
abstract Pyomo model using the example data file.

set t := 0 0.5 2.25 3.75 5;





Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = AbstractModel()

The ContinuousSet below will be initialized using the points
in the data file when a model instance is created.
>>> model.t = ContinuousSet()






Note

If a separate data file is used to initialize a
ContinuousSet, it is done using
the ‘set’ command and not ‘continuousset’




Note

Most valid ways to declare and initialize a
Set can be used to
declare and initialize a ContinuousSet.
See the documentation for Set for additional
options.




Warning

Be careful using a ContinuousSet as an implicit index in an expression,
i.e. sum(m.v[i] for i in m.myContinuousSet). The expression will
be generated using the discretization points contained in the
ContinuousSet at the time the
expression was constructed and will not be updated if additional
points are added to the set during discretization.




Note

ContinuousSet components are
always ordered (sorted) therefore the first() and last()
Set methods can be used to access the lower
and upper boundaries of the
ContinuousSet respectively






DerivativeVar


	
class pyomo.dae.DerivativeVar(*args, **kwargs)

	Represents derivatives in a model and defines how a
Var is differentiated

The DerivativeVar component is
used to declare a derivative of a Var.
The constructor accepts a single positional argument which is the
Var that’s being differentiated. A
Var may only be differentiated with
respect to a ContinuousSet that it
is indexed by. The indexing sets of a DerivativeVar are identical to those of the Var it is differentiating.





	Parameters:	
	sVar (pyomo.environ.Var) – The variable being differentiated

	wrt (pyomo.dae.ContinuousSet or tuple) – Equivalent to withrespectto keyword argument. The
ContinuousSet that the
derivative is being taken with respect to. Higher order derivatives
are represented by including the
ContinuousSet multiple times in
the tuple sent to this keyword. i.e. wrt=(m.t, m.t) would be the
second order derivative with respect to m.t










	
get_continuousset_list()

	Return the a list of ContinuousSet components the
derivative is being taken with respect to.





	Return type:	list










	
get_derivative_expression()

	Returns the current discretization expression for this derivative or
creates an access function to its Var the first time
this method is called. The expression gets built up as the
discretization transformations are sequentially applied to each
ContinuousSet in the model.






	
get_state_var()

	Return the Var that is being differentiated.





	Return type:	Var










	
is_fully_discretized()

	Check to see if all the
ContinuousSets this derivative
is taken with respect to have been discretized.





	Return type:	boolean










	
set_derivative_expression(expr)

	Sets``_expr``, an expression representing the discretization
equations linking the DerivativeVar to its state
Var









The code snippet below shows examples of declaring
DerivativeVar components on a
Pyomo model. In each case, the variable being differentiated is supplied
as the only positional argument and the type of derivative is specified
using the ‘wrt’ (or the more verbose ‘withrespectto’) keyword
argument. Any keyword argument that is valid for a Pyomo
Var component may also be specified.

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()
>>> model.s = Set(initialize=['a','b'])
>>> model.t = ContinuousSet(bounds=(0,5))
>>> model.l = ContinuousSet(bounds=(-10,10))

>>> model.x = Var(model.t)
>>> model.y = Var(model.s,model.t)
>>> model.z = Var(model.t,model.l)

Declare the first derivative of model.x with respect to model.t
>>> model.dxdt = DerivativeVar(model.x, withrespectto=model.t)

Declare the second derivative of model.y with respect to model.t
Note that this DerivativeVar will be indexed by both model.s and model.t
>>> model.dydt2 = DerivativeVar(model.y, wrt=(model.t,model.t))

Declare the partial derivative of model.z with respect to model.l
Note that this DerivativeVar will be indexed by both model.t and model.l
>>> model.dzdl = DerivativeVar(model.z, wrt=(model.l), initialize=0)

Declare the mixed second order partial derivative of model.z with respect
to model.t and model.l and set bounds
>>> model.dz2 = DerivativeVar(model.z, wrt=(model.t, model.l), bounds=(-10, 10))






Note

The ‘initialize’ keyword argument will initialize the value of a
derivative and is not the same as specifying an initial
condition. Initial or boundary conditions should be specified using a
Constraint or
ConstraintList or
by fixing the value of a Var at a boundary
point.








Declaring Differential Equations

A differential equations is declared as a standard Pyomo
Constraint and is not required to have
any particular form. The following code snippet shows how one might declare
an ordinary or partial differential equation.

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()
>>> model.s = Set(initialize=['a', 'b'])
>>> model.t = ContinuousSet(bounds=(0, 5))
>>> model.l = ContinuousSet(bounds=(-10, 10))

>>> model.x = Var(model.s, model.t)
>>> model.y = Var(model.t, model.l)
>>> model.dxdt = DerivativeVar(model.x, wrt=model.t)
>>> model.dydt = DerivativeVar(model.y, wrt=model.t)
>>> model.dydl2 = DerivativeVar(model.y, wrt=(model.l, model.l))

An ordinary differential equation
>>> def _ode_rule(m, s, t):
...    if t == 0:
...       return Constraint.Skip
...    return m.dxdt[s, t] == m.x[s, t]**2
>>> model.ode = Constraint(model.s, model.t, rule=_ode_rule)

A partial differential equation
>>> def _pde_rule(m, t, l):
...    if t == 0 or l == m.l.first() or l == m.l.last():
...       return Constraint.Skip
...    return m.dydt[t, l] == m.dydl2[t, l]
>>> model.pde = Constraint(model.t, model.l, rule=_pde_rule)





By default, a Constraint declared over a
ContinuousSet will be applied at every
discretization point contained in the set. Often a modeler does not want to
enforce a differential equation at one or both boundaries of a continuous
domain. This may be addressed explicitly in the
Constraint declaration using
Constraint.Skip as shown above. Alternatively, the desired constraints can
be deactivated just before the model is sent to a solver as shown below.

>>> def _ode_rule(m, s, t):
...    return m.dxdt[s, t] == m.x[s, t]**2
>>> model.ode = Constraint(model.s, model.t, rule=_ode_rule)

>>> def _pde_rule(m, t, l):
...    return m.dydt[t, l] == m.dydl2[t, l]
>>> model.pde = Constraint(model.t, model.l, rule=_pde_rule)

Declare other model components and apply a discretization transformation
...

Deactivate the differential equations at certain boundary points
>>> for con in model.ode[:, model.t.first()]:
...    con.deactivate()

>>> for con in model.pde[0, :]:
...    con.deactivate()

>>> for con in model.pde[:, model.l.first()]:
...    con.deactivate()

>>> for con in model.pde[:, model.l.last()]:
...   con.deactivate()

Solve the model
...






Note

If you intend to use the pyomo.DAE
Simulator on your model then you
must use constraint deactivation instead of constraint
skipping in the differential equation rule.






Declaring Integrals


Warning

The Integral component is still under
development and considered a prototype. It currently includes only basic
functionality for simple integrals. We welcome feedback on the interface
and functionality but we do not recommend using it on general
models. Instead, integrals should be reformulated as differential
equations.




	
class pyomo.dae.Integral(*args, **kwds)

	Represents an integral over a continuous domain

The Integral component can be used to
represent an integral taken over the entire domain of a
ContinuousSet. Once every
ContinuousSet in a model has been
discretized, any integrals in the model will be converted to algebraic
equations using the trapezoid rule. Future development will include more
sophisticated numerical integration methods.





	Parameters:	
	*args – Every indexing set needed to evaluate the integral expression

	wrt (ContinuousSet) – The continuous domain over which the integral is being taken

	rule (function) – Function returning the expression being integrated










	
get_continuousset()

	Return the ContinuousSet
the integral is being taken over









Declaring an Integral component is similar to
declaring an Expression component. A
simple example is shown below:

>>> model = ConcreteModel()
>>> model.time = ContinuousSet(bounds=(0,10))
>>> model.X = Var(model.time)
>>> model.scale = Param(initialize=1E-3)

>>> def _intX(m,t):
...    return m.X[t]
>>> model.intX = Integral(model.time,wrt=model.time,rule=_intX)

>>> def _obj(m):
...    return m.scale*m.intX
>>> model.obj = Objective(rule=_obj)





Notice that the positional arguments supplied to the
Integral declaration must include all indices
needed to evaluate the integral expression. The integral expression is defined
in a function and supplied to the ‘rule’ keyword argument. Finally, a user must
specify a ContinuousSet that the integral
is being evaluated over. This is done using the ‘wrt’ keyword argument.


Note

The ContinuousSet specified using the
‘wrt’ keyword argument must be explicitly specified as one of the indexing
sets (meaning it must be supplied as a positional argument). This is to
ensure consistency in the ordering and dimension of the indexing sets



After an Integral has been declared, it can be
used just like a Pyomo Expression
component and can be included in constraints or the objective function as shown
above.

If an Integral is specified with multiple
positional arguments, i.e. multiple indexing sets, the final component will be
indexed by all of those sets except for the
ContinuousSet that the integral was
taken over. In other words, the
ContinuousSet specified with the
‘wrt’ keyword argument is removed from the indexing sets of the
Integral even though it must be specified as a
positional argument. This should become more clear with the following example
showing a double integral over the
ContinuousSet components model.t1 and
model.t2. In addition, the expression is also indexed by the
Set model.s. The mathematical representation
and implementation in Pyomo are shown below:


\[\sum_{s} \int_{t_2} \int_{t_1} \! X(t_1, t_2, s) \, dt_1 \, dt_2\]

>>> model = ConcreteModel()
>>> model.t1 = ContinuousSet(bounds=(0, 10))
>>> model.t2 = ContinuousSet(bounds=(-1, 1))
>>> model.s = Set(initialize=['A', 'B', 'C'])

>>> model.X = Var(model.t1, model.t2, model.s)

>>> def _intX1(m, t1, t2, s):
...    return m.X[t1, t2, s]
>>> model.intX1 = Integral(model.t1, model.t2, model.s, wrt=model.t1,
...                        rule=_intX1)

>>> def _intX2(m, t2, s):
...    return m.intX1[t2, s]
>>> model.intX2 = Integral(model.t2, model.s, wrt=model.t2, rule=_intX2)

>>> def _obj(m):
...    return sum(m.intX2[k] for k in m.s)
>>> model.obj = Objective(rule=_obj)








Discretization Transformations

Before a Pyomo model with DerivativeVar
or Integral components can be sent to a
solver it must first be sent through a discretization transformation. These
transformations approximate any derivatives or integrals in the model by
using a numerical method. The numerical methods currently included in pyomo.DAE
discretize the continuous domains in the problem and introduce equality
constraints which approximate the derivatives and integrals at the
discretization points. Two families of discretization schemes have been
implemented in pyomo.DAE, Finite Difference and Collocation. These schemes are
described in more detail below.


Note

The schemes described here are for derivatives only. All integrals will
be transformed using the trapezoid rule.



The user must write a Python script in order to use these discretizations,
they have not been tested on the pyomo command line. Example scripts are
shown below for each of the discretization schemes. The transformations are
applied to Pyomo model objects which can be further manipulated before being
sent to a solver. Examples of this are also shown below.


Finite Difference Transformation

This transformation includes implementations of several finite
difference methods. For example, the Backward Difference method (also
called Implicit or Backward Euler) has been implemented. The
discretization equations for this method are shown below:


\[\begin{split}\begin{array}{l}
\mathrm{Given: } \\
\frac{dx}{dt} = f(t, x) , \quad x(t_0) = x_{0} \\
\text{discretize $t$ and $x$ such that } \\
x(t_0 + kh) = x_{k} \\
x_{k + 1} = x_{k} + h * f(t_{k + 1}, x_{k + 1}) \\
t_{k + 1} = t_{k} + h
\end{array}\end{split}\]

where \(h\) is the step size between discretization points or the size of
each finite element. These equations are generated automatically as
Constraints when the backward
difference method is applied to a Pyomo model.

There are several discretization options available to a
dae.finite_difference transformation which can be specified as keyword
arguments to the .apply_to() function of the transformation object. These
keywords are summarized below:

Keyword arguments for applying a finite difference transformation:


	‘nfe’
	The desired number of finite element points to be included in the
discretization. The default value is 10.

	‘wrt’
	Indicates which ContinuousSet the
transformation should be applied to. If this keyword argument is not
specified then the same scheme will be applied to every
ContinuousSet .

	‘scheme’
	Indicates which finite difference method to apply. Options are
‘BACKWARD’, ‘CENTRAL’, or ‘FORWARD’. The default scheme is the backward
difference method.



If the existing number of finite element points in a
ContinuousSet is less than the desired
number, new discretization points will be added to the set. If a user specifies
a number of finite element points which is less than the number of points
already included in the ContinuousSet then
the transformation will ignore the specified number and proceed with the larger
set of points. Discretization points will never be removed from a
ContinousSet during the discretization.

The following code is a Python script applying the backward difference
method. The code also shows how to add a constraint to a discretized model.

Discretize model using Backward Difference method
>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model,nfe=20,wrt=model.time,scheme='BACKWARD')

Add another constraint to discretized model
>>> def _sum_limit(m):
...    return sum(m.x1[i] for i in m.time) <= 50
>>> model.con_sum_limit = Constraint(rule=_sum_limit)

Solve discretized model
>>> solver = SolverFactory('ipopt')
>>> results = solver.solve(model)








Collocation Transformation

This transformation uses orthogonal collocation to discretize the
differential equations in the model. Currently, two types of collocation
have been implemented. They both use Lagrange polynomials with either
Gauss-Radau roots or Gauss-Legendre roots. For more information on
orthogonal collocation and the discretization equations associated with this
method please see chapter 10 of the book “Nonlinear Programming: Concepts,
Algorithms, and Applications to Chemical Processes” by L.T. Biegler.

The discretization options available to a dae.collocation transformation
are the same as those described above for the finite difference transformation
with different available schemes and the addition of the ‘ncp’ option.

Additional keyword arguments for collocation discretizations:


	‘scheme’
	The desired collocation scheme, either ‘LAGRANGE-RADAU’ or
‘LAGRANGE-LEGENDRE’. The default is ‘LAGRANGE-RADAU’.

	‘ncp’
	The number of collocation points within each finite element. The
default value is 3.




Note

If the user’s version of Python has access to the package Numpy then any
number of collocation points may be specified, otherwise the maximum number
is 10.




Note

Any points that exist in a
ContinuousSet before discretization
will be used as finite element boundaries and not as collocation points.
The locations of the collocation points cannot be specified by the user,
they must be generated by the transformation.



The following code is a Python script applying collocation with Lagrange
polynomials and Radau roots. The code also shows how to add an objective
function to a discretized model.

Discretize model using Radau Collocation
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(model,nfe=20,ncp=6,scheme='LAGRANGE-RADAU')

Add objective function after model has been discretized
>>> def obj_rule(m):
...    return sum((m.x[i]-m.x_ref)**2 for i in m.time)
>>> model.obj = Objective(rule=obj_rule)

Solve discretized model
>>> solver = SolverFactory('ipopt')
>>> results = solver.solve(model)






Restricting Optimal Control Profiles

When solving an optimal control problem a user may want to restrict the
number of degrees of freedom for the control input by forcing, for example,
a piecewise constant profile. Pyomo.DAE provides the
reduce_collocation_points function to address this use-case. This function
is used in conjunction with the dae.collocation discretization
transformation to reduce the number of free collocation points within a finite
element for a particular variable.


	
class pyomo.dae.plugins.colloc.Collocation_Discretization_Transformation

	
	
reduce_collocation_points(instance, var=None, ncp=None, contset=None)

	This method will add additional constraints to a model to reduce the
number of free collocation points (degrees of freedom) for a particular
variable.





	Parameters:	
	instance (Pyomo model) – The discretized Pyomo model to add constraints to

	var (pyomo.environ.Var) – The Pyomo variable for which the degrees of freedom will be reduced

	ncp (int [https://docs.python.org/3/library/functions.html#int]) – The new number of free collocation points for var. Must be
less that the number of collocation points used in discretizing
the model.

	contset (pyomo.dae.ContinuousSet) – The ContinuousSet that was
discretized and for which the var will have a reduced number
of degrees of freedom

















An example of using this function is shown below:

>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(model, nfe=10, ncp=6)
>>> model = discretizer.reduce_collocation_points(model,
...                                               var=model.u,
...                                               ncp=1,
...                                               contset=model.time)





In the above example, the reduce_collocation_points function restricts
the variable model.u to have only 1 free collocation point per
finite element, thereby enforcing a piecewise constant profile.
Fig. 1 shows the solution profile before and
after appling
the reduce_collocation_points function.


[image: ../_images/reduce_points_demo.png]
Fig. 1 (left) Profile before applying the reduce_collocation_points
function (right) Profile after applying the function, restricting
model.u to have a piecewise constant profile.








Applying Multiple Discretization Transformations

Discretizations can be applied independently to each
ContinuousSet in a model. This allows the
user great flexibility in discretizing their model. For example the same
numerical method can be applied with different resolutions:

>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model,wrt=model.t1,nfe=10)
>>> discretizer.apply_to(model,wrt=model.t2,nfe=100)





This also allows the user to combine different methods. For example, applying
the forward difference method to one
ContinuousSet and the central finite
difference method to another
ContinuousSet:

>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model,wrt=model.t1,scheme='FORWARD')
>>> discretizer.apply_to(model,wrt=model.t2,scheme='CENTRAL')





In addition, the user may combine finite difference and collocation
discretizations. For example:

>>> disc_fe = TransformationFactory('dae.finite_difference')
>>> disc_fe.apply_to(model,wrt=model.t1,nfe=10)
>>> disc_col = TransformationFactory('dae.collocation')
>>> disc_col.apply_to(model,wrt=model.t2,nfe=10,ncp=5)





If the user would like to apply the same discretization to all
ContinuousSet components in a model, just
specify the discretization once without the ‘wrt’ keyword argument. This will
apply that scheme to all ContinuousSet
components in the model that haven’t already been discretized.




Custom Discretization Schemes

A transformation framework along with certain utility functions has been
created so that advanced users may easily implement custom discretization
schemes other than those listed above. The transformation framework consists of
the following steps:



	Specify Discretization Options

	Discretize the ContinuousSet(s)

	Update Model Components

	Add Discretization Equations

	Return Discretized Model






If a user would like to create a custom finite difference scheme then they only
have to worry about step (4) in the framework. The discretization equations for
a particular scheme have been isolated from of the rest of the code for
implementing the transformation. The function containing these discretization
equations can be found at the top of the source code file for the
transformation. For example, below is the function for the forward
difference method:

def _forward_transform(v,s):
"""
Applies the Forward Difference formula of order O(h) for first derivatives
"""
    def _fwd_fun(i):
        tmp = sorted(s)
        idx = tmp.index(i)
        return 1/(tmp[idx+1]-tmp[idx])*(v(tmp[idx+1])-v(tmp[idx]))
    return _fwd_fun





In this function, ‘v’ represents the continuous variable or function that the
method is being applied to. ‘s’ represents the set of discrete points in the
continuous domain. In order to implement a custom finite difference method, a
user would have to copy the above function and just replace the equation next
to the first return statement with their method.

After implementing a custom finite difference method using the above function
template, the only other change that must be made is to add the custom method
to the ‘all_schemes’ dictionary in the dae.finite_difference
class.

In the case of a custom collocation method, changes will have to be made in
steps (2) and (4) of the transformation framework. In addition to implementing
the discretization equations, the user would also have to ensure that the
desired collocation points are added to the ContinuousSet being discretized.






Dynamic Model Simulation

The pyomo.dae Simulator class can be used to simulate systems of ODEs and
DAEs. It provides an interface to integrators available in other Python
packages.


Note

The pyomo.dae Simulator does not include integrators directly. The user
must have at least one of the supported Python packages installed in
order to use this class.




	
class pyomo.dae.Simulator(m, package='scipy')

	Simulator objects allow a user to simulate a dynamic model formulated
using pyomo.dae.





	Parameters:	
	m (Pyomo Model) – The Pyomo model to be simulated should be passed as the first argument

	package (string) – The Python simulator package to use. Currently ‘scipy’ and ‘casadi’ are
the only supported packages










	
get_variable_order(vartype=None)

	This function returns the ordered list of differential variable
names. The order corresponds to the order being sent to the
integrator function. Knowing the order allows users to provide
initial conditions for the differential equations using a
list or map the profiles returned by the simulate function to
the Pyomo variables.





	Parameters:	vartype (string or None) – Optional argument for specifying the type of variables to return
the order for. The default behavior is to return the order of
the differential variables. ‘time-varying’ will return the order
of all the time-dependent algebraic variables identified in the
model. ‘algebraic’ will return the order of algebraic variables
used in the most recent call to the simulate function. ‘input’
will return the order of the time-dependent algebraic variables
that were treated as inputs in the most recent call to the
simulate function.


	Return type:	list










	
initialize_model()

	This function will initialize the model using the profile obtained
from simulating the dynamic model.






	
simulate(numpoints=None, tstep=None, integrator=None, varying_inputs=None, initcon=None, integrator_options=None)

	Simulate the model. Integrator-specific options may be specified as
keyword arguments and will be passed on to the integrator.





	Parameters:	
	numpoints (int [https://docs.python.org/3/library/functions.html#int]) – The number of points for the profiles returned by the simulator.
Default is 100

	tstep (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The time step to use in the profiles returned by the simulator.
This is not the time step used internally by the integrators.
This is an optional parameter that may be specified in place of
‘numpoints’.

	integrator (string) – The string name of the integrator to use for simulation. The
default is ‘lsoda’ when using Scipy and ‘idas’ when using CasADi

	varying_inputs (pyomo.environ.Suffix) – A Suffix object containing the
piecewise constant profiles to be used for certain time-varying
algebraic variables.

	initcon (list [https://docs.python.org/3/library/stdtypes.html#list] of floats) – The initial conditions for the the differential variables. This
is an optional argument. If not specified then the simulator
will use the current value of the differential variables at the
lower bound of the ContinuousSet for the initial condition.

	integrator_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing options that should be passed to the
integrator. See the documentation for a specific integrator for a
list of valid options.






	Returns:	The first return value is a 1D array of time points corresponding
to the second return value which is a 2D array of the profiles for
the simulated differential and algebraic variables.




	Return type:	numpy array, numpy array
















Note

Any keyword options supported by the integrator may be specified as
keyword options to the simulate function and will be passed to the
integrator.




Supported Simulator Packages

The Simulator currently includes interfaces to SciPy and CasADi. ODE
simulation is supported in both packages however, DAE simulation is only
supported by CasADi. A list of available integrators for each package is
given below. Please refer to the SciPy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html]
and CasADi [http://casadi.sourceforge.net/api/html/db/d3d/classcasadi_1_1Integrator.html] documentation directly for the most up-to-date information about
these packages and for more information about the various integrators and
options.


	SciPy Integrators:
	
	‘vode’ :  Real-valued Variable-coefficient ODE solver, options for
non-stiff and stiff systems

	‘zvode’ : Complex-values Variable-coefficient ODE solver, options for
non-stiff and stiff systems

	‘lsoda’ : Real-values Variable-coefficient ODE solver, automatic
switching of algorithms for non-stiff or stiff systems

	‘dopri5’ : Explicit runge-kutta  method of order (4)5 ODE solver

	‘dop853’ : Explicit runge-kutta method of order 8(5,3) ODE solver





	CasADi Integrators:
	
	‘cvodes’ : CVodes from the Sundials suite, solver for stiff or
non-stiff ODE systems

	‘idas’ : IDAS from the Sundials suite, DAE solver

	‘collocation’ : Fixed-step implicit runge-kutta method, ODE/DAE
solver

	‘rk’ : Fixed-step explicit runge-kutta method, ODE solver










Using the Simulator

We now show how to use the Simulator to simulate the following system of ODEs:


\[\begin{split}\begin{array}{l}
\frac{d\theta}{dt} = \omega \\
\frac{d\omega}{dt} = -b*\omega -c*sin(\theta)
\end{array}\end{split}\]

We begin by formulating the model using pyomo.DAE

>>> m = ConcreteModel()

>>> m.t = ContinuousSet(bounds=(0.0, 10.0))

>>> m.b = Param(initialize=0.25)
>>> m.c = Param(initialize=5.0)

>>> m.omega = Var(m.t)
>>> m.theta = Var(m.t)

>>> m.domegadt = DerivativeVar(m.omega, wrt=m.t)
>>> m.dthetadt = DerivativeVar(m.theta, wrt=m.t)

Setting the initial conditions
>>> m.omega[0].fix(0.0)
>>> m.theta[0].fix(3.14 - 0.1)

>>> def _diffeq1(m, t):
...     return m.domegadt[t] == -m.b * m.omega[t] - m.c * sin(m.theta[t])
>>> m.diffeq1 = Constraint(m.t, rule=_diffeq1)

>>> def _diffeq2(m, t):
...     return m.dthetadt[t] == m.omega[t]
>>> m.diffeq2 = Constraint(m.t, rule=_diffeq2)





Notice that the initial conditions are set by fixing the values of
m.omega and m.theta at t=0 instead of being specified as extra
equality constraints. Also notice that the differential equations are
specified without using Constraint.Skip to skip enforcement at t=0. The
Simulator cannot simulate any constraints that contain if-statements in
their construction rules.

To simulate the model you must first create a Simulator object. Building
this object prepares the Pyomo model for simulation with a particular Python
package and performs several checks on the model to ensure compatibility
with the Simulator. Be sure to read through the list of limitations at the
end of this section to understand the types of models supported by the
Simulator.

>>> sim = Simulator(m, package='scipy') 





After creating a Simulator object, the model can be simulated by calling the
simulate function. Please see the API documentation for the
Simulator for more information about the
valid keyword arguments for this function.

>>> tsim, profiles = sim.simulate(numpoints=100, integrator='vode') 





The simulate function returns numpy arrays containing time points and
the corresponding values for the dynamic variable profiles.


	Simulator Limitations:
	
	Differential equations must be first-order and separable

	Model can only contain a single ContinuousSet

	Can’t simulate constraints with if-statements in the construction rules

	Need to provide initial conditions for dynamic states by setting the
value or using fix()










Specifying Time-Varing Inputs

The Simulator supports simulation of a system
of ODE’s or DAE’s with time-varying parameters or control inputs. Time-varying
inputs can be specified using a Pyomo Suffix. We currently only support
piecewise constant profiles. For more complex inputs defined by a continuous
function of time we recommend adding an algebraic variable and constraint to
your model.

The profile for a time-varying input should be specified
using a Python dictionary where the keys correspond to the switching times
and the values correspond to the value of the input at a time point. A
Suffix is then used to associate this dictionary with the appropriate
Var or Param and pass the information to the
Simulator. The code snippet below shows an
example.

>>> m = ConcreteModel()

>>> m.t = ContinuousSet(bounds=(0.0, 20.0))

Time-varying inputs
>>> m.b = Var(m.t)
>>> m.c = Param(m.t, default=5.0)

>>> m.omega = Var(m.t)
>>> m.theta = Var(m.t)

>>> m.domegadt = DerivativeVar(m.omega, wrt=m.t)
>>> m.dthetadt = DerivativeVar(m.theta, wrt=m.t)

Setting the initial conditions
>>> m.omega[0] = 0.0
>>> m.theta[0] = 3.14 - 0.1

>>> def _diffeq1(m, t):
...    return m.domegadt[t] == -m.b[t] * m.omega[t] - \
...                             m.c[t] * sin(m.theta[t])
>>> m.diffeq1 = Constraint(m.t, rule=_diffeq1)

>>> def _diffeq2(m, t):
...    return m.dthetadt[t] == m.omega[t]
>>> m.diffeq2 = Constraint(m.t, rule=_diffeq2)

Specifying the piecewise constant inputs
>>> b_profile = {0: 0.25, 15: 0.025}
>>> c_profile = {0: 5.0, 7: 50}

Declaring a Pyomo Suffix to pass the time-varying inputs to the Simulator
>>> m.var_input = Suffix(direction=Suffix.LOCAL)
>>> m.var_input[m.b] = b_profile
>>> m.var_input[m.c] = c_profile

Simulate the model using scipy
>>> sim = Simulator(m, package='scipy') 
>>> tsim, profiles = sim.simulate(numpoints=100,
...                               integrator='vode',
...                               varying_inputs=m.var_input) 






Note

The Simulator does not support multi-indexed inputs (i.e. if m.b in
the above example was indexed by another set besides m.t)








Dynamic Model Initialization

Providing a good initial guess is an important factor in solving dynamic
optimization problems. There are several model initialization tools under
development in pyomo.DAE to help users initialize their models. These tools
will be documented here as they become available.


From Simulation

The Simulator includes a function for
initializing discretized dynamic optimization models using the profiles
returned from the simulator. An example using this function is shown below

Simulate the model using scipy
>>> sim = Simulator(m, package='scipy') 
>>> tsim, profiles = sim.simulate(numpoints=100, integrator='vode',
...                               varying_inputs=m.var_input) 

Discretize the model using Orthogonal Collocation
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(m, nfe=10, ncp=3)

Initialize the discretized model using the simulator profiles
>>> sim.initialize_model() 






Note

A model must be simulated before it can be initialized using this function











            

          

      

      

    

  

    
      
          
            
  
Generalized Disjunctive Programming
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The Pyomo.GDP modeling extension[1] provides support for Generalized Disjunctive Programming (GDP)[2], an extension of Disjunctive Programming[3] from the operations research community to include nonlinear relationships. The classic form for a GDP is given by:


\[\begin{split}\min\ obj = &\ f(x, z) \\
\text{s.t.} \quad &\ Ax+Bz \leq d\\
&\ g(x,z) \leq 0\\
&\ \bigvee_{i\in D_k} \left[
    \begin{gathered}
    Y_{ik} \\
    M_{ik} x + N_{ik} z \leq e_{ik} \\
    r_{ik}(x,z)\leq 0\\
    \end{gathered}
\right] \quad k \in K\\
&\ \Omega(Y) = True \\
&\ x \in X \subseteq \mathbb{R}^n\\
&\ Y \in \{True, False\}^{p}\\
&\ z \in Z \subseteq \mathbb{Z}^m\end{split}\]

Here, we have the minimization of an objective \(obj\) subject to global linear constraints \(Ax+Bz \leq d\) and nonlinear constraints \(g(x,z) \leq 0\), with conditional linear constraints \(M_{ik} x + N_{ik} z \leq e_{ik}\) and nonlinear constraints \(r_{ik}(x,z)\leq 0\).
These conditional constraints are collected into disjuncts \(D_k\), organized into disjunctions \(K\). Finally, there are logical propositions \(\Omega(Y) = True\).
Decision/state variables can be continuous \(x\), Boolean \(Y\), and/or integer \(z\).

GDP is useful to model discrete decisions that have implications on the system behavior[4].
For example, in process design, a disjunction may model the choice between processes A and B.
If A is selected, then its associated equations and inequalities will apply; otherwise, if B is selected, then its respective constraints should be enforced.

Modelers often ask to model if-then-else relationships.
These can be expressed as a disjunction as follows:


\begin{gather*}
\left[\begin{gathered}
Y_1 \\
\text{constraints} \\
\text{for }\textit{then}
\end{gathered}\right]
\vee
\left[\begin{gathered}
Y_2 \\
\text{constraints} \\
\text{for }\textit{else}
\end{gathered}\right] \\
Y_1 \underline{\vee} Y_2
\end{gather*}
Here, if the Boolean \(Y_1\) is True, then the constraints in the first disjunct are enforced; otherwise, the constraints in the second disjunct are enforced.
The following sections describe the key concepts, modeling, and solution approaches available for Generalized Disjunctive Programming.


Pyomo.GDP Contents


	Key Concepts
	Disjuncts

	Disjunctions

	Boolean Variables

	Logical Propositions





	Modeling in Pyomo.GDP
	Disjunctions

	Logical Propositions

	Advanced LogicalConstraint Examples

	Additional Examples





	Solving Logic-based Models with Pyomo.GDP
	Flexible Solution Suite

	Reformulations

	Direct GDP solvers

	References










Literature References




	[1]	Chen, Q., Johnson, E. S., Bernal, D. E., Valentin, R., Kale, S., Bates, J., Siirola, J. D. and Grossmann, I. E. (2021). Pyomo.GDP: an ecosystem for logic based modeling and optimization development, Optimization and Engineering (pp. 1-36).https://doi.org/10.1007/s11081-021-09601-7







	[2]	Raman, R., & Grossmann, I. E. (1994). Modelling and computational techniques for logic based integer programming. Computers & Chemical Engineering, 18(7), 563–578. https://doi.org/10.1016/0098-1354(93)E0010-7







	[3]	Balas, E. (1985). Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems. SIAM Journal on Algebraic Discrete Methods, 6(3), 466–486. https://doi.org/10.1137/0606047







	[4]	Grossmann, I. E., & Trespalacios, F. (2013). Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE Journal, 59(9), 3276–3295. https://doi.org/10.1002/aic.14088










            

          

      

      

    

  

    
      
          
            
  [image: ../../_images/Pyomo-GDP-150.png]

Key Concepts

Generalized Disjunctive Programming (GDP) provides a way to bridge high-level propositional logic and algebraic constraints.
The GDP standard form from the index page is repeated below.


\[\begin{split}\min\ obj = &\ f(x, z) \\
\text{s.t.} \quad &\ Ax+Bz \leq d\\
&\ g(x,z) \leq 0\\
&\ \bigvee_{i\in D_k} \left[
    \begin{gathered}
    Y_{ik} \\
    M_{ik} x + N_{ik} z \leq e_{ik} \\
    r_{ik}(x,z)\leq 0\\
    \end{gathered}
\right] \quad k \in K\\
&\ \Omega(Y) = True \\
&\ x \in X \subseteq \mathbb{R}^n\\
&\ Y \in \{True, False\}^{p}\\
&\ z \in Z \subseteq \mathbb{Z}^m\end{split}\]

Original support in Pyomo.GDP focused on the disjuncts and disjunctions, allowing the modelers to group relational expressions in disjuncts, with disjunctions describing logical-OR relationships between the groupings.
As a result, we implemented the Disjunct and Disjunction objects before BooleanVar and the rest of the logical expression system.
Accordingly, we also describe the disjuncts and disjunctions first below.


Disjuncts

Disjuncts represent groupings of relational expressions (e.g. algebraic constraints) summarized by a Boolean indicator variable \(Y\) through implication:


\[\begin{split}\left.
\begin{aligned}
& Y_{ik} \Rightarrow & M_{ik} x + N_{ik} z &\leq e_{ik}\\
& Y_{ik} \Rightarrow & r_{ik}(x,z) &\leq 0
\end{aligned}
\right.\qquad \forall i \in D_k, \forall k \in K\end{split}\]

Logically, this means that if \(Y_{ik} = True\), then the constraints \(M_{ik} x + N_{ik} z \leq e_{ik}\) and \(r_{ik}(x,z) \leq 0\) must be satisfied.
However, if \(Y_{ik} = False\), then the corresponding constraints are ignored.
Note that \(Y_{ik} = False\) does not imply that the corresponding constraints are violated.




Disjunctions

Disjunctions describe a logical OR relationship between two or more Disjuncts.
The simplest and most common case is a 2-term disjunction:


\[\begin{split}\left[\begin{gathered}
Y_1 \\
\exp(x_2) - 1 = x_1 \\
x_3 = x_4 = 0
\end{gathered}
\right] \bigvee \left[\begin{gathered}
Y_2 \\
\exp\left(\frac{x_4}{1.2}\right) - 1 = x_3 \\
x_1 = x_2 = 0
\end{gathered}
\right]\end{split}\]

The disjunction above describes the selection between two units in a process network.
\(Y_1\) and \(Y_2\) are the Boolean variables corresponding to the selection of process units 1 and 2, respectively.
The continuous variables \(x_1, x_2, x_3, x_4\) describe flow in and out of the first and second units, respectively.
If a unit is selected, the nonlinear equality in the corresponding disjunct enforces the input/output relationship in the selected unit.
The final equality in each disjunct forces flows for the absent unit to zero.




Boolean Variables

Boolean variables are decision variables that may take a value of True or False.
These are most often encountered as the indicator variables of disjuncts.
However, they can also be independently defined to represent other problem decisions.


Note

Boolean variables are not intended to participate in algebraic expressions.
That is, \(3 \times \text{True}\) does not make sense; hence, \(x = 3 Y_1\) does not make sense.
Instead, you may have the disjunction


\[\begin{split}\left[\begin{gathered}
Y_1 \\
x = 3
\end{gathered}
\right] \bigvee \left[\begin{gathered}
\neg Y_1 \\
x = 0
\end{gathered}
\right]\end{split}\]






Logical Propositions

Logical propositions are constraints describing relationships between the Boolean variables in the model.

These logical propositions can include:



	Operator
	Example
	\(Y_1\)
	\(Y_2\)
	Result




	Negation
	\(\neg Y_1\)
	
True

False




	 
	
False

True






	Equivalence
	\(Y_1 \Leftrightarrow Y_2\)
	
True

True

False

False




	
True

False

True

False




	
True

False

False

True






	Conjunction
	\(Y_1 \land Y_2\)
	
True

True

False

False




	
True

False

True

False




	
True

False

False

False






	Disjunction
	\(Y_1 \lor Y_2\)
	
True

True

False

False




	
True

False

True

False




	
True

True

True

False






	Exclusive OR
	\(Y_1 \underline{\lor} Y_2\)
	
True

True

False

False




	
True

False

True

False




	
False

True

True

False






	Implication
	\(Y_1 \Rightarrow Y_2\)
	
True

True

False

False




	
True

False

True

False




	
True

False

True

True
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Modeling in Pyomo.GDP


Disjunctions

To demonstrate modeling with disjunctions in Pyomo.GDP, we revisit the small example from the previous page.


\[\begin{split}\left[\begin{gathered}
Y_1 \\
\exp(x_2) - 1 = x_1 \\
x_3 = x_4 = 0
\end{gathered}
\right] \bigvee \left[\begin{gathered}
Y_2 \\
\exp\left(\frac{x_4}{1.2}\right) - 1 = x_3 \\
x_1 = x_2 = 0
\end{gathered}
\right]\end{split}\]


Explicit syntax: more descriptive

Pyomo.GDP explicit syntax (see below) provides more clarity in the declaration of each modeling object,  and gives the user explicit control over the Disjunct names.
Assuming the ConcreteModel object m and variables have been defined, lines 1 and 5 declare the Disjunct objects corresponding to selection of unit 1 and 2, respectively.
Lines 2 and 6 define the input-output relations for each unit, and lines 3-4 and 7-8 enforce zero flow through the unit that is not selected.
Finally, line 9 declares the logical disjunction between the two disjunctive terms.

1m.unit1 = Disjunct()
2m.unit1.inout = Constraint(expr=exp(m.x[2]) - 1 == m.x[1])
3m.unit1.no_unit2_flow1 = Constraint(expr=m.x[3] == 0)
4m.unit1.no_unit2_flow2 = Constraint(expr=m.x[4] == 0)
5m.unit2 = Disjunct()
6m.unit2.inout = Constraint(expr=exp(m.x[4] / 1.2) - 1 == m.x[3])
7m.unit2.no_unit1_flow1 = Constraint(expr=m.x[1] == 0)
8m.unit2.no_unit1_flow2 = Constraint(expr=m.x[2] == 0)
9m.use_unit1or2 = Disjunction(expr=[m.unit1, m.unit2])





The indicator variables for each disjunct \(Y_1\) and \(Y_2\) are automatically generated by Pyomo.GDP, accessible via m.unit1.indicator_var and m.unit2.indicator_var.




Compact syntax: more concise

For more advanced users, a compact syntax is also available below, taking advantage of the ability to declare disjuncts and constraints implicitly.
When the Disjunction object constructor is passed a list of lists, the outer list defines the disjuncts and the inner list defines the constraint expressions associated with the respective disjunct.

1m.use1or2 = Disjunction(expr=[
2    # First disjunct
3    [exp(m.x[2])-1 == m.x[1],
4     m.x[3] == 0, m.x[4] == 0],
5    # Second disjunct
6    [exp(m.x[4]/1.2)-1 == m.x[3],
7     m.x[1] == 0, m.x[2] == 0]])






Note

By default, Pyomo.GDP Disjunction objects enforce an implicit “exactly one” relationship among the selection of the disjuncts (generalization of exclusive-OR).
That is, exactly one of the Disjunct indicator variables should take a True value.
This can be seen as an implicit logical proposition, in our example, \(Y_1 \underline{\lor} Y_2\).








Logical Propositions

Pyomo.GDP also supports the use of logical propositions through the use of the BooleanVar and LogicalConstraint objects.
The BooleanVar object in Pyomo represents Boolean variables, analogous to Var for numeric variables.
BooleanVar can be indexed over a Pyomo Set, as below:

>>> m = ConcreteModel()
>>> m.my_set = RangeSet(4)
>>> m.Y = BooleanVar(m.my_set)
>>> m.Y.display()
Y : Size=4, Index=my_set
    Key : Value : Fixed : Stale
      1 :  None : False :  True
      2 :  None : False :  True
      3 :  None : False :  True
      4 :  None : False :  True





Using these Boolean variables, we can define LogicalConstraint objects, analogous to algebraic Constraint objects.

>>> m.p = LogicalConstraint(expr=m.Y[1].implies(land(m.Y[2], m.Y[3])).lor(m.Y[4]))
>>> m.p.pprint()
p : Size=1, Index=None, Active=True
    Key  : Body                          : Active
    None : (Y[1] --> Y[2] ∧ Y[3]) ∨ Y[4] :   True






Supported Logical Operators

Pyomo.GDP logical expression system supported operators and their usage are listed in the table below.



	Operator
	Operator
	Method
	Function




	Conjunction
	 
	Y[1].land(Y[2])
	land(Y[1],Y[2])


	Disjunction
	 
	Y[1].lor(Y[2])
	lor(Y[1],Y[2])


	Negation
	~Y[1]
	 
	lnot(Y[1])


	Exclusive OR
	 
	Y[1].xor(Y[2])
	xor(Y[1], Y[2])


	Implication
	 
	Y[1].implies(Y[2])
	implies(Y[1], Y[2])


	Equivalence
	 
	Y[1].equivalent_to(Y[2])
	equivalent(Y[1], Y[2])





In addition, the following constraint-programming-inspired operators are provided: exactly, atmost, and atleast.
These predicates enforce, respectively, that exactly, at most, or at least N of their BooleanVar arguments are True.

Usage:


	atleast(3, Y[1], Y[2], Y[3])

	atmost(3, Y)

	exactly(3, Y)




Note

We omit support for most infix operators, e.g. Y[1] >> Y[2], due to concerns about non-intuitive Python operator precedence.
That is Y[1] | Y[2] >> Y[3] would translate to \(Y_1 \lor (Y_2 \Rightarrow Y_3)\) rather than \((Y_1 \lor Y_2) \Rightarrow Y_3\)



>>> m = ConcreteModel()
>>> m.my_set = RangeSet(4)
>>> m.Y = BooleanVar(m.my_set)
>>> m.p = LogicalConstraint(expr=atleast(3, m.Y))
>>> TransformationFactory('core.logical_to_linear').apply_to(m)
>>> m.logic_to_linear.transformed_constraints.pprint()  # constraint auto-generated by transformation
transformed_constraints : Size=1, Index=logic_to_linear.transformed_constraints_index, Active=True
    Key : Lower : Body                                                          : Upper : Active
      1 :   3.0 : Y_asbinary[1] + Y_asbinary[2] + Y_asbinary[3] + Y_asbinary[4] :  +Inf :   True
>>> m.p.pprint()
p : Size=1, Index=None, Active=False
    Key  : Body                                 : Active
    None : atleast(3: [Y[1], Y[2], Y[3], Y[4]]) :  False





We elaborate on the logical_to_linear transformation on the next page.




Indexed logical constraints

Like Constraint objects for algebraic expressions, LogicalConstraint objects can be indexed.
An example of this usage may be found below for the expression:


\[Y_{i+1} \Rightarrow Y_{i}, \quad i \in \{1, 2, \dots, n-1\}\]

>>> m = ConcreteModel()
>>> n = 5
>>> m.I = RangeSet(n)
>>> m.Y = BooleanVar(m.I)

>>> @m.LogicalConstraint(m.I)
... def p(m, i):
...     return m.Y[i+1].implies(m.Y[i]) if i < n else Constraint.Skip

>>> m.p.pprint()
p : Size=4, Index=I, Active=True
    Key : Body          : Active
      1 : Y[2] --> Y[1] :   True
      2 : Y[3] --> Y[2] :   True
      3 : Y[4] --> Y[3] :   True
      4 : Y[5] --> Y[4] :   True








Integration with Disjunctions


Note

Historically, the indicator_var on Disjunct objects was
implemented as a binary Var.  Beginning in Pyomo 6.0, that has
been changed to the more mathematically correct BooleanVar, with
the associated binary variable available as
binary_indicator_var.



The logical expression system is designed to augment the previously
introduced Disjunct and Disjunction components.  Mathematically,
the disjunct indicator variable is Boolean, and can be used directly in
logical propositions.

Here, we demonstrate this capability with a toy example:


\[\begin{split}\min~&x\\
\text{s.t.}~&\left[\begin{gathered}Y_1\\x \geq 2\end{gathered}\right] \vee \left[\begin{gathered}Y_2\\x \geq 3\end{gathered}\right]\\
&\left[\begin{gathered}Y_3\\x \leq 8\end{gathered}\right] \vee \left[\begin{gathered}Y_4\\x = 2.5\end{gathered}\right] \\
&Y_1 \underline{\vee} Y_2\\
&Y_3 \underline{\vee} Y_4\\
&Y_1 \Rightarrow Y_4\end{split}\]

>>> m = ConcreteModel()
>>> m.s = RangeSet(4)
>>> m.ds = RangeSet(2)
>>> m.d = Disjunct(m.s)
>>> m.djn = Disjunction(m.ds)
>>> m.djn[1] = [m.d[1], m.d[2]]
>>> m.djn[2] = [m.d[3], m.d[4]]
>>> m.x = Var(bounds=(-2, 10))
>>> m.d[1].c = Constraint(expr=m.x >= 2)
>>> m.d[2].c = Constraint(expr=m.x >= 3)
>>> m.d[3].c = Constraint(expr=m.x <= 8)
>>> m.d[4].c = Constraint(expr=m.x == 2.5)
>>> m.o = Objective(expr=m.x)

>>> # Add the logical proposition
>>> m.p = LogicalConstraint(
...    expr=m.d[1].indicator_var.implies(m.d[4].indicator_var))
>>> # Note: the implicit XOR enforced by m.djn[1] and m.djn[2] still apply

>>> # Apply the Big-M reformulation: It will convert the logical
>>> # propositions to algebraic expressions.
>>> TransformationFactory('gdp.bigm').apply_to(m)

>>> # Before solve, Boolean vars have no value
>>> Reference(m.d[:].indicator_var).display()
IndexedBooleanVar : Size=4, Index=s, ReferenceTo=d[:].indicator_var
    Key : Value : Fixed : Stale
      1 :  None : False :  True
      2 :  None : False :  True
      3 :  None : False :  True
      4 :  None : False :  True

>>> # Solve the reformulated model
>>> run_data = SolverFactory('glpk').solve(m)
>>> Reference(m.d[:].indicator_var).display()
IndexedBooleanVar : Size=4, Index=s, ReferenceTo=d[:].indicator_var
    Key : Value : Fixed : Stale
      1 :  True : False : False
      2 : False : False : False
      3 : False : False : False
      4 :  True : False : False










Advanced LogicalConstraint Examples

Support for complex nested expressions is a key benefit of the logical expression system.
Below are examples of expressions that we support, and with some, an explanation of their implementation.


Composition of standard operators


\[Y_1 \vee Y_2 \implies Y_3 \wedge \neg Y_4 \wedge (Y_5 \vee Y_6)\]

m.p = LogicalConstraint(expr=lor(m.Y[1], m.Y[2]).implies(
    land(m.Y[3], ~m.Y[4], m.Y[5].lor(m.Y[6])))
)








Expressions within CP-type operators


\[\text{atleast}(3, Y_1, Y_2 \vee Y_3, Y_4 \Rightarrow Y_5, Y_6)\]

Here, augmented variables may be automatically added to the model as follows:


\[\begin{split}\text{atleast}(3, &Y_1, Y_A, Y_B, Y_6)\\
&Y_A \Leftrightarrow Y_2 \vee Y_3\\
&Y_B \Leftrightarrow (Y_4 \Rightarrow Y_5)\end{split}\]

m.p = LogicalConstraint(
    expr=atleast(3, m.Y[1], Or(m.Y[2], m.Y[3]), m.Y[4].implies(m.Y[5]), m.Y[6]))








Nested CP-style operators


\[\text{atleast}(2, Y_1, \text{exactly}(2, Y_2, Y_3, Y_4), Y_5, Y_6)\]

Here, we again need to add augmented variables:


\[\begin{split}\text{atleast}(2, Y_1, Y_A, Y_5, Y_6)\\
Y_A \Leftrightarrow \text{exactly}(2, Y_2, Y_3, Y_4)\end{split}\]

However, we also need to further interpret the second statement as a disjunction:


\begin{gather*}
\text{atleast}(2, Y_1, Y_A, Y_5, Y_6)\\
\left[\begin{gathered}Y_A\\\text{exactly}(2, Y_2, Y_3, Y_4)\end{gathered}\right]
\vee
\left[\begin{gathered}\neg Y_A\\
\left[\begin{gathered}Y_B\\\text{atleast}(3, Y_2, Y_3, Y_4)\end{gathered}\right] \vee \left[\begin{gathered}Y_C\\\text{atmost}(1, Y_2, Y_3, Y_4)\end{gathered}\right]
\end{gathered}\right]
\end{gather*}
or equivalently,


\begin{gather*}
\text{atleast}(2, Y_1, Y_A, Y_5, Y_6)\\
\text{exactly}(1, Y_A, Y_B, Y_C)\\
\left[\begin{gathered}Y_A\\\text{exactly}(2, Y_2, Y_3, Y_4)\end{gathered}\right]
\vee
\left[\begin{gathered}Y_B\\\text{atleast}(3, Y_2, Y_3, Y_4)\end{gathered}\right] \vee \left[\begin{gathered}Y_C\\\text{atmost}(1, Y_2, Y_3, Y_4)\end{gathered}\right]
\end{gather*}
m.p = LogicalConstraint(
    expr=atleast(2, m.Y[1], exactly(2, m.Y[2], m.Y[3], m.Y[4]), m.Y[5], m.Y[6]))





In the logical_to_linear transformation, we automatically convert these special disjunctions to linear form using a Big M reformulation.






Additional Examples

The following models all work and are equivalent for \(\left[x = 0\right] \underline{\lor} \left[y = 0\right]\):

Option 1: Rule-based construction

>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> # Two conditions
>>> def _d(disjunct, flag):
...    model = disjunct.model()
...    if flag:
...       # x == 0
...       disjunct.c = Constraint(expr=model.x == 0)
...    else:
...       # y == 0
...       disjunct.c = Constraint(expr=model.y == 0)
>>> model.d = Disjunct([0,1], rule=_d)

>>> # Define the disjunction
>>> def _c(model):
...    return [model.d[0], model.d[1]]
>>> model.c = Disjunction(rule=_c)

Option 2: Explicit disjuncts

>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> model.fix_x = Disjunct()
>>> model.fix_x.c = Constraint(expr=model.x == 0)

>>> model.fix_y = Disjunct()
>>> model.fix_y.c = Constraint(expr=model.y == 0)

>>> model.c = Disjunction(expr=[model.fix_x, model.fix_y])

Option 3: Implicit disjuncts (disjunction rule returns a list of
expressions or a list of lists of expressions)

>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> model.c = Disjunction(expr=[model.x == 0, model.y == 0])
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Solving Logic-based Models with Pyomo.GDP


Flexible Solution Suite

Once a model is formulated as a GDP model, a range of solution
strategies are available to manipulate and solve it.

The traditional approach is reformulation to a MI(N)LP, but various
other techniques are possible, including direct solution via the
GDPopt solver.  Below, we describe some of
these capabilities.




Reformulations


Logical constraints


Note

Historically it was required to convert logical propositions to
algebraic form prior to use of the MI(N)LP reformulations and the
GDPopt solver. However, this is mathematically incorrect since these
reformulations convert logical formulations to algebraic formulations.
It is therefore recommended to use both the MI(N)LP reformulations
and GDPopt directly to transform or solve GDPs that include logical
propositions.



The following transforms logical propositions on the model to algebraic form:

TransformationFactory('core.logical_to_linear').apply_to(model)





The transformation creates a constraint list with a unique name starting
with logic_to_linear, within which the algebraic equivalents of the
logical constraints are placed.  If not already associated with a binary
variable, each BooleanVar object will receive a generated binary
counterpart.  These associated binary variables may be accessed via the
get_associated_binary() method.

m.Y[1].get_associated_binary()





Additional augmented variables and their corresponding constraints may
also be created, as described in Advanced LogicalConstraint Examples.

Following solution of the GDP model, values of the Boolean variables may be updated from their algebraic binary counterparts using the update_boolean_vars_from_binary() function.


	
pyomo.core.plugins.transform.logical_to_linear.update_boolean_vars_from_binary(model, integer_tolerance=1e-05)

	Updates all Boolean variables based on the value of their linked binary
variables.








Reformulation to MI(N)LP

To use standard commercial solvers, you must convert the disjunctive
model to a standard MILP/MINLP model.  The two classical strategies for
doing so are the (included) Big-M and Hull reformulations.


Big-M (BM) Reformulation

The Big-M reformulation[5] results in a smaller transformed model, avoiding the need to add extra variables; however, it yields a looser continuous relaxation.
By default, the BM transformation will estimate reasonably tight M values for you if variables are bounded.
For nonlinear models where finite expression bounds may be inferred from variable bounds, the BM transformation may also be able to automatically compute M values for you.
For all other models, you will need to provide the M values through a “BigM” Suffix, or through the bigM argument to the transformation.
We will raise a GDP_Error for missing M values.
We implement the multiple-parameter Big-M (MBM) approach described in literature[4].

To apply the BM reformulation within a python script, use:

TransformationFactory('gdp.bigm').apply_to(model)





From the Pyomo command line, include the --transform pyomo.gdp.bigm option.




Hull Reformulation (HR)

The Hull Reformulation requires a lifting into a higher-dimensional space and consequently introduces disaggregated variables and their corresponding constraints.


Note


	All variables that appear in disjuncts need upper and lower bounds.

	The hull reformulation is an exact reformulation at the solution
points even for nonconvex GDP models, but the resulting MINLP will
also be nonconvex.





To apply the Hull reformulation within a python script, use:

TransformationFactory('gdp.hull').apply_to(model)





From the Pyomo command line, include the --transform pyomo.gdp.hull option.




Hybrid BM/HR Reformulation

An experimental (for now) implementation of the cutting plane approach described in literature[6] is provided for linear GDP models.
The transformation augments the BM reformulation by a set of cutting planes generated from the HR model by solving separation problems.
This gives a model that is not as large as the HR, but with a stronger continuous relaxation than the BM.

This transformation is accessible via:

TransformationFactory('gdp.cuttingplane').apply_to(model)












Direct GDP solvers

Pyomo includes the contributed GDPopt solver, which can directly solve
GDP models.  Its usage is described within the contributed
packages documentation.
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MPEC

pyomo.mpec supports modeling complementarity conditions and
optimization problems with equilibrium constraints.





            

          

      

      

    

  

    
      
          
            
  
Stochastic Programming in Pyomo

There are two extensions for modeling and solving Stochastic Programs in
Pyomo.  Both are currently distributed as independent Python packages.
PySP was the original extension (and up through Pyomo 5.7.3 was
distributed as part of Pyomo).  You can find the documentation here:


https://pysp.readthedocs.io


In 2020, the PySP developers released the mpi-sppy package, which
reimplemented much of the functionality from PySP in a new scalable
framework built on top of MPI and the mpi4py package.  Future
development of stochastic programming capabilities is occurring in
mpi-sppy.  The documentation is available here:


https://mpi-sppy.readthedocs.io






            

          

      

      

    

  

    
      
          
            
  
Pyomo Network

Pyomo Network is a package that allows users to easily represent their model
as a connected network of units. Units are blocks that contain ports, which
contain variables, that are connected to other ports via arcs. The connection
of two ports to each other via an arc typically represents a set of constraints
equating each member of each port to each other, however there exist other
connection rules as well, in addition to support for custom rules. Pyomo
Network also includes a model transformation that will automatically expand
the arcs and generate the appropriate constraints to produce an algebraic
model that a solver can handle. Furthermore, the package also introduces a
generic sequential decomposition tool that can leverage the modeling
components to decompose a model and compute each unit in the model in a
logically ordered sequence.


Modeling Components

Pyomo Network introduces two new modeling components to Pyomo:



	pyomo.network.Port
	A collection of variables, which may be connected to other ports


	pyomo.network.Arc
	Component used for connecting the members of two Port objects






Port


	
class pyomo.network.Port(*args, **kwds)

	A collection of variables, which may be connected to other ports

The idea behind Ports is to create a bundle of variables that can
be manipulated together by connecting them to other ports via Arcs.
A preprocess transformation will look for Arcs and expand them into
a series of constraints that involve the original variables contained
within the Port. The way these constraints are built can be specified
for each Port member when adding members to the port, but by default
the Port members will be equated to each other. Additionally, other
objects such as expressions can be added to Ports as long as they, or
their indexed members, can be manipulated within constraint expressions.





	Parameters:	
	rule (function) – A function that returns a dict of (name: var) pairs to be
initially added to the Port. Instead of var it could also be a
tuples of (var, rule). Or it could return an iterable of either
vars or tuples of (var, rule) for implied names.

	initialize – Follows same specifications as rule’s return value, gets
initially added to the Port

	implicit – An iterable of names to be initially added to the Port as
implicit vars

	extends (Port) – A Port whose vars will be added to this Port upon construction










	
static Equality(port, name, index_set)

	Arc Expansion procedure to generate simple equality constraints






	
static Extensive(port, name, index_set, include_splitfrac=None, write_var_sum=True)

	Arc Expansion procedure for extensive variable properties

This procedure is the rule to use when variable quantities should
be conserved; that is, split for outlets and combined for inlets.

This will first go through every destination of the port (i.e.,
arcs whose source is this Port) and create a new variable on the
arc’s expanded block of the same index as the current variable
being processed to store the amount of the variable that flows
over the arc.  For ports that have multiple outgoing arcs, this
procedure will create a single splitfrac variable on the arc’s
expanded block as well. Then it will generate constraints for
the new variable that relate it to the port member variable
using the split fraction, ensuring that all extensive variables
in the Port are split using the same ratio.  The generation of
the split fraction variable and constraint can be suppressed by
setting the include_splitfrac argument to False.

Once all arc-specific variables are created, this
procedure will create the “balancing constraint” that ensures
that the sum of all the new variables equals the original port
member variable. This constraint can be suppressed by setting
the write_var_sum argument to False; in which case, a single
constraint will be written that states the sum of the split
fractions equals 1.

Finally, this procedure will go through every source for this
port and create a new arc variable (unless it already exists),
before generating the balancing constraint that ensures the sum
of all the incoming new arc variables equals the original port
variable.

Model simplifications:


If the port has a 1-to-1 connection on either side, it will not
create the new variables and instead write a simple equality
constraint for that side.

If the outlet side is not 1-to-1 but there is only one outlet,
it will not create a splitfrac variable or write the split
constraint, but it will still write the outsum constraint
which will be a simple equality.

If the port only contains a single Extensive variable, the
splitfrac variables and the splitting constraints will
be skipped since they will be unnecessary. However, they
can be still be included by passing include_splitfrac=True.





Note

If split fractions are skipped, the write_var_sum=False
option is not allowed.












	
class pyomo.network.port._PortData(component=None)

	This class defines the data for a single Port


	
vars

	A dictionary mapping added names to variables





	Type:	dict










	
__getattr__(name)

	Returns self.vars[name] if it exists






	
add(var, name=None, rule=None, **kwds)

	Add var to this Port, casting it to a Pyomo numeric if necessary





	Parameters:	
	var – A variable or some NumericValue like an expression

	name (str) – Name to associate with this member of the Port

	rule (function) – Function implementing the desired expansion procedure
for this member. Port.Equality by default, other
options include Port.Extensive. Customs are allowed.

	kwds – Keyword arguments that will be passed to rule














	
arcs(active=None)

	A list of Arcs in which this Port is a member






	
dests(active=None)

	A list of Arcs in which this Port is a source






	
fix()

	Fix all variables in the port at their current values.
For expressions, fix every variable in the expression.






	
free()

	Unfix all variables in the port.
For expressions, unfix every variable in the expression.






	
get_split_fraction(arc)

	Returns a tuple (val, fix) for the split fraction of this arc that
was set via set_split_fraction if it exists, and otherwise None.






	
is_binary()

	Return True if all variables in the Port are binary






	
is_continuous()

	Return True if all variables in the Port are continuous






	
is_equality(name)

	Return True if the rule for this port member is Port.Equality






	
is_extensive(name)

	Return True if the rule for this port member is Port.Extensive






	
is_fixed()

	Return True if all vars/expressions in the Port are fixed






	
is_integer()

	Return True if all variables in the Port are integer






	
is_potentially_variable()

	Return True as ports may (should!) contain variables






	
iter_vars(expr_vars=False, fixed=None, names=False)

	Iterate through every member of the port, going through
the indices of indexed members.





	Parameters:	
	expr_vars (bool) – If True, call identify_variables on expression type members

	fixed (bool) – Only include variables/expressions with this type of fixed

	names (bool) – If True, yield (name, index, var/expr) tuples














	
polynomial_degree()

	Returns the maximum polynomial degree of all port members






	
remove(name)

	Remove this member from the port






	
rule_for(name)

	Return the rule associated with the given port member






	
set_split_fraction(arc, val, fix=True)

	Set the split fraction value to be used for an arc during
arc expansion when using Port.Extensive.






	
sources(active=None)

	A list of Arcs in which this Port is a destination






	
unfix()

	Unfix all variables in the port.
For expressions, unfix every variable in the expression.









The following code snippet shows examples of declaring and using a
Port component on a
concrete Pyomo model:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b']) # can be indexed
>>> m.z = Var()
>>> m.e = 5 * m.z # you can add Pyomo expressions too
>>> m.w = Var()

>>> m.p = Port()
>>> m.p.add(m.x) # implicitly name the port member "x"
>>> m.p.add(m.y, "foo") # name the member "foo"
>>> m.p.add(m.e, rule=Port.Extensive) # specify a rule
>>> m.p.add(m.w, rule=Port.Extensive, write_var_sum=False) # keyword arg








Arc


	
class pyomo.network.Arc(*args, **kwds)

	Component used for connecting the members of two Port objects





	Parameters:	
	source (Port) – A single Port for a directed arc. Aliases to src.

	destination (Port) – A single`Port for a directed arc. Aliases to dest.

	ports – A two-member list or tuple of single Ports for an undirected arc

	directed (bool) – Set True for directed. Use along with rule to be able to
return an implied (source, destination) tuple.

	rule (function) – A function that returns either a dictionary of the arc arguments
or a two-member iterable of ports














	
class pyomo.network.arc._ArcData(component=None, **kwds)

	This class defines the data for a single Arc


	
source

	The source Port when directed, else None. Aliases to src.





	Type:	Port










	
destination

	The destination Port when directed, else None. Aliases to dest.





	Type:	Port










	
ports

	A tuple containing both ports. If directed, this is in the
order (source, destination).





	Type:	tuple










	
directed

	True if directed, False if not





	Type:	bool










	
expanded_block

	A reference to the block on which expanded constraints for this
arc were placed





	Type:	Block










	
__getattr__(name)

	Returns self.expanded_block.name if it exists






	
set_value(vals)

	Set the port attributes on this arc









The following code snippet shows examples of declaring and using an
Arc component on a
concrete Pyomo model:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b'])
>>> m.u = Var()
>>> m.v = Var(['a', 'b'])
>>> m.w = Var()
>>> m.z = Var(['a', 'b']) # indexes need to match

>>> m.p = Port(initialize=[m.x, m.y])
>>> m.q = Port(initialize={"x": m.u, "y": m.v})
>>> m.r = Port(initialize={"x": m.w, "y": m.z}) # names need to match
>>> m.a = Arc(source=m.p, destination=m.q) # directed
>>> m.b = Arc(ports=(m.p, m.q)) # undirected
>>> m.c = Arc(ports=(m.p, m.q), directed=True) # directed
>>> m.d = Arc(src=m.p, dest=m.q) # aliases work
>>> m.e = Arc(source=m.r, dest=m.p) # ports can have both in and out










Arc Expansion Transformation

The examples above show how to declare and instantiate a
Port and an
Arc. These two components form the basis of
the higher level representation of a connected network with sets of related
variable quantities. Once a network model has been constructed, Pyomo Network
implements a transformation that will expand all (active) arcs on the model
and automatically generate the appropriate constraints. The constraints
created for each port member will be indexed by the same indexing set as
the port member itself.

During transformation, a new block is created on the model for each arc
(located on the arc’s parent block), which serves to contain all of the
auto generated constraints for that arc. At the end of the
transformation, a reference is created on the arc that points to this
new block, available via the arc property arc.expanded_block.

The constraints produced by this transformation depend on the rule assigned
for each port member and can be different between members on the same port.
For example, you can have two different members on a port where one member’s
rule is Port.Equality and the other
member’s rule is Port.Extensive.

Port.Equality is the default rule
for port members. This rule simply generates equality constraints on the
expanded block between the source port’s member and the destination port’s
member. Another implemented expansion method is
Port.Extensive, which essentially
represents implied splitting and mixing of certain variable quantities.
Users can refer to the documentation of the static method itself for more
details on how this implicit splitting and mixing is implemented.
Additionally, should users desire, the expansion API supports custom rules
that can be implemented to generate whatever is needed for special cases.

The following code demonstrates how to call the transformation to expand
the arcs on a model:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b'])
>>> m.u = Var()
>>> m.v = Var(['a', 'b'])

>>> m.p = Port(initialize=[m.x, (m.y, Port.Extensive)]) # rules must match
>>> m.q = Port(initialize={"x": m.u, "y": (m.v, Port.Extensive)})
>>> m.a = Arc(source=m.p, destination=m.q)

>>> TransformationFactory("network.expand_arcs").apply_to(m)








Sequential Decomposition

Pyomo Network implements a generic
SequentialDecomposition
tool that can be used to compute each unit in a network model in a logically
ordered sequence.

The sequential decomposition procedure is commenced via the
run method.


Creating a Graph

To begin this procedure, the Pyomo Network model is first utilized to create
a networkx MultiDiGraph by adding edges to the graph for every arc on the
model, where the nodes of the graph are the parent blocks of the source and
destination ports. This is done via the
create_graph
method, which requires all arcs on the model to be both directed and already
expanded. The MultiDiGraph class of networkx supports both direccted edges
as well as having multiple edges between the same two nodes, so users can
feel free to connect as many ports as desired between the same two units.




Computation Order

The order of computation is then determined by treating the resulting graph
as a tree, starting at the roots of the tree, and making sure by the time
each node is reached, all of its predecessors have already been computed.
This is implemented through the calculation_order and
tree_order
methods. Before this, however, the procedure will first select a set of tear
edges, if necessary, such that every loop in the graph is torn, while
minimizing both the number of times any single loop is torn as well as the
total number of tears.




Tear Selection

A set of tear edges can be selected in one of two ways. By default, a Pyomo
MIP model is created and optimized resulting in an optimal set of tear edges.
The implementation of this MIP model is based on a set of binary “torn”
variables for every edge in the graph, and constraints on every loop in the
graph that dictate that there must be at least one tear on the loop. Then
there are two objectives (represented by a doubly weighted objective). The
primary objective is to minimize the number of times any single loop is torn,
and then secondary to that is to minimize the total number of tears. This
process is implemented in the select_tear_mip method, which uses
the model returned from the select_tear_mip_model method.

Alternatively, there is the select_tear_heuristic method. This
uses a heuristic procedure that walks back and forth on the graph to find
every optimal tear set, and returns each equally optimal tear set it finds.
This method is much slower than the MIP method on larger models, but it
maintains some use in the fact that it returns every possible optimal tear set.

A custom tear set can be assigned before calling the
run method. This is
useful so users can know what their tear set will be and thus what arcs will
require guesses for uninitialized values. See the
set_tear_set
method for details.




Running the Sequential Decomposition Procedure

After all of this computational order preparation, the sequential
decomposition procedure will then run through the graph in the order it
has determined. Thus, the function that was passed to the
run method will be
called on every unit in sequence. This function can perform any arbitrary
operations the user desires. The only thing that
SequentialDecomposition
expects from the function is that after returning from it, every variable
on every outgoing port of the unit will be specified (i.e. it will have a
set current value). Furthermore, the procedure guarantees to the user that
for every unit, before the function is called, every variable on every
incoming port of the unit will be fixed.

In between computing each of these units, port member values are passed
across existing arcs involving the unit currently being computed. This means
that after computing a unit, the expanded constraints from each arc coming
out of this unit will be satisfied, and the values on the respective
destination ports will be fixed at these new values. While running the
computational order, values are not passed across tear edges, as tear edges
represent locations in loops to stop computations (during iterations). This
process continues until all units in the network have been computed. This
concludes the “first pass run” of the network.




Guesses and Fixing Variables

When passing values across arcs while running the computational order,
values at the destinations of each of these arcs will be fixed at the
appropriate values. This is important to the fact that the procedure
guarantees every inlet variable will be fixed before calling the function.
However, since values are not passed across torn arcs, there is a need for
user-supplied guesses for those values. See the set_guesses_for method for details
on how to supply these values.

In addition to passing dictionaries of guesses for certain ports, users can
also assign current values to the variables themselves and the procedure
will pick these up and fix the variables in place. Alternatively, users can
utilize the default_guess option to specify a value to use as a default
guess for all free variables if they have no guess or current value. If a
free variable has no guess or current value and there is no default guess
option, then an error will be raised.

Similarly, if the procedure attempts to pass a value to a destination port
member but that port member is already fixed and its fixed value is different
from what is trying to be passed to it (by a tolerance specified by the
almost_equal_tol option), then an error will be raised. Lastly, if there
is more than one free variable in a constraint while trying to pass values
across an arc, an error will be raised asking the user to fix more variables
by the time values are passed across said arc.




Tear Convergence

After completing the first pass run of the network, the sequential
decomposition procedure will proceed to converge all tear edges in the
network (unless the user specifies not to, or if there are no tears).
This process occurs separately for every strongly connected component (SCC)
in the graph, and the SCCs are computed in a logical order such that each
SCC is computed before other SCCs downstream of it (much like
tree_order).

There are two implemented methods for converging tear edges: direct
substitution and Wegstein acceleration. Both of these will iteratively run
the computation order until every value in every tear arc has converged to
within the specified tolerance. See the
SequentialDecomposition
parameter documentation for details on what can be controlled about this
procedure.

The following code demonstrates basic usage of the
SequentialDecomposition
class:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.unit1 = Block()
>>> m.unit1.x = Var()
>>> m.unit1.y = Var(['a', 'b'])
>>> m.unit2 = Block()
>>> m.unit2.x = Var()
>>> m.unit2.y = Var(['a', 'b'])
>>> m.unit1.port = Port(initialize=[m.unit1.x, (m.unit1.y, Port.Extensive)])
>>> m.unit2.port = Port(initialize=[m.unit2.x, (m.unit2.y, Port.Extensive)])
>>> m.a = Arc(source=m.unit1.port, destination=m.unit2.port)
>>> TransformationFactory("network.expand_arcs").apply_to(m)

>>> m.unit1.x.fix(10)
>>> m.unit1.y['a'].fix(15)
>>> m.unit1.y['b'].fix(20)

>>> seq = SequentialDecomposition(tol=1.0E-3) # options can go to init
>>> seq.options.select_tear_method = "heuristic" # or set them like so
>>> # seq.set_tear_set([...]) # assign a custom tear set
>>> # seq.set_guesses_for(m.unit.inlet, {...}) # choose guesses
>>> def initialize(b):
...     # b.initialize()
...     pass
...
>>> seq.run(m, initialize)






	
class pyomo.network.SequentialDecomposition(**kwds)

	A sequential decomposition tool for Pyomo Network models

The following parameters can be set upon construction of this class
or via the options attribute.





	Parameters:	
	graph (MultiDiGraph) – A networkx graph representing the model to be solved.

default=None (will compute it)



	tear_set (list) – A list of indexes representing edges to be torn. Can be set with
a list of edge tuples via set_tear_set.

default=None (will compute it)



	select_tear_method (str) – Which method to use to select a tear set, either “mip” or
“heuristic”.

default=”mip”



	run_first_pass (bool) – Boolean indicating whether or not to run through network before
running the tear stream convergence procedure.

default=True



	solve_tears (bool) – Boolean indicating whether or not to run iterations to converge
tear streams.

default=True



	guesses (ComponentMap) – ComponentMap of guesses to use for first pass
(see set_guesses_for method).

default=ComponentMap()



	default_guess (float) – Value to use if a free variable has no guess.

default=None



	almost_equal_tol (float) – Difference below which numbers are considered equal when checking
port value agreement.

default=1.0E-8



	log_info (bool) – Set logger level to INFO during run.

default=False



	tear_method (str) – Method to use for converging tear streams, either “Direct” or
“Wegstein”.

default=”Direct”



	iterLim (int) – Limit on the number of tear iterations.

default=40



	tol (float) – Tolerance at which to stop tear iterations.

default=1.0E-5



	tol_type (str) – Type of tolerance value, either “abs” (absolute) or
“rel” (relative to current value).

default=”abs”



	report_diffs (bool) – Report the matrix of differences across tear streams for
every iteration.

default=False



	accel_min (float) – Min value for Wegstein acceleration factor.

default=-5



	accel_max (float) – Max value for Wegstein acceleration factor.

default=0



	tear_solver (str) – Name of solver to use for select_tear_mip.

default=”cplex”



	tear_solver_io (str) – Solver IO keyword for the above solver.

default=None



	tear_solver_options (dict) – Keyword options to pass to solve method.

default={}












	
calculation_order(G, roots=None, nodes=None)

	Rely on tree_order to return a calculation order of nodes





	Parameters:	
	roots – List of nodes to consider as tree roots,
if None then the actual roots are used

	nodes – Subset of nodes to consider in the tree,
if None then all nodes are used














	
create_graph(model)

	Returns a networkx MultiDiGraph of a Pyomo network model

The nodes are units and the edges follow Pyomo Arc objects. Nodes
that get added to the graph are determined by the parent blocks
of the source and destination Ports of every Arc in the model.
Edges are added for each Arc using the direction specified by
source and destination. All Arcs in the model will be used whether
or not they are active (since this needs to be done after expansion),
and they all need to be directed.






	
indexes_to_arcs(G, lst)

	Converts a list of edge indexes to the corresponding Arcs





	Parameters:	
	G – A networkx graph corresponding to lst

	lst – A list of edge indexes to convert to tuples






	Returns:	A list of arcs












	
run(model, function)

	Compute a Pyomo Network model using sequential decomposition





	Parameters:	
	model – A Pyomo model

	function – A function to be called on each block/node in the network














	
select_tear_heuristic(G)

	This finds optimal sets of tear edges based on two criteria.
The primary objective is to minimize the maximum number of
times any cycle is broken. The seconday criteria is to
minimize the number of tears.

This function uses a branch and bound type approach.





	Returns:	
	tsets – List of lists of tear sets. All the tear sets returned
are equally good. There are often a very large number
of equally good tear sets.

	upperbound_loop – The max number of times any single loop is torn

	upperbound_total – The total number of loops









Improvemnts for the future

I think I can imporve the efficency of this, but it is good
enough for now. Here are some ideas for improvement:


1. Reduce the number of redundant solutions. It is possible
to find tears sets [1,2] and [2,1]. I eliminate
redundent solutions from the results, but they can
occur and it reduces efficency.

2. Look at strongly connected components instead of whole
graph. This would cut back on the size of graph we are
looking at. The flowsheets are rarely one strongly
conneted component.

3. When you add an edge to a tear set you could reduce the
size of the problem in the branch by only looking at
strongly connected components with that edge removed.

4. This returns all equally good optimal tear sets. That
may not really be necessary. For very large flowsheets,
there could be an extremely large number of optimial tear
edge sets.









	
select_tear_mip(G, solver, solver_io=None, solver_options={})

	This finds optimal sets of tear edges based on two criteria.
The primary objective is to minimize the maximum number of
times any cycle is broken. The seconday criteria is to
minimize the number of tears.

This function creates a MIP problem in Pyomo with a doubly
weighted objective and solves it with the solver arguments.






	
select_tear_mip_model(G)

	Generate a model for selecting tears from the given graph





	Returns:	
	model

	bin_list – A list of the binary variables representing each edge,
indexed by the edge index of the graph














	
set_guesses_for(port, guesses)

	Set the guesses for the given port

These guesses will be checked for all free variables that are
encountered during the first pass run. If a free variable has
no guess, its current value will be used. If its current value
is None, the default_guess option will be used. If that is None,
an error will be raised.

All port variables that are downstream of a non-tear edge will
already be fixed. If there is a guess for a fixed variable, it
will be silently ignored.

The guesses should be a dict that maps the following:


Port Member Name -> Value


Or, for indexed members, multiple dicts that map:


Port Member Name -> Index -> Value


For extensive members, “Value” must be a list of tuples of the
form (arc, value) to guess a value for the expanded variable
of the specified arc. However, if the arc connecting this port
is a 1-to-1 arc with its peer, then there will be no expanded
variable for the single arc, so a regular “Value” should be
provided.

This dict cannot be used to pass guesses for variables within
expression type members. Guesses for those variables must be
assigned to the variable’s current value before calling run.

While this method makes things more convenient, all it does is:


self.options[“guesses”][port] = guesses







	
set_tear_set(tset)

	Set a custom tear set to be used when running the decomposition

The procedure will use this custom tear set instead of finding
its own, thus it can save some time. Additionally, this will be
useful for knowing which edges will need guesses.





	Parameters:	tset – A list of Arcs representing edges to tear





While this method makes things more convenient, all it does is:


self.options[“tear_set”] = tset







	
tear_set_arcs(G, method='mip', **kwds)

	Call the specified tear selection method and return a list
of arcs representing the selected tear edges.

The kwds will be passed to the method.






	
tree_order(adj, adjR, roots=None)

	This function determines the ordering of nodes in a directed
tree. This is a generic function that can operate on any
given tree represented by the adjaceny and reverse
adjacency lists. If the adjacency list does not represent
a tree the results are not valid.

In the returned order, it is sometimes possible for more
than one node to be caclulated at once. So a list of lists
is returned by this function. These represent a bredth
first search order of the tree. Following the order, all
nodes that lead to a particular node will be visited
before it.





	Parameters:	
	adj – An adjeceny list for a directed tree. This uses
generic integer node indexes, not node names from the
graph itself. This allows this to be used on sub-graphs
and graps of components more easily.

	adjR – The reverse adjacency list coresponing to adj

	roots – List of node indexes to start from. These do not
need to be the root nodes of the tree, in some cases
like when a node changes the changes may only affect
nodes reachable in the tree from the changed node, in
the case that roots are supplied not all the nodes in
the tree may appear in the ordering. If no roots are
supplied, the roots of the tree are used.

























            

          

      

      

    

  

    
      
          
            
  
Pyomo Tutorial Examples

Additional Pyomo tutorials and examples can be found at the following links:

Prof. Jeffrey Kantor’s Pyomo Cookbook [https://jckantor.github.io/ND-Pyomo-Cookbook/]

Pyomo Gallery [https://github.com/Pyomo/PyomoGallery]





            

          

      

      

    

  

    
      
          
            
  
Debugging Pyomo Models



	Interrogating Pyomo Models

	FAQ

	Getting Help









            

          

      

      

    

  

    
      
          
            
  
Interrogating Pyomo Models

Show solver output by adding the tee=True option when calling the
solve function

>>> SolverFactory('glpk').solve(model, tee=True) 





You can use the pprint function to display the model or individual
model components

>>> model.pprint() 
>>> model.x.pprint() 









            

          

      

      

    

  

    
      
          
            
  
FAQ


	Solver not found



Solvers are not distributed with Pyomo and must be installed
separately by the user. In general, the solver executable must be accessible using a terminal command. For example, ipopt can only be used as a solver if
the command

$ ipopt





invokes the solver. For example

$ ipopt -?
usage: ipopt [options] stub [-AMPL] [<assignment> ...]

Options:
     --  {end of options}
     -=  {show name= possibilities}
     -?  {show usage}
     -bf {read boundsfile f}
     -e  {suppress echoing of assignments}
     -of {write .sol file to file f}
     -s  {write .sol file (without -AMPL)}
     -v  {just show version}









            

          

      

      

    

  

    
      
          
            
  
Getting Help

See the Pyomo Forum for online discussions of Pyomo or to ask a question:


	http://groups.google.com/group/pyomo-forum/



Ask a question on StackOverflow using the #pyomo tag:


	https://stackoverflow.com/questions/ask?tags=pyomo







            

          

      

      

    

  

    
      
          
            
  
Advanced Topics



	Persistent Solvers

	Units Handling in Pyomo

	LinearExpression









            

          

      

      

    

  

    
      
          
            
  
Persistent Solvers

The purpose of the persistent solver interfaces is to efficiently
notify the solver of incremental changes to a Pyomo model. The
persistent solver interfaces create and store model instances from the
Python API for the corresponding solver. For example, the
GurobiPersistent
class maintaints a pointer to a gurobipy Model object. Thus, we can
make small changes to the model and notify the solver rather than
recreating the entire model using the solver Python API (or rewriting
an entire model file - e.g., an lp file) every time the model is
solved.


Warning

Users are responsible for notifying persistent solver
interfaces when changes to a model are made!




Using Persistent Solvers

The first step in using a persistent solver is to create a Pyomo model
as usual.

>>> import pyomo.environ as pe
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)





You can create an instance of a persistent solver through the SolverFactory.

>>> opt = pe.SolverFactory('gurobi_persistent')  





This returns an instance of GurobiPersistent. Now we need
to tell the solver about our model.

>>> opt.set_instance(m)  





This will create a gurobipy Model object and include the appropriate
variables and constraints. We can now solve the model.

>>> results = opt.solve()  





We can also add or remove variables, constraints, blocks, and
objectives. For example,

>>> m.c2 = pe.Constraint(expr=m.y >= m.x)  
>>> opt.add_constraint(m.c2)  





This tells the solver to add one new constraint but otherwise leave
the model unchanged. We can now resolve the model.

>>> results = opt.solve()  





To remove a component, simply call the corresponding remove method.

>>> opt.remove_constraint(m.c2)  
>>> del m.c2  
>>> results = opt.solve()  





If a pyomo component is replaced with another component with the same
name, the first component must be removed from the solver. Otherwise,
the solver will have multiple components. For example, the following
code will run without error, but the solver will have an extra
constraint. The solver will have both y >= -2*x + 5 and y <= x, which
is not what was intended!

>>> m = pe.ConcreteModel()  
>>> m.x = pe.Var()  
>>> m.y = pe.Var()  
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)  
>>> opt = pe.SolverFactory('gurobi_persistent')  
>>> opt.set_instance(m)  
>>> # WRONG:
>>> del m.c  
>>> m.c = pe.Constraint(expr=m.y <= m.x)  
>>> opt.add_constraint(m.c)  





The correct way to do this is:

>>> m = pe.ConcreteModel()  
>>> m.x = pe.Var()  
>>> m.y = pe.Var()  
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)  
>>> opt = pe.SolverFactory('gurobi_persistent')  
>>> opt.set_instance(m)  
>>> # Correct:
>>> opt.remove_constraint(m.c)  
>>> del m.c  
>>> m.c = pe.Constraint(expr=m.y <= m.x)  
>>> opt.add_constraint(m.c)  






Warning

Components removed from a pyomo model must be removed
from the solver instance by the user.



Additionally, unexpected behavior may result if a component is
modified before being removed.

>>> m = pe.ConcreteModel()  
>>> m.b = pe.Block()  
>>> m.b.x = pe.Var()  
>>> m.b.y = pe.Var()  
>>> m.b.c = pe.Constraint(expr=m.b.y >= -2*m.b.x + 5)  
>>> opt = pe.SolverFactory('gurobi_persistent')  
>>> opt.set_instance(m)  
>>> m.b.c2 = pe.Constraint(expr=m.b.y <= m.b.x)  
>>> # ERROR: The constraint referenced by m.b.c2 does not
>>> # exist in the solver model.
>>> opt.remove_block(m.b)  





In most cases, the only way to modify a component is to remove it from
the solver instance, modify it with Pyomo, and then add it back to the
solver instance. The only exception is with variables. Variables may
be modified and then updated with with solver:

>>> m = pe.ConcreteModel()  
>>> m.x = pe.Var()  
>>> m.y = pe.Var()  
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)  
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)  
>>> opt = pe.SolverFactory('gurobi_persistent')  
>>> opt.set_instance(m)  
>>> m.x.setlb(1.0)  
>>> opt.update_var(m.x)  








Working with Indexed Variables and Constraints

The examples above all used simple variables and constraints; in order to use
indexed variables and/or constraints, the code must be slightly adapted:

>>> for v in indexed_var.values():  
...     opt.add_var(v)
>>> for v in indexed_con.values():  
...     opt.add_constraint(v)





This must be done when removing variables/constraints, too. Not doing this would
result in AttributeError exceptions, for example:

>>> opt.add_var(indexed_var)          
>>> # ERROR: AttributeError: 'IndexedVar' object has no attribute 'is_binary'
>>> opt.add_constraint(indexed_con)   
>>> # ERROR: AttributeError: 'IndexedConstraint' object has no attribute 'body'





The method “is_indexed” can be used to automate the process, for example:

>>> def add_variable(opt, variable):     
...     if variable.is_indexed():
...         for v in variable.values():
...             opt.add_var(v)
...     else:
...         opt.add_var(v)








Persistent Solver Performance

In order to get the best performance out of the persistent solvers, use the
“save_results” flag:

>>> import pyomo.environ as pe
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent')  
>>> opt.set_instance(m)  
>>> results = opt.solve(save_results=False)  





Note that if the “save_results” flag is set to False, then the following
is not supported.

>>> results = opt.solve(save_results=False, load_solutions=False)  
>>> if results.solver.termination_condition == TerminationCondition.optimal:
...     m.solutions.load_from(results)  





However, the following will work:

>>> results = opt.solve(save_results=False, load_solutions=False)  
>>> if results.solver.termination_condition == TerminationCondition.optimal:
...     opt.load_vars()  





Additionally, a subset of variable values may be loaded back into the model:

>>> results = opt.solve(save_results=False, load_solutions=False)  
>>> if results.solver.termination_condition == TerminationCondition.optimal:
...     opt.load_vars(m.x)  











            

          

      

      

    

  

    
      
          
            
  
Units Handling in Pyomo

Pyomo Units Container Module

This module provides support for including units within Pyomo expressions. This module
can be used to define units on a model, and to check the consistency of units
within the underlying constraints and expressions in the model. The module also
supports conversion of units within expressions using the convert method to support
construction of constraints that contain embedded unit conversions.

To use this package within your Pyomo model, you first need an instance of a
PyomoUnitsContainer. You can use the module level instance already defined as
‘units’. This object ‘contains’ the units - that is, you can access units on
this module using common notation.


>>> from pyomo.environ import units as u
>>> print(3.0*u.kg)
3.0*kg








Units can be assigned to Var, Param, and ExternalFunction components, and can
be used directly in expressions (e.g., defining constraints). You can also
verify that the units are consistent on a model, or on individual components
like the objective function, constraint, or expression using
assert_units_consistent (from pyomo.util.check_units).
There are other methods there that may be helpful for verifying correct units on a model.


>>> from pyomo.environ import ConcreteModel, Var, Objective
>>> from pyomo.environ import units as u
>>> from pyomo.util.check_units import assert_units_consistent, assert_units_equivalent, check_units_equivalent
>>> model = ConcreteModel()
>>> model.acc = Var(initialize=5.0, units=u.m/u.s**2)
>>> model.obj = Objective(expr=(model.acc - 9.81*u.m/u.s**2)**2)
>>> assert_units_consistent(model.obj) # raise exc if units invalid on obj
>>> assert_units_consistent(model) # raise exc if units invalid anywhere on the model
>>> assert_units_equivalent(model.obj.expr, u.m**2/u.s**4) # raise exc if units not equivalent
>>> print(u.get_units(model.obj.expr)) # print the units on the objective
m**2/s**4
>>> print(check_units_equivalent(model.acc, u.m/u.s**2))
True








The implementation is currently based on the pint [http://pint.readthedocs.io] package and supports all the units that
are supported by pint.  The list of units that are supported by pint
can be found at the following url:
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt.

If you need a unit that is not in the standard set of defined units,
you can create your own units by adding to the unit definitions within
pint. See PyomoUnitsContainer.load_definitions_from_file() or
PyomoUnitsContainer.load_definitions_from_strings() for more
information.


Note

In this implementation of units, “offset” units for
temperature are not supported within expressions (i.e. the
non-absolute temperature units including degrees C and
degrees F).  This is because there are many non-obvious
combinations that are not allowable. This concern becomes
clear if you first convert the non-absolute temperature
units to absolute and then perform the operation. For
example, if you write 30 degC + 30 degC == 60 degC, but
convert each entry to Kelvin, the expression is not true
(i.e., 303.15 K + 303.15 K is not equal to 333.15
K). Therefore, there are several operations that are not
allowable with non-absolute units, including addition,
multiplication, and division.

This module does support conversion of offset units to
absolute units numerically, using convert_value_K_to_C,
convert_value_C_to_K, convert_value_R_to_F,
convert_value_F_to_R.  These are useful for converting input
data to absolute units, and for converting data to
convenient units for reporting.

Please see the pint documentation here [https://pint.readthedocs.io/en/0.9/nonmult.html] for more
discussion. While pint implements “delta” units (e.g.,
delta_degC) to support correct unit conversions, it can be
difficult to identify and guarantee valid operations in a
general algebraic modeling environment. While future work
may support units with relative scale, the current
implementation requires use of absolute temperature units
(i.e. K and R) within expressions and a direct conversion of
numeric values using specific functions for converting input
data and reporting.




	
class pyomo.core.base.units_container.PyomoUnitsContainer(pint_registry=NOTSET)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that is used to create and contain units in Pyomo.

This is the class that is used to create, contain, and interact
with units in Pyomo.  The module
(pyomo.core.base.units_container) also contains a module
level units container units that is an instance of a
PyomoUnitsContainer. This module instance should typically be used
instead of creating your own instance of a
PyomoUnitsContainer.  For an overview of the usage of
this class, see the module documentation
(pyomo.core.base.units_container)

This class is based on the “pint” module. Documentation for
available units can be found at the following url:
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt


Note

Pre-defined units can be accessed through attributes on the
PyomoUnitsContainer class; however, these attributes are created
dynamically through the __getattr__ method, and are not present
on the class until they are requested.




	
convert(src, to_units=None)

	This method returns an expression that contains the
explicit conversion from one unit to another.





	Parameters:	
	src (Pyomo expression) – The source value that will be converted. This could be a
Pyomo Var, Pyomo Param, or a more complex expression.

	to_units (Pyomo units expression) – The desired target units for the new expression






	Returns:	ret




	Return type:	Pyomo expression












	
convert_temp_C_to_K(value_in_C)

	Convert a value in degrees Celcius to Kelvin Note that this
method converts a numerical value only. If you need
temperature conversions in expressions, please work in
absolute temperatures only.






	
convert_temp_F_to_R(value_in_F)

	Convert a value in degrees Fahrenheit to Rankine.  Note that
this method converts a numerical value only. If you need
temperature conversions in expressions, please work in
absolute temperatures only.






	
convert_temp_K_to_C(value_in_K)

	Convert a value in Kelvin to degrees Celcius.  Note that this method
converts a numerical value only. If you need temperature
conversions in expressions, please work in absolute
temperatures only.






	
convert_temp_R_to_F(value_in_R)

	Convert a value in Rankine to degrees Fahrenheit.  Note that
this method converts a numerical value only. If you need
temperature conversions in expressions, please work in
absolute temperatures only.






	
convert_value(num_value, from_units=None, to_units=None)

	This method performs explicit conversion of a numerical value
from one unit to another, and returns the new value.

The argument “num_value” must be a native numeric type (e.g. float).
Note that this method returns a numerical value only, and not an
expression with units.





	Parameters:	
	num_value (float [https://docs.python.org/3/library/functions.html#float] or other native numeric type) – The value that will be converted

	from_units (Pyomo units expression) – The units to convert from

	to_units (Pyomo units expression) – The units to convert to






	Returns:	float




	Return type:	The converted value












	
get_units(expr)

	Return the Pyomo units corresponding to this expression (also performs validation
and will raise an exception if units are not consistent).





	Parameters:	expr (Pyomo expression) – The expression containing the desired units


	Returns:	Returns the units corresponding to the expression


	Return type:	Pyomo unit (expression)


	Raises:	pyomo.core.base.units_container.UnitsError – 










	
load_definitions_from_file(definition_file)

	Load new units definitions from a file

This method loads additional units definitions from a user
specified definition file. An example of a definitions file
can be found at:
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

If we have a file called my_additional_units.txt with the
following lines:

USD = [currency]





Then we can add this to the container with:

>>> u.load_definitions_from_file('my_additional_units.txt')
>>> print(u.USD)
USD










	
load_definitions_from_strings(definition_string_list)

	Load new units definitions from a string

This method loads additional units definitions from a list of
strings (one for each line). An example of the definitions
strings can be found at:
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

For example, to add the currency dimension and US dollars as a
unit, use

>>> u.load_definitions_from_strings(['USD = [currency]'])
>>> print(u.USD)
USD














	
class pyomo.core.base.units_container.UnitsError(msg)

	An exception class for all general errors/warnings associated with units






	
class pyomo.core.base.units_container.InconsistentUnitsError(exp1, exp2, msg)

	An exception indicating that inconsistent units are present on an expression.

E.g., x == y, where x is in units of kg and y is in units of meter









            

          

      

      

    

  

    
      
          
            
  
LinearExpression

Significant speed
improvements can be obtained using the LinearExpression object
when there are long, dense, linear expressions. The arguments are

constant, linear_coeffs, linear_vars





where the second and third arguments are lists that must be of the
same length. Here is a simple example that illustrates the
syntax. This example creates two constraints that are the same:

>>> import pyomo.environ as pyo
>>> from pyomo.core.expr.numeric_expr import LinearExpression
>>> model = pyo.ConcreteModel()
>>> model.nVars = pyo.Param(initialize=4)
>>> model.N = pyo.RangeSet(model.nVars)
>>> model.x = pyo.Var(model.N, within=pyo.Binary)
>>>
>>> model.coefs = [1, 1, 3, 4]
>>>
>>> model.linexp = LinearExpression(constant=0,
...                                 linear_coefs=model.coefs,
...                                 linear_vars=[model.x[i] for i in model.N])
>>> def caprule(m):
...     return m.linexp <= 6
>>> model.capme = pyo.Constraint(rule=caprule)
>>>
>>> def caprule2(m):
...     return sum(model.coefs[i-1]*model.x[i] for i in model.N) <= 6
>>> model.capme2 = pyo.Constraint(rule=caprule2)






Warning

The lists that are passed to LinearModel are not copied, so caution must
be excercised if they are modified after the component is constructed.







            

          

      

      

    

  

    
      
          
            
  
Common Warnings/Errors


Warnings


W1001: Setting Var value not in domain

When setting Var values (by either calling Var.set_value()
or setting the value attribute), Pyomo will validate the
incoming value by checking that the value is in the
Var.domain.  Any values not in the domain will generate this
warning:

>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var(domain=pyo.Integers)
>>> m.x = 0.5
WARNING (W1001): Setting Var 'x' to a value `0.5` (float) not in domain
     Integers.
     See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001
>>> print(m.x.value)
0.5





Users can bypass all domain validation by setting the value using:

>>> m.x.set_value(0.75, skip_validation=True)
>>> print(m.x.value)
0.75








W1002: Setting Var value outside the bounds

When setting Var values (by either calling set_value()
or setting the value attribute), Pyomo will validate the
incoming value by checking that the value is within the range specified by
Var.bounds.  Any values outside the bounds will generate this
warning:

>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var(domain=pyo.Integers, bounds=(1, 5))
>>> m.x = 0
WARNING (W1002): Setting Var 'x' to a numeric value `0` outside the bounds
    (1, 5).
    See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002
>>> print(m.x.value)
0





Users can bypass all domain validation by setting the value using:

>>> m.x.set_value(10, skip_validation=True)
>>> print(m.x.value)
10










Errors


E2001: Variable domains must be an instance of a Pyomo Set

Variable domains are always Pyomo Set or RangeSet
objects.  This includes global sets like Reals, Integers,
Binary, NonNegativeReals, etc., as well as model-specific
Set instances.  The Var.domain setter will attempt to
convert assigned values to a Pyomo Set, with any failures leading to
this warning (and an exception from the converter):

>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var()
>>> m.x.domain = 5
Traceback (most recent call last):
   ...
TypeError: Cannot create a Set from data that does not support __contains__...
ERROR (E2001): 5 is not a valid domain. Variable domains must be an instance
    of a Pyomo Set or convertable to a Pyomo Set.
    See also https://pyomo.readthedocs.io/en/stable/errors.html#e2001










Exceptions







            

          

      

      

    

  

    
      
          
            
  
Developer Reference

This section provides documentation about fundamental capabilities
in Pyomo.  This documentation serves as a reference for both (1)
Pyomo developers and (2) advanced users who are developing Python
scripts using Pyomo.



	The Pyomo Configuration System

	Pyomo Expressions









            

          

      

      

    

  

    
      
          
            
  
The Pyomo Configuration System

The Pyomo config system provides a set of three classes
(ConfigDict, ConfigList, and
ConfigValue) for managing and documenting structured
configuration information and user input.  The system is based around
the ConfigValue class, which provides storage for a single configuration
entry.  ConfigValue objects can be grouped using two containers
(ConfigDict and ConfigList), which provide functionality analogous to
Python’s dict and list classes, respectively.

At its simplest, the Config system allows for developers to specify a
dictionary of documented configuration entries, allow users to provide
values for those entries, and retrieve the current values:

>>> from pyomo.common.config import (
...     ConfigDict, ConfigList, ConfigValue, In,
... )
>>> config = ConfigDict()
>>> config.declare('filename', ConfigValue(
...     default=None,
...     domain=str,
...     description="Input file name",
... ))
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare("bound tolerance", ConfigValue(
...     default=1E-5,
...     domain=float,
...     description="Bound tolerance",
...     doc="Relative tolerance for bound feasibility checks"
... ))
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare("iteration limit", ConfigValue(
...     default=30,
...     domain=int,
...     description="Iteration limit",
...     doc="Number of maximum iterations in the decomposition methods"
... ))
<pyomo.common.config.ConfigValue object at ...>
>>> config['filename'] = 'tmp.txt'
>>> print(config['filename'])
tmp.txt
>>> print(config['iteration limit'])
30





For convenience, ConfigDict objects support read/write access via
attributes (with spaces in the declaration names replaced by
underscores):

>>> print(config.filename)
tmp.txt
>>> print(config.iteration_limit)
30
>>> config.iteration_limit = 20
>>> print(config.iteration_limit)
20






Domain validation

All Config objects support a domain keyword that accepts a callable
object (type, function, or callable instance).  The domain callable
should take data and map it onto the desired domain, optionally
performing domain validation (see ConfigValue,
ConfigDict, and ConfigList for more
information).  This allows client code to accept a very flexible set of
inputs without “cluttering” the code with input validation:

>>> config.iteration_limit = 35.5
>>> print(config.iteration_limit)
35
>>> print(type(config.iteration_limit).__name__)
int





In addition to common types (like int, float, bool, and
str), the config system profides a number of custom domain
validators for common use cases:



	Bool(val)
	Domain validator for bool-like objects.


	Integer(val)
	Domain validation function admitting integers


	PositiveInt(val)
	Domain validation function admitting strictly positive integers


	NegativeInt(val)
	Domain validation function admitting strictly negative integers


	NonNegativeInt(val)
	Domain validation function admitting integers >= 0


	NonPositiveInt(val)
	Domain validation function admitting integers <= 0


	PositiveFloat(val)
	Domain validation function admitting strictly positive numbers


	NegativeFloat(val)
	Domain validation function admitting strictly negative numbers


	NonPositiveFloat(val)
	Domain validation function admitting numbers less than or equal to 0


	NonNegativeFloat(val)
	Domain validation function admitting numbers greater than or equal to 0


	In(domain[,
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Pyomo Expressions


Warning

This documentation does not explicitly reference objects in
pyomo.core.kernel.  While the Pyomo5 expression system works
with pyomo.core.kernel objects, the documentation of these
documents was not sufficient to appropriately descibe the use
of kernel objects in expressions.



Pyomo supports the declaration of symbolic expressions that represent
objectives, constraints and other optimization modeling components.
Pyomo expressions are represented in an expression tree, where the
leaves are operands, such as constants or variables, and the internal
nodes contain operators.  Pyomo relies on so-called magic methods
to automate the construction of symbolic expressions.  For example,
consider an expression e declared as follows:

M = ConcreteModel()
M.v = Var()

e = M.v*2





Python determines that the magic method __mul__ is called on
the M.v object, with the argument 2.  This method returns
a Pyomo expression object ProductExpression that has arguments
M.v and 2.  This represents the following symbolic expression
tree:

[image: digraph foo {     "*" -> "v";     "*" -> "2"; }]


Note

End-users will not likely need to know details related to how
symbolic expressions are generated and managed in Pyomo.  Thus,
most of the following documentation of expressions in Pyomo is most
useful for Pyomo developers.  However, the discussion of runtime
performance in the first section will help end-users write large-scale
models.





	Building Expressions Faster

	Design Overview

	Design Details

	Managing Expressions
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Building Expressions Faster


Expression Generation

Pyomo expressions can be constructed using native binary operators
in Python.  For example, a sum can be created in a simple loop:

M = ConcreteModel()
M.x = Var(range(5))

s = 0
for i in range(5):
    s = s + M.x[i]





Additionally, Pyomo expressions can be constructed using functions
that iteratively apply Python binary operators.  For example, the
Python sum() [https://docs.python.org/3/library/functions.html#sum] function can be used to replace the previous
loop:

s = sum(M.x[i] for i in range(5))





The sum() [https://docs.python.org/3/library/functions.html#sum] function is both more compact and more efficient.
Using sum() [https://docs.python.org/3/library/functions.html#sum] avoids the creation of temporary variables, and
the summation logic is executed in the Python interpreter while the
loop is interpreted.




Linear, Quadratic and General Nonlinear Expressions

Pyomo can express a very wide range of algebraic expressions, and
there are three general classes of expressions that are recognized
by Pyomo:



	linear polynomials

	quadratic polynomials

	nonlinear expressions, including higher-order polynomials and
expressions with intrinsic functions






These classes of expressions are leveraged to efficiently generate
compact representations of expressions, and to transform expression
trees into standard forms used to interface with solvers.  Note
that There not all quadratic polynomials are recognized by Pyomo;
in other words, some quadratic expressions are treated as nonlinear
expressions.

For example, consider the following quadratic polynomial:

s = sum(M.x[i] for i in range(5))**2





This quadratic polynomial is treated as a nonlinear expression
unless the expression is explicilty processed to identify quadratic
terms.  This lazy identification of of quadratic terms allows
Pyomo to tailor the search for quadratic terms only when they are
explicitly needed.




Pyomo Utility Functions

Pyomo includes several similar functions that can be used to
create expressions:


	prod
	A function to compute a product of Pyomo expressions.

	quicksum
	A function to efficiently compute a sum of Pyomo expressions.

	sum_product
	A function that computes a generalized dot product.




prod

The prod function is analogous to the builtin
sum() [https://docs.python.org/3/library/functions.html#sum] function.  Its main argument is a variable length
argument list, args, which represents expressions that are multiplied
together.  For example:

M = ConcreteModel()
M.x = Var(range(5))
M.z = Var()

# The product M.x[0] * M.x[1] * ... * M.x[4]
e1 = prod(M.x[i] for i in M.x)

# The product M.x[0]*M.z
e2 = prod([M.x[0], M.z])

# The product M.z*(M.x[0] + ... + M.x[4])
e3 = prod([sum(M.x[i] for i in M.x), M.z])








quicksum

The behavior of the quicksum function is
similar to the builtin sum() [https://docs.python.org/3/library/functions.html#sum] function, but this function often
generates a more compact Pyomo expression. Its main argument is a
variable length argument list, args, which represents
expressions that are summed together.  For example:

M = ConcreteModel()
M.x = Var(range(5))

# Summation using the Python sum() function
e1 = sum(M.x[i]**2 for i in M.x)

# Summation using the Pyomo quicksum function
e2 = quicksum(M.x[i]**2 for i in M.x)





The summation is customized based on the start and
linear arguments.  The start defines the initial
value for summation, which defaults to zero.  If start is
a numeric value, then the linear argument determines how
the sum is processed:


	If linear is False, then the terms in args are assumed to be nonlinear.

	If linear is True, then the terms in args are assumed to be linear.

	If linear is None, the first term in args is analyze to determine whether the terms are linear or nonlinear.



This argument allows the quicksum
function to customize the expression representation used, and
specifically a more compact representation is used for linear
polynomials.  The quicksum
function can be slower than the builtin sum() [https://docs.python.org/3/library/functions.html#sum] function,
but this compact representation can generate problem representations
more quickly.

Consider the following example:

M = ConcreteModel()
M.A = RangeSet(100000)
M.p = Param(M.A, mutable=True, initialize=1)
M.x = Var(M.A)

start = time.time()
e = sum( (M.x[i] - 1)**M.p[i] for i in M.A)
print("sum:      %f" % (time.time() - start))

start = time.time()
generate_standard_repn(e)
print("repn:     %f" % (time.time() - start))

start = time.time()
e = quicksum( (M.x[i] - 1)**M.p[i] for i in M.A)
print("quicksum: %f" % (time.time() - start))

start = time.time()
generate_standard_repn(e)
print("repn:     %f" % (time.time() - start))






The sum consists of linear terms because the exponents are one.
The following output illustrates that quicksum can identify this
linear structure to generate expressions more quickly:

sum:      1.447861
repn:     0.870225
quicksum: 1.388344
repn:     0.864316





If start is not a numeric value, then the quicksum sets the initial value to start
and executes a simple loop to sum the terms.  This allows the sum
to be stored in an object that is passed into the function (e.g. the linear context manager
linear_expression).


Warning

By default, linear is None.  While this allows
for efficient expression generation in normal cases, there are
circumstances where the inspection of the first
term in args is misleading.  Consider the following
example:

M = ConcreteModel()
M.x = Var(range(5))

e = quicksum(M.x[i]**2 if i > 0 else M.x[i] for i in range(5))





The first term created by the generator is linear, but the
subsequent terms are nonlinear.  Pyomo gracefully transitions
to a nonlinear sum, but in this case quicksum
is doing additional work that is not useful.






sum_product

The sum_product function supports
a generalized dot product.  The args argument contains one
or more components that are used to create terms in the summation.
If the args argument contains a single components, then its
sequence of terms are summed together; the sum is equivalent to
calling quicksum.  If two or more components are
provided, then the result is the summation of their terms multiplied
together.  For example:

M = ConcreteModel()
M.z = RangeSet(5)
M.x = Var(range(10))
M.y = Var(range(10))

# Sum the elements of x
e1 = sum_product(M.x)

# Sum the product of elements in x and y
e2 = sum_product(M.x, M.y)

# Sum the product of elements in x and y, over the index set z
e3 = sum_product(M.x, M.y, index=M.z)





The denom argument specifies components whose terms are in
the denominator.  For example:

# Sum the product of x_i/y_i
e1 = sum_product(M.x, denom=M.y)

# Sum the product of 1/(x_i*y_i)
e2 = sum_product(denom=(M.x, M.y))





The terms summed by this function are explicitly specified, so
sum_product can identify
whether the resulting expression is linear, quadratic or nonlinear.
Consequently, this function is typically faster than simple loops,
and it generates compact representations of expressions..

Finally, note that the dot_product
function is an alias for sum_product.
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Historical Comparison

This document describes the “Pyomo5” expressions, which were
introduced in Pyomo 5.6.  The main differences between “Pyomo5”
expressions and the previous expression system, called “Coopr3”,
are:


	Pyomo5 supports both CPython and PyPy implementations of Python,
while Coopr3 only supports CPython.

The key difference in these implementations is that Coopr3 relies
on CPython reference counting, which is not part of the Python
language standard.  Hence, this implementation is not guaranteed
to run on other implementations of Python.

Pyomo5 does not rely on reference counting, and it has been tested
with PyPy.  In the future, this should allow Pyomo to support
other Python implementations (e.g. Jython).






	Pyomo5 expression objects are immutable, while Coopr3 expression
objects are mutable.

This difference relates to how expression objects are managed
in Pyomo.  Once created, Pyomo5 expression objects cannot be
changed.  Further, the user is guaranteed that no “side effects”
occur when expressions change at a later point in time.  By
contrast, Coopr3 allows expressions to change in-place, and thus
“side effects” make occur when expressions are changed at a later
point in time.  (See discussion of entanglement below.)






	Pyomo5 provides more consistent runtime performance than Coopr3.

While this documentation does not provide a detailed comparison
of runtime performance between Coopr3 and Pyomo5, the following
performance considerations also motivated the creation of Pyomo5:


	There were surprising performance inconsistencies in Coopr3.  For
example, the following two loops had dramatically different
runtime:


M = ConcreteModel()
M.x = Var(range(100))

# This loop is fast.
e = 0
for i in range(100):
    e = e + M.x[i]

# This loop is slow.
e = 0
for i in range(100):
    e = M.x[i] + e










	Coopr3 eliminates side effects by automatically cloning sub-expressions.
Unfortunately, this can easily lead to unexpected cloning in models, which
can dramatically slow down Pyomo model generation.  For example:


M = ConcreteModel()
M.p = Param(initialize=3)
M.q = 1/M.p
M.x = Var(range(100))

# The value M.q is cloned every time it is used.
e = 0
for i in range(100):
    e = e + M.x[i]*M.q










	Coopr3 leverages recursion in many operations, including expression
cloning.  Even simple non-linear expressions can result in deep
expression trees where these recursive operations fail because
Python runs out of stack space.






	The immutable representation used in Pyomo5 requires more memory allocations
than Coopr3 in simple loops.  Hence, a pure-Python execution of Pyomo5
can be 10% slower than Coopr3 for model construction.  But when Cython is used
to optimize the execution of Pyomo5 expression generation, the
runtimes for Pyomo5 and Coopr3 are about the same.  (In principle,
Cython would improve the runtime of Coopr3 as well, but the limitations
noted above motivated a new expression system in any case.)












Expression Entanglement and Mutability

Pyomo fundamentally relies on the use of magic methods in Python
to generate expression trees, which means that Pyomo has very limited
control for how expressions are managed in Python.  For example:


	Python variables can point to the same expression tree


M = ConcreteModel()
M.v = Var()

e = f = 2*M.v








This is illustrated as follows:


[image: digraph foo {     {     e [shape=box]     f [shape=box]     }     "*" -> 2;     "*" -> v;     subgraph cluster { "*"; 2; v; }     e -> "*" [splines=curved, style=dashed];     f -> "*" [splines=curved, style=dashed]; }]






	A variable can point to a sub-tree that another variable points to


M = ConcreteModel()
M.v = Var()

e = 2*M.v
f = e + 3








This is illustrated as follows:


[image: digraph foo {     {     e [shape=box]     f [shape=box]     }     "*" -> 2;     "*" -> v;     "+" -> "*";     "+" -> 3;     subgraph cluster { "+"; 3; "*"; 2; v; }     e -> "*" [splines=curved, style=dashed, constraint=false];     f -> "+" [splines=curved, style=dashed]; }]






	Two expression trees can point to the same sub-tree


M = ConcreteModel()
M.v = Var()

e = 2*M.v
f = e + 3
g = e + 4








This is illustrated as follows:


[image: digraph foo {     {     e [shape=box]     f [shape=box]     g [shape=box]     }     x [label="+"];     "*" -> 2;     "*" -> v;     "+" -> "*";     "+" -> 3;     x -> 4;     x -> "*";     subgraph cluster { x; 4; "+"; 3; "*"; 2; v; }     e -> "*" [splines=curved, style=dashed, constraint=false];     f -> "+" [splines=curved, style=dashed];     g -> x [splines=curved, style=dashed]; }]








In each of these examples, it is almost impossible for a Pyomo user
or developer to detect whether expressions are being shared.  In
CPython, the reference counting logic can support this to a limited
degree.  But no equivalent mechanisms are available in PyPy and
other Python implementations.


Entangled Sub-Expressions

We say that expressions are entangled if they share one or more
sub-expressions.  The first example above does not represent
entanglement, but rather the fact that multiple Python variables
can point to the same expression tree.  In the second and third
examples, the expressions are entangled because the subtree represented
by e is shared.  However, if a leave node like M.v is shared
between expressions, we do not consider those expressions entangled.

Expression entanglement is problematic because shared expressions complicate
the expected behavior when sub-expressions are changed.  Consider the following example:

M = ConcreteModel()
M.v = Var()
M.w = Var()

e = 2*M.v
f = e + 3

e += M.w





What is the value of e after M.w is added to it?  What is the
value of f?  The answers to these questions are not immediately
obvious, and the fact that Coopr3 uses mutable expression objects
makes them even less clear.  However, Pyomo5 and Coopr3 enforce
the following semantics:


A change to an expression e that is a sub-expression of f
does not change the expression tree for f.


This property ensures a change to an expression does not create side effects that change the
values of other, previously defined expressions.

For instance, the previous example results in the following (in Pyomo5):

[image: digraph foo {     {     e [shape=box]     f [shape=box]     }     x [label="+"];     "*" -> 2;     "*" -> v;     "+" -> "*";     "+" -> 3;     x -> "*";     x -> w;     subgraph cluster { "+"; 3; "*"; 2; v; x; w;}     f -> "+" [splines=curved, style=dashed];     e -> x [splines=curved, style=dashed]; }]

With Pyomo5 expressions, each sub-expression is immutable.  Thus,
the summation operation generates a new expression e without
changing existing expression objects referenced in the expression
tree for f.  By contrast, Coopr3 imposes the same property by
cloning the expression e before added M.w, resulting in the following:

[image: digraph foo {     {     e [shape=box]     f [shape=box]     }     "*" -> 2;     "*" -> v;     "+" -> "*";     "+" -> 3;     etimes [label="*"];     etwo [label=2];     etimes -> etwo;     etimes -> v;     x [label="+"];     x -> w;     x -> etimes;     subgraph cluster { "+"; 3; "*"; 2; v; x; w; etimes; etwo;}     f -> "+" [splines=curved, style=dashed];     e -> x [splines=curved, style=dashed]; }]

This example also illustrates that leaves may be shared between expressions.




Mutable Expression Components

There is one important exception to the entanglement property
described above.  The Expression component is treated as a
mutable expression when shared between expressions.  For example:

M = ConcreteModel()
M.v = Var()
M.w = Var()

M.e = Expression(expr=2*M.v)
f = M.e + 3

M.e += M.w





Here, the expression M.e is a so-called named expression that
the user has declared.  Named expressions are explicitly intended
for re-use within models, and they provide a convenient mechanism
for changing sub-expressions in complex applications.  In this example, the
expression tree is as follows before M.w is added:

[image: digraph foo {     {     f [shape=box]     }     "*" -> 2;     "*" -> v;     "+" -> "M.e";     "+" -> 3;     "M.e" -> "*";     subgraph cluster { "+"; 3; "*"; 2; v; "M.e";}     f -> "+" [splines=curved, style=dashed]; }]

And the expression tree is as follows after M.w is added.

[image: digraph foo {     {     f [shape=box]     }     x [label="+"];     "*" -> 2;     "*" -> v;     "+" -> "M.e";     "+" -> 3;     x -> "*";     x -> w;     "M.e" -> x;     subgraph cluster { "+"; 3; "*"; 2; v; "M.e"; x; w;}     f -> "+" [splines=curved, style=dashed]; }]

When considering named expressions, Pyomo5 and Coopr3 enforce
the following semantics:


A change to a named expression e that is a sub-expression of
f changes the expression tree for f, because f continues
to point to e after it is changed.
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Design Details


Warning

Pyomo expression trees are not composed of Python
objects from a single class hierarchy.  Consequently, Pyomo
relies on duck typing to ensure that valid expression trees are
created.



Most Pyomo expression trees have the following form


	Interior nodes are objects that inherit from the ExpressionBase class.  These objects typically have one or more child nodes.  Linear expression nodes do not have child nodes, but they are treated as interior nodes in the expression tree because they references other leaf nodes.

	Leaf nodes are numeric values, parameter components and variable components, which represent the inputs to the expresion.




Expression Classes

Expression classes typically represent unary and binary operations.  The following table
describes the standard operators in Python and their associated Pyomo expression class:



	Operation
	Python Syntax
	Pyomo Class




	sum
	x + y
	SumExpression


	product
	x * y
	ProductExpression


	negation
	- x
	NegationExpression


	division
	x / y
	DivisionExpression


	power
	x ** y
	PowExpression


	inequality
	x <= y
	InequalityExpression


	equality
	x == y
	EqualityExpression





Additionally, there are a variety of other Pyomo expression classes that capture more general
logical relationships, which are summarized in the following table:



	Operation
	Example
	Pyomo Class




	exernal function
	myfunc(x,y,z)
	ExternalFunctionExpression


	logical if-then-else
	Expr_if(IF=x, THEN=y, ELSE=z)
	Expr_ifExpression


	intrinsic function
	sin(x)
	UnaryFunctionExpression


	absolute function
	abs(x)
	AbsExpression





Expression objects are immutable.  Specifically, the list of
arguments to an expression object (a.k.a. the list of child nodes
in the tree) cannot be changed after an expression class is
constructed.  To enforce this property, expression objects have a
standard API for accessing expression arguments:


	args - a class property that returns a generator that yields the expression arguments

	arg(i) - a function that returns the i-th argument

	nargs() - a function that returns the number of expression arguments




Warning

Developers should never use the _args_ property directly!
The semantics for the use of this data has changed since earlier
versions of Pyomo.  For example, in some expression classes the
the value nargs() may not equal len(_args_)!



Expression trees can be categorized in four different ways:


	constant expressions - expressions that do not contain numeric constants and immutable parameters.

	mutable expressions - expressions that contain mutable parameters but no variables.

	potentially variable expressions - expressions that contain variables, which may be fixed.

	fixed expressions - expressions that contain variables, all of which are fixed.



These three categories are illustrated with the following example:

m = ConcreteModel()
m.p = Param(default=10, mutable=False)
m.q = Param(default=10, mutable=True)
m.x = Var()
m.y = Var(initialize=1)
m.y.fixed = True





The following table describes four different simple expressions
that consist of a single model component, and it shows how they
are categorized:



	Category
	m.p
	m.q
	m.x
	m.y




	constant
	True
	False
	False
	False


	not potentially variable
	True
	True
	False
	False


	potentially_variable
	False
	False
	True
	True


	fixed
	True
	True
	False
	True





Expressions classes contain methods to test whether an expression
tree is in each of these categories.  Additionally, Pyomo includes
custom expression classes for expression trees that are not potentially
variable.  These custom classes will not normally be used by
developers, but they provide an optimization of the checks for
potentially variability.




Special Expression Classes

The following classes are exceptions to the design principles describe above.


Named Expressions

Named expressions allow for changes to an expression after it has
been constructed.  For example, consider the expression f defined
with the Expression component:

M = ConcreteModel()
M.v = Var()
M.w = Var()

M.e = Expression(expr=2*M.v)
f = M.e + 3                     # f == 2*v + 3
M.e += M.w                      # f == 2*v + 3 + w





Although f is an immutable expression, whose definition is
fixed, a sub-expressions is the named expression M.e.  Named
expressions have a mutable value.  In other words, the expression
that they point to can change.  Thus, a change to the value of
M.e changes the expression tree for any expression that includes
the named expression.


Note

The named expression classes are not implemented as sub-classes
of ExpressionBase.
This reflects design constraints related to the fact that these
are modeling components that belong to class hierarchies other
than the expression class hierarchy, and Pyomo’s design prohibits
the use of multiple inheritance for these classes.






Linear Expressions

Pyomo includes a special expression class for linear expressions.
The class LinearExpression provides a compact
description of linear polynomials.  Specifically, it includes a
constant value constant and two lists for coefficients and
variables: linear_coefs and linear_vars.

This expression object does not have arguments, and thus it is
treated as a leaf node by Pyomo visitor classes.  Further, the
expression API functions described above do not work with this
class.  Thus, developers need to treat this class differently when
walking an expression tree (e.g. when developing a problem
transformation).




Sum Expressions

Pyomo does not have a binary sum expression class.  Instead,
it has an n-ary summation class, SumExpression.  This expression class
treats sums as n-ary sums for efficiency reasons;  many large
optimization models contain large sums. But note tht this class
maintains the immutability property described above.  This class
shares an underlying list of arguments with other SumExpression objects. A particular
object owns the first n arguments in the shared list, but
different objects may have different values of n.

This class acts like a normal immutable expression class, and the
API described above works normally.  But direct access to the shared
list could have unexpected results.




Mutable Expressions

Finally, Pyomo includes several mutable expression classes
that are private.  These are not intended to be used by users, but
they might be useful for developers in contexts where the developer
can appropriately control how the classes are used.  Specifically,
immutability eliminates side-effects where changes to a sub-expression
unexpectedly create changes to the expression tree.  But within the context of
model transformations, developers may be able to limit the use of
expressions to avoid these side-effects.  The following mutable private classes
are available in Pyomo:


	_MutableSumExpression
	This class
is used in the nonlinear_expression context manager to
efficiently combine sums of nonlinear terms.

	_MutableLinearExpression
	This class
is used in the linear_expression context manager to
efficiently combine sums of linear terms.








Expression Semantics

Pyomo clear semantics regarding what is considered a valid leaf and
interior node.

The following classes are valid interior nodes:


	Subclasses of ExpressionBase

	Classes that that are duck typed to match the API of the ExpressionBase class.  For example, the named expression class Expression.



The following classes are valid leaf nodes:


	Members of nonpyomo_leaf_types, which includes standard numeric data types like int, float and long, as well as numeric data types defined by numpy and other commonly used packages.  This set also includes NonNumericValue, which is used to wrap non-numeric arguments to the ExternalFunctionExpression class.

	Parameter component classes like ScalarParam and _ParamData, which arise in expression trees when the parameters are declared as mutable.  (Immutable parameters are identified when generating expressions, and they are replaced with their associated numeric value.)

	Variable component classes like ScalarVar and _GeneralVarData, which often arise in expression trees.  <pyomo.core.expr.current.pyomo5_variable_types>`.




Note

In some contexts the LinearExpression class can be treated
as an interior node, and sometimes it can be treated as a leaf.
This expression object does not have any child arguments, so
nargs() is zero.  But this expression references variables
and parameters in a linear expression, so in that sense it does
not represent a leaf node in the tree.






Context Managers

Pyomo defines several context managers that can be used to declare
the form of expressions, and to define a mutable expression object that
efficiently manages sums.

The linear_expression
object is a context manager that can be used to declare a linear sum.  For
example, consider the following two loops:

M = ConcreteModel()
M.x = Var(range(5))

s = 0
for i in range(5):
    s += M.x[i]

with linear_expression() as e:
    for i in range(5):
        e += M.x[i]





The first apparent difference in these loops is that the value of
s is explicitly initialized while e is initialized when the
context manager is entered.  However, a more fundamental difference
is that the expression representation for s differs from e.
Each term added to s results in a new, immutable expression.
By contrast, the context manager creates a mutable expression
representation for e.  This difference allows for both (a) a
more efficient processing of each sum, and (b) a more compact
representation for the expression.

The difference between linear_expression and
nonlinear_expression
is the underlying representation that each supports.  Note that
both of these are instances of context manager classes.  In
singled-threaded applications, these objects can be safely used to
construct different expressions with different context declarations.

Finally, note that these context managers can be passed into the start
method for the quicksum function.  For example:

M = ConcreteModel()
M.x = Var(range(5))
M.y = Var(range(5))

with linear_expression() as e:
    quicksum((M.x[i] for i in M.x), start=e)
    quicksum((M.y[i] for i in M.y), start=e)





This sum contains terms for M.x[i] and M.y[i].  The syntax
in this example is not intuitive because the sum is being stored
in e.


Note

We do not generally expect users or developers to use these
context managers.  They are used by the quicksum and sum_product functions to accelerate expression
generation, and there are few cases where the direct use of
these context managers would provide additional utility to users
and developers.
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Creating a String Representation of an Expression

There are several ways that string representations can be created
from an expression, but the expression_to_string function provides
the most flexible mechanism for generating a string representation.
The options to this function control distinct aspects of the string
representation.


Algebraic vs. Nested Functional Form

The default string representation is an algebraic form, which closely
mimics the Python operations used to construct an expression.  The
verbose flag can be set to True to generate a
string representation that is a nested functional form.  For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()

e = sin(M.x) + 2*M.x

# sin(x) + 2*x
print(EXPR.expression_to_string(e))

# sum(sin(x), prod(2, x))
print(EXPR.expression_to_string(e, verbose=True))








Labeler and Symbol Map

The string representation used for variables in expression can be customized to
define different label formats.  If the labeler option is specified, then this
function (or class functor) is used to generate a string label used to represent the variable.  Pyomo
defines a variety of labelers in the pyomo.core.base.label module.  For example, the
NumericLabeler defines a functor that can be used to sequentially generate
simple labels with a prefix followed by the variable count:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.y = Var()

e = sin(M.x) + 2*M.y

# sin(x1) + 2*x2
print(EXPR.expression_to_string(e, labeler=NumericLabeler('x')))





The smap option is used to specify a symbol map object
(SymbolMap), which
caches the variable label data.  This option is normally specified
in contexts where the string representations for many expressions
are being generated.  In that context, a symbol map ensures that
variables in different expressions have a consistent label in their
associated string representations.




Standardized String Representations

The standardize option can be used to re-order the string
representation to print polynomial terms before nonlinear terms.  By
default, standardize is False, and the string
representation reflects the order in which terms were combined to
form the expression.  Pyomo does not guarantee that the string
representation exactly matches the Python expression order, since
some simplification and re-ordering of terms is done automatically to
improve the efficiency of expression generation.  But in most cases
the string representation will closely correspond to the
Python expression order.

If standardize is True, then the pyomo expression
is processed to identify polynomial terms, and the string representation
consists of the constant and linear terms followed by
an expression that contains other nonlinear terms.  For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.y = Var()

e = sin(M.x) + 2*M.y + M.x*M.y - 3

# -3 + 2*y + sin(x) + x*y
print(EXPR.expression_to_string(e, standardize=True))








Other Ways to Generate String Representations

There are two other standard ways to generate string representations:


	Call the __str__() magic method (e.g. using the Python str() function.  This
calls expression_to_string with
the option standardize equal to True (see below).

	Call the to_string() method on the ExpressionBase class.
This defaults to calling expression_to_string with
the option standardize equal to False (see below).



In practice, we expect at the __str__() magic method will be
used by most users, and the standardization of the output provides
a consistent ordering of terms that should make it easier to interpret
expressions.






Cloning Expressions

Expressions are automatically cloned only during certain expression
transformations.  Since this can be an expensive operation, the
clone_counter context
manager object is provided to track the number of times the
clone_expression
function is executed.

For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()

with EXPR.clone_counter() as counter:
    start = counter.count
    e1 = sin(M.x)
    e2 = e1.clone()
    total = counter.count - start
    assert(total == 1)








Evaluating Expressions

Expressions can be evaluated when all variables and parameters in
the expression have a value.  The value
function can be used to walk the expression tree and compute the
value of an expression.  For example:

M = ConcreteModel()
M.x = Var()
M.x.value = math.pi/2.0
val = value(M.x)
assert(isclose(val, math.pi/2.0))





Additionally, expressions define the __call__() method, so the
following is another way to compute the value of an expression:

val = M.x()
assert(isclose(val, math.pi/2.0))





If a parameter or variable is undefined, then the value function and __call__() method will
raise an exception.  This exception can be suppressed using the
exception option.  For example:

M = ConcreteModel()
M.x = Var()
val = value(M.x, exception=False)
assert(val is None)





This option is useful in contexts where adding a try block is inconvenient
in your modeling script.


Note

Both the value function and
__call__() method call the evaluate_expression function.  In
practice, this function will be slightly faster, but the
difference is only meaningful when expressions are evaluated
many times.






Identifying Components and Variables

Expression transformations sometimes need to find all nodes in an
expression tree that are of a given type.  Pyomo contains two utility
functions that support this functionality.  First, the
identify_components
function is a generator function that walks the expression tree and yields all
nodes whose type is in a specified set of node types.  For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.p = Param(mutable=True)

e = M.p+M.x
s = set([type(M.p)])
assert(list(EXPR.identify_components(e, s)) == [M.p])





The identify_variables
function is a generator function that yields all nodes that are
variables.  Pyomo uses several different classes to represent variables,
but this set of variable types does not need to be specified by the user.
However, the include_fixed flag can be specified to omit fixed
variables.  For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.y = Var()

e = M.x+M.y
M.y.value = 1
M.y.fixed = True

assert(set(id(v) for v in EXPR.identify_variables(e)) == set([id(M.x), id(M.y)]))
assert(set(id(v) for v in EXPR.identify_variables(e, include_fixed=False)) == set([id(M.x)]))








Walking an Expression Tree with a Visitor Class

Many of the utility functions defined above are implemented by
walking an expression tree and performing an operation at nodes in
the tree.  For example, evaluating an expression is performed using
a post-order depth-first search process where the value of a node
is computed using the values of its children.

Walking an expression tree can be tricky, and the code requires intimate
knowledge of the design of the expression system.  Pyomo includes
several classes that define so-called visitor patterns for walking
expression tree:


	SimpleExpressionVisitor
	A visitor() method is called for each node in the tree,
and the visitor class collects information about the tree.

	ExpressionValueVisitor
	When the visitor() method is called on each node in the
tree, the values of its children have been computed.  The
value of the node is returned from visitor().

	ExpressionReplacementVisitor
	When the visitor() method is called on each node in the
tree, it may clone or otherwise replace the node using objects
for its children (which themselves may be clones or replacements
from the original child objects).  The new node object is
returned from visitor().



These classes define a variety of suitable tree search methods:


	SimpleExpressionVisitor
	xbfs: breadth-first search where leaf nodes are immediately visited

	xbfs_yield_leaves: breadth-first search where leaf nodes are immediately visited, and the visit method yields a value





	ExpressionValueVisitor
	dfs_postorder_stack: postorder depth-first search using a stack





	ExpressionReplacementVisitor
	dfs_postorder_stack: postorder depth-first search using a stack








Note

The PyUtilib visitor classes define several other search methods
that could be used with Pyomo expressions.  But these are the
only search methods currently used within Pyomo.



To implement a visitor object, a user creates a subclass of one of these
classes.  Only one of a few methods will need to be defined to
implement the visitor:


	visitor()
	Defines the operation that is performed when a node is visited.  In
the ExpressionValueVisitor and ExpressionReplacementVisitor visitor classes, this
method returns a value that is used by its parent node.

	visiting_potential_leaf()
	Checks if the search should terminate with this node.  If no,
then this method returns the tuple (False, None).  If yes,
then this method returns (False, value), where value is
computed by this method.  This method is not used in the
SimpleExpressionVisitor visitor
class.

	finalize()
	This method defines the final value that is returned from the
visitor.  This is not normally redefined.



Detailed documentation of the APIs for these methods is provided
with the class documentation for these visitors.


SimpleExpressionVisitor Example

In this example, we describe an visitor class that counts the number
of nodes in an expression (including leaf nodes).  Consider the following
class:

from pyomo.core.expr import current as EXPR

class SizeofVisitor(EXPR.SimpleExpressionVisitor):

    def __init__(self):
        self.counter = 0

    def visit(self, node):
        self.counter += 1

    def finalize(self):
        return self.counter





The class constructor creates a counter, and the visit() method
increments this counter for every node that is visited.  The finalize()
method returns the value of this counter after the tree has been walked.  The
following function illustrates this use of this visitor class:

def sizeof_expression(expr):
    #
    # Create the visitor object
    #
    visitor = SizeofVisitor()
    #
    # Compute the value using the :func:`xbfs` search method.
    #
    return visitor.xbfs(expr)








ExpressionValueVisitor Example

In this example, we describe an visitor class that clones the
expression tree (including leaf nodes).  Consider the following
class:

from pyomo.core.expr import current as EXPR

class CloneVisitor(EXPR.ExpressionValueVisitor):

    def __init__(self):
        self.memo = {'__block_scope__': { id(None): False }}

    def visit(self, node, values):
        #
        # Clone the interior node
        #
        return node.construct_clone(tuple(values), self.memo)

    def visiting_potential_leaf(self, node):
        #
        # Clone leaf nodes in the expression tree
        #
        if node.__class__ in native_numeric_types or\
           node.__class__ not in pyomo5_expression_types:\
            return True, copy.deepcopy(node, self.memo)

        return False, None





The visit() method creates a new expression node with children
specified by values.  The visiting_potential_leaf()
method performs a deepcopy() on leaf nodes, which are native
Python types or non-expression objects.

def clone_expression(expr):
    #
    # Create the visitor object
    #
    visitor = CloneVisitor()
    #
    # Clone the expression using the :func:`dfs_postorder_stack` 
    # search method.
    #
    return visitor.dfs_postorder_stack(expr)








ExpressionReplacementVisitor Example

In this example, we describe an visitor class that replaces
variables with scaled variables, using a mutable parameter that
can be modified later.  the following
class:

from pyomo.core.expr import current as EXPR

class ScalingVisitor(EXPR.ExpressionReplacementVisitor):

    def __init__(self, scale):
        super(ScalingVisitor, self).__init__()
        self.scale = scale

    def visiting_potential_leaf(self, node):
        #
        # Clone leaf nodes in the expression tree
        #
        if node.__class__ in native_numeric_types:
            return True, node

        if node.is_variable_type():
            return True, self.scale[id(node)]*node

        if isinstance(node, EXPR.LinearExpression):
            node_ = copy.deepcopy(node)
            node_.constant = node.constant
            node_.linear_vars = copy.copy(node.linear_vars)
            node_.linear_coefs = []
            for i,v in enumerate(node.linear_vars):
                node_.linear_coefs.append( node.linear_coefs[i]*self.scale[id(v)] )
            return True, node_

        return False, None





No visit() method needs to be defined.  The
visiting_potential_leaf() function identifies variable nodes
and returns a product expression that contains a mutable parameter.
The _LinearExpression class has a different representation
that embeds variables.  Hence, this class must be handled
in a separate condition that explicitly transforms this sub-expression.

def scale_expression(expr, scale):
    #
    # Create the visitor object
    #
    visitor = ScalingVisitor(scale)
    #
    # Scale the expression using the :func:`dfs_postorder_stack` 
    # search method.
    #
    return visitor.dfs_postorder_stack(expr)





The scale_expression() function is called with an expression and
a dictionary, scale, that maps variable ID to model parameter.  For example:

M = ConcreteModel()
M.x = Var(range(5))
M.p = Param(range(5), mutable=True)

scale={}
for i in M.x:
  scale[id(M.x[i])] = M.p[i]

e = quicksum(M.x[i] for i in M.x)
f = scale_expression(e,scale)

# p[0]*x[0] + p[1]*x[1] + p[2]*x[2] + p[3]*x[3] + p[4]*x[4]
print(f)
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Library Reference

Pyomo is being increasingly used as a library to support Python
scripts.  This section describes library APIs for key elements of
Pyomo’s core library.  This documentation serves as a reference for
both (1) Pyomo developers and (2) advanced users who are developing
Python scripts using Pyomo.



	Common Utilities

	AML Library Reference

	Expression Reference

	Solver Interfaces

	Model Data Management

	APPSI (Auto-Persistent Pyomo Solver Interfaces)





Pyomo is under active ongoing development.  The following API
documentation describes Beta functionality.



	The Kernel Library









            

          

      

      

    

  

  
    
    
    Common Utilities
    

    

    

    

    
 
  

    
      
          
            
  
Common Utilities

Pyomo provides a set of general-purpose utilites through
pyomo.common.  These utilities are self-contained and do not import
or rely on any other parts of Pyomo.



	pyomo.common.config

	pyomo.common.dependencies

	pyomo.common.deprecation

	pyomo.common.fileutils

	pyomo.common.formatting

	pyomo.common.tempfiles

	pyomo.common.timing
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pyomo.common.config


Core classes



	ConfigDict([description,
  
    
    
    pyomo.common.dependencies
    

    

    

    

    
 
  

    
      
          
            
  
pyomo.common.dependencies


	
exception pyomo.common.dependencies.DeferredImportError

	




	
class pyomo.common.dependencies.ModuleUnavailable(name, message, version_error, import_error, package)

	Mock object that raises a DeferredImportError upon attribute access

This object is returned by attempt_import() in lieu of
the module in the case that the module import fails.  Any attempts
to access attributes on this object will raise a DeferredImportError
exception.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The module name that was being imported

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string message to return in the raised exception

	version_error (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string to add to the message if the module failed to import because
it did not match the required version

	import_error (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string to add to the message documenting the Exception
raised when the module failed to import.

	package (str [https://docs.python.org/3/library/stdtypes.html#str]) – The module name that originally attempted the import










	
log_import_warning(logger='pyomo', msg=None)

	Log the import error message to the specified logger

This will log the the import error message to the specified
logger.  If msg= is specified, it will override the default
message passed to this instance of
ModuleUnavailable.






	
generate_import_warning(logger='pyomo.common')

	DEPRECATED.


Deprecated since version 6.0: use log_import_warning()












	
class pyomo.common.dependencies.DeferredImportModule(indicator, deferred_submodules, submodule_name)

	Mock module object to support the deferred import of a module.

This object is returned by attempt_import() in lieu of
the module when attempt_import() is called with
defer_check=True.  Any attempts to access attributes on this
object will trigger the actual module import and return either the
appropriate module attribute or else if the module import fails,
raise a DeferredImportError exception.






	
class pyomo.common.dependencies.DeferredImportIndicator(name, error_message, catch_exceptions, minimum_version, original_globals, callback, importer, deferred_submodules)

	Placeholder indicating if an import was successful.

This object serves as a placeholder for the Boolean indicator if a
deferred module import was successful.  Casting this instance to
bool will cause the import to be attempted.  The actual import logic
is here and not in the DeferredImportModule to reduce the number of
attributes on the DeferredImportModule.

DeferredImportIndicator supports limited logical expressions
using the & (and) and | (or) binary operators.  Creating
these expressions does not trigger the import of the corresponding
DeferredImportModule instances, although casting the
resulting expression to bool() will trigger any relevant
imports.






	
pyomo.common.dependencies.attempt_import(name, error_message=None, only_catch_importerror=None, minimum_version=None, alt_names=None, callback=None, importer=None, defer_check=True, deferred_submodules=None, catch_exceptions=None)

	Attempt to import the specified module.

This will attempt to import the specified module, returning a
(module, available) tuple.  If the import was successful, module
will be the imported module and available will be True.  If the
import results in an exception, then module will be an instance of
ModuleUnavailable and available will be False

The following

>>> from pyomo.common.dependencies import attempt_import
>>> numpy, numpy_available = attempt_import('numpy')





Is roughly equivalent to

>>> from pyomo.common.dependencies import ModuleUnavailable
>>> try:
...     import numpy
...     numpy_available = True
... except ImportError as e:
...     numpy = ModuleUnavailable('numpy', 'Numpy is not available',
...                               '', str(e), globals()['__name__'])
...     numpy_available = False





The import can be “deferred” until the first time the code either
attempts to access the module or checks the Boolean value of the
available flag.  This allows optional dependencies to be declared at
the module scope but not imported until they are actually used by
the module (thereby speeding up the initial package import).
Deferred imports are handled by two helper classes
(DeferredImportModule and
DeferredImportIndicator).  Upon actual import,
DeferredImportIndicator.resolve() attempts to replace
those objects (in both the local and original global namespaces)
with the imported module and Boolean flag so that subsequent uses of
the module do not incur any overhead due to the delayed import.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the module to import

	error_message (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The message for the exception raised by ModuleUnavailable

	only_catch_importerror (bool [https://docs.python.org/3/library/functions.html#bool], optional) – DEPRECATED: use catch_exceptions instead or only_catch_importerror.
If True (the default), exceptions other than ImportError raised
during module import will be reraised.  If False, any exception
will result in returning a ModuleUnavailable object.
(deprecated in version 5.7.3)

	minimum_version (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The minimum acceptable module version (retrieved from
module.__version__)

	alt_names (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – DEPRECATED: alt_names no longer needs to be specified and is ignored.
A list of common alternate names by which to look for this
module in the globals() namespaces.  For example, the alt_names
for NumPy would be ['np'].  (deprecated in version 6.0)

	callback (function, optional) – A function with the signature “fcn(module, available)” that
will be called after the import is first attempted.

	importer (function, optional) – A function that will perform the import and return the imported
module (or raise an ImportError [https://docs.python.org/3/library/exceptions.html#ImportError]).  This is useful
for cases where there are several equivalent modules and you
want to import/return the first one that is available.

	defer_check (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True (the default), then the attempted import is deferred
until the first use of either the module or the availability
flag.  The method will return instances of DeferredImportModule
and DeferredImportIndicator.

	deferred_submodules (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If provided, an iterable of submodule names within this module
that can be accessed without triggering a deferred import of
this module.  For example, this module uses
deferred_submodules=['pyplot', 'pylab'] for matplotlib.

	catch_exceptions (Iterable[Exception [https://docs.python.org/3/library/exceptions.html#Exception]], optional) – If provided, this is the list of exceptions that will be caught
when importing the target module, resulting in
attempt_import returning a ModuleUnavailable
instance.  The default is to only catch ImportError [https://docs.python.org/3/library/exceptions.html#ImportError].
This is useful when a module can regularly return additional
exceptions during import.






	Returns:	
	module – the imported module, or an instance of
ModuleUnavailable, or an instance of
DeferredImportModule

	bool – Boolean indicating if the module import succeeded or an instance
of DeferredImportIndicator
















	
pyomo.common.dependencies.declare_deferred_modules_as_importable(globals_dict)

	Make all DeferredImportModules in globals_dict importable

This function will go throught the specified globals_dict
dictionary and add any instances of DeferredImportModule
that it finds (and any of their deferred submodules) to
sys.modules so that the modules can be imported through the
globals_dict namespace.

For example, pyomo/common/dependencies.py declares:

>>> scipy, scipy_available = attempt_import(
...     'scipy', callback=_finalize_scipy,
...     deferred_submodules=['stats', 'sparse', 'spatial', 'integrate'])
>>> declare_deferred_modules_as_importable(globals())





Which enables users to use:

>>> import pyomo.common.dependencies.scipy.sparse as spa





If the deferred import has not yet been triggered, then the
DeferredImportModule is returned and named spa.
However, if the import has already been triggered, then spa will
either be the scipy.sparse module, or a
ModuleUnavailable instance.
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pyomo.common.deprecation

This module provides utilities for deprecating functionality.



	deprecated([msg,
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pyomo.common.fileutils

This module provides general utilities for working with the file system



	this_file([stack_offset])
	Returns the file name for the module that calls this function.


	this_file_dir([stack_offset])
	Returns the directory containing the module that calls this function.


	find_path(name,
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pyomo.common.formatting

This module provides general utilities for producing formatted I/O



	tostr(value[,
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pyomo.common.tempfiles


	
class pyomo.common.tempfiles.TempfileManagerClass

	A class for managing tempfile contexts

Pyomo declares a global instance of this class as TempfileManager:

>>> from pyomo.common.tempfiles import TempfileManager





This class provides an interface for managing
TempfileContext contexts.  It implements a basic stack,
where users can push() a new context (causing it to become
the current “active” context) and pop() contexts off
(optionally deleting all files associated with the context).  In
general usage, users will either use this class to create new
tempfile contexts and use them explicitly (i.e., through a context
manager):

>>> import os
>>> with TempfileManager.new_context() as tempfile:
...     fd, fname = tempfile.mkstemp()
...     dname = tempfile.mkdtemp()
...     os.path.isfile(fname)
...     os.path.isdir(dname)
True
True
>>> os.path.exists(fname)
False
>>> os.path.exists(dname)
False





or through an implicit active context accessed through the manager
class:

>>> TempfileManager.push()
<pyomo.common.tempfiles.TempfileContext object ...>
>>> fname = TempfileManager.create_tempfile()
>>> dname = TempfileManager.create_tempdir()
>>> os.path.isfile(fname)
True
>>> os.path.isdir(dname)
True

>>> TempfileManager.pop()
<pyomo.common.tempfiles.TempfileContext object ...>
>>> os.path.exists(fname)
False
>>> os.path.exists(dname)
False






	
context()

	Return the current active TempfileContext.





	Raises:	TempfileContextError if there is not a current context. – 










	
create_tempfile(suffix=None, prefix=None, text=False, dir=None)

	Call TempfileContext.create_tempfile() on the active context






	
create_tempdir(suffix=None, prefix=None, dir=None)

	Call TempfileContext.create_tempdir() on the active context






	
add_tempfile(filename, exists=True)

	Call TempfileContext.add_tempfile() on the active context






	
clear_tempfiles(remove=True)

	Delete all temporary files and remove all contexts.






	
sequential_files(ctr=0)

	DEPRECATED.


Deprecated since version 6.2: The TempfileManager.sequential_files() method has been removed.  All temporary files are created with guaranteed unique names.  Users wishing sequentially numbered files should create a temporary (empty) directory using mkdtemp / create_tempdir and place the sequential files within it.








	
new_context()

	Create and return an new tempfile context





	Returns:	the newly-created tempfile context


	Return type:	TempfileContext










	
push()

	Create a new tempfile context and set it as the active context.





	Returns:	the newly-created tempfile context


	Return type:	TempfileContext










	
pop(remove=True)

	Remove and release the active context





	Parameters:	remove (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, delete all managed files / directories














	
class pyomo.common.tempfiles.TempfileContext(manager)

	A context for managing collections of temporary files

Instances of this class hold a “temporary file context”.  That is,
this records a collection of temporary file system objects that are
all managed as a group.  The most common use of the context is to
ensure that all files are deleted when the context is released.

This class replicates a significant portion of the tempfile [https://docs.python.org/3/library/tempfile.html#module-tempfile]
module interface.

Instances of this class may be used as context managers (with the
temporary files / directories getting automatically deleted when the
context manager exits).

Instances will also attempt to delete any temporary objects from the
filesystem when the context falls out of scope (although this
behavior is not guaranteed for instances existing when the
interpreter is shutting down).


	
mkstemp(suffix=None, prefix=None, dir=None, text=False)

	Create a unique temporary file using tempfile.mkstemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp]

Parameters are handled as in tempfile.mkstemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp], with
the exception that the new file is created in the directory
returned by gettempdir()





	Returns:	
	fd (int) – the opened file descriptor

	fname (str or bytes) – the absolute path to the new temporary file














	
mkdtemp(suffix=None, prefix=None, dir=None)

	Create a unique temporary directory using tempfile.mkdtemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp]

Parameters are handled as in tempfile.mkdtemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp], with
the exception that the new file is created in the directory
returned by gettempdir()





	Returns:	dname – the absolute path to the new temporary directory


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
gettempdir()

	Return the default name of the directory used for temporary files.

This method returns the first non-null location returned from:



	This context’s tempdir (i.e., self.tempdir)

	This context’s manager’s tempdir (i.e.,
self.manager().tempdir)

	tempfile.gettempdir() [https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir]










	Returns:	dir – The default directory to use for creating temporary objects


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
gettempdirb()

	Same as gettempdir(), but the return value is bytes






	
gettempprefix()

	Return the filename prefix used to create temporary files.

See tempfile.gettempprefix() [https://docs.python.org/3/library/tempfile.html#tempfile.gettempprefix]






	
gettempprefixb()

	Same as gettempprefix(), but the return value is bytes






	
create_tempfile(suffix=None, prefix=None, text=False, dir=None)

	Create a unique temporary file.

The file name is generated as in tempfile.mkstemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp].

Any file handles to the new file (e.g., from mkstemp())
are closed.





	Returns:	fname – The absolute path of the new file.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
create_tempdir(suffix=None, prefix=None, dir=None)

	Create a unique temporary directory.

The file name is generated as in tempfile.mkdtemp() [https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp].





	Returns:	dname – The absolute path of the new directory.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
add_tempfile(filename, exists=True)

	Declare the specified file/directory to be temporary.

This adds the specified path as a “temporary” object to this
context’s list of managed temporary paths (i.e., it will be
potentially be deleted when the context is released (see
release()).





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file / directory name to be treated as temporary

	exists (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the file / directory must already exist.














	
release(remove=True)

	Release this context

This releases the current context, potentially deleting all
managed temporary objects (files and directories), and resetting
the context to generate unique names.





	Parameters:	remove (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, delete all managed files / directories
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pyomo.common.timing


	
pyomo.common.timing.report_timing(stream=True)

	Set reporting of Pyomo timing information.





	Parameters:	stream (bool [https://docs.python.org/3/library/functions.html#bool], TextIOBase) – The destination stream to emit timing information.  If True,
defaults to sys.stdout.  If False or None, disables
reporting of timing information.










	
class pyomo.common.timing.TicTocTimer(ostream=NOTSET, logger=None)

	A class to calculate and report elapsed time.

Examples

>>> from pyomo.common.timing import TicTocTimer
>>> timer = TicTocTimer()
>>> timer.tic('starting timer') # starts the elapsed time timer (from 0)
[    0.00] starting timer
>>> # ... do task 1
>>> dT = timer.toc('task 1')
[+   0.00] task 1
>>> print("elapsed time: %0.1f" % dT)
elapsed time: 0.0





If no ostream or logger is provided, then output is printed to sys.stdout





	Parameters:	
	ostream (FILE) – an optional output stream to print the timing
information

	logger (Logger) – an optional output stream using the python
logging package. Note: the timing logged using logger.info()










	
tic(msg=NOTSET, ostream=NOTSET, logger=NOTSET)

	Reset the tic/toc delta timer.

This resets the reference time from which the next delta time is
calculated to the current time.





	Parameters:	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message to print out.  If not specified, then
prints out “Resetting the tic/toc delta timer”; if msg
is None, then no message is printed.

	ostream (FILE) – an optional output stream (overrides the ostream
provided when the class was constructed).

	logger (Logger) – an optional output stream using the python
logging package (overrides the ostream provided when the
class was constructed). Note: timing logged using logger.info














	
toc(msg=NOTSET, delta=True, ostream=NOTSET, logger=NOTSET)

	Print out the elapsed time.

This resets the reference time from which the next delta time is
calculated to the current time.





	Parameters:	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message to print out.  If not specified, then
print out the file name, line number, and function that
called this method; if msg is None, then no message is
printed.

	delta (bool [https://docs.python.org/3/library/functions.html#bool]) – print out the elapsed wall clock time since
the last call to tic() or toc()
(True (default)) or since the module was first
loaded (False).

	ostream (FILE) – an optional output stream (overrides the ostream
provided when the class was constructed).

	logger (Logger) – an optional output stream using the python
logging package (overrides the ostream provided when the
class was constructed). Note: timing logged using logger.info


















	
pyomo.common.timing.tic(msg=NOTSET, ostream=NOTSET, logger=NOTSET)

	Reset the global TicTocTimer instance.

See TicTocTimer.tic().






	
pyomo.common.timing.toc(msg=NOTSET, delta=True, ostream=NOTSET, logger=NOTSET)

	Print the elapsed time from the global TicTocTimer instance.

See TicTocTimer.toc().






	
class pyomo.common.timing.HierarchicalTimer

	A class for hierarchical timing.

Examples

>>> import time
>>> from pyomo.common.timing import HierarchicalTimer
>>> timer = HierarchicalTimer()
>>> timer.start('all')
>>> time.sleep(0.2)
>>> for i in range(10):
...     timer.start('a')
...     time.sleep(0.1)
...     for i in range(5):
...         timer.start('aa')
...         time.sleep(0.01)
...         timer.stop('aa')
...     timer.start('ab')
...     timer.stop('ab')
...     timer.stop('a')
...
>>> for i in range(10):
...     timer.start('b')
...     time.sleep(0.02)
...     timer.stop('b')
...
>>> timer.stop('all')
>>> print(timer)       
Identifier        ncalls   cumtime   percall      %
---------------------------------------------------
all                    1     2.248     2.248  100.0
     ----------------------------------------------
     a                10     1.787     0.179   79.5
          -----------------------------------------
          aa          50     0.733     0.015   41.0
          ab          10     0.000     0.000    0.0
          other      n/a     1.055       n/a   59.0
          =========================================
     b                10     0.248     0.025   11.0
     other           n/a     0.213       n/a    9.5
     ==============================================
===================================================





The columns are:



	ncalls
	The number of times the timer was started and stopped

	cumtime
	The cumulative time (in seconds) the timer was active
(started but not stopped)

	percall
	cumtime (in seconds) / ncalls

	“%”
	This is cumtime of the timer divided by cumtime of the
parent timer times 100






>>> print('a total time: %f' % timer.get_total_time('all.a'))         
a total time: 1.902037
>>> print('ab num calls: %d' % timer.get_num_calls('all.a.ab'))         
ab num calls: 10
>>> print('aa %% time: %f' % timer.get_relative_percent_time('all.a.aa'))         
aa % time: 44.144148
>>> print('aa %% total: %f' % timer.get_total_percent_time('all.a.aa'))         
aa % total: 35.976058





Notes

The HierarchicalTimer use a stack to track which timers
are active at any point in time. Additionally, each timer has a
dictionary of timers for its children timers. Consider

>>> timer = HierarchicalTimer()
>>> timer.start('all')
>>> timer.start('a')
>>> timer.start('aa')





After the above code is run, timer.stack will be
['all', 'a', 'aa'] and timer.timers will have one key,
'all' and one value which will be a
_HierarchicalHelper. The _HierarchicalHelper
has its own timers dictionary:


{'a': _HierarchicalHelper}


and so on. This way, we can easily access any timer with something
that looks like the stack. The logic is recursive (although the
code is not).


	
start(identifier)

	Start incrementing the timer identified with identifier





	Parameters:	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the timer










	
stop(identifier)

	Stop incrementing the timer identified with identifier





	Parameters:	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the timer










	
reset()

	Completely reset the timer.






	
get_total_time(identifier)

	



	Parameters:	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full name of the timer including parent timers separated
with dots.


	Returns:	total_time – The total time spent with the specified timer active.


	Return type:	float [https://docs.python.org/3/library/functions.html#float]










	
get_num_calls(identifier)

	



	Parameters:	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full name of the timer including parent timers separated
with dots.


	Returns:	num_calss – The number of times start was called for the specified timer.


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
get_relative_percent_time(identifier)

	



	Parameters:	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full name of the timer including parent timers separated
with dots.


	Returns:	percent_time – The percent of time spent in the specified timer
relative to the timer’s immediate parent.


	Return type:	float [https://docs.python.org/3/library/functions.html#float]










	
get_total_percent_time(identifier)

	



	Parameters:	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full name of the timer including parent timers separated
with dots.


	Returns:	percent_time – The percent of time spent in the specified timer
relative to the total time in all timers.


	Return type:	float [https://docs.python.org/3/library/functions.html#float]










	
get_timers()

	



	Returns:	identifiers – Returns a list of all timer identifiers


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]
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AML Library Reference

The following modeling components make up the core of the Pyomo
Algebraic Modeling Language (AML).  These classes are all available
through the pyomo.environ namespace.



	ConcreteModel(*args,
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Expression Reference



	Utilities to Build Expressions

	Utilities to Manage and Analyze Expressions

	Context Managers

	Core Classes

	Visitor Classes
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Utilities to Build Expressions


	
pyomo.core.util.prod(terms)

	A utility function to compute the product of a list of terms.





	Parameters:	terms (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of terms that are multiplied together.


	Returns:	The value of the product, which may be a Pyomo expression object.










	
pyomo.core.util.quicksum(args, start=0, linear=None)

	A utility function to compute a sum of Pyomo expressions.

The behavior of quicksum() is similar to the builtin sum() [https://docs.python.org/3/library/functions.html#sum]
function, but this function generates a more compact Pyomo
expression.





	Parameters:	
	args – A generator for terms in the sum.

	start – A value that is initializes the sum.  If
this value is not a numeric constant, then the +=
operator is used to add terms to this object.
Defaults to zero.

	linear – If start is not a numeric constant, then this
option is ignored.  Otherwise, this value indicates
whether the terms in the sum are linear.  If the value
is False, then the terms are
treated as nonlinear, and if True, then
the terms are treated as linear.  Default is
None, which indicates that the first term
in the args is used to determine this value.






	Returns:	The value of the sum, which may be a Pyomo expression object.












	
pyomo.core.util.sum_product(*args, **kwds)

	A utility function to compute a generalized dot product.

This function accepts one or more components that provide terms
that are multiplied together.  These products are added together
to form a sum.





	Parameters:	
	*args – Variable length argument list of generators that
create terms in the summation.

	**kwds – Arbitrary keyword arguments.






	Keyword Arguments:

	 	
	index – A set that is used to index the components used to
create the terms

	denom – A component or tuple of components that are used to
create the denominator of the terms

	start – The initial value used in the sum






	Returns:	The value of the sum.












	
pyomo.core.util.summation = <function sum_product>

	An alias for sum_product






	
pyomo.core.util.dot_product = <function sum_product>

	An alias for sum_product









            

          

      

      

    

  

  
    
    
    Utilities to Manage and Analyze Expressions
    

    

    

    

    
 
  

    
      
          
            
  
Utilities to Manage and Analyze Expressions


Functions


	
pyomo.core.expr.current.expression_to_string(expr, verbose=None, labeler=None, smap=None, compute_values=False)

	Return a string representation of an expression.





	Parameters:	
	expr – The root node of an expression tree.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the output is
a nested functional form.  Otherwise, the output
is an algebraic expression.  Default is False.

	labeler – If specified, this labeler is used to label
variables in the expression.

	smap – If specified, this SymbolMap is
used to cache labels.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.  Default is False.






	Returns:	A string representation for the expression.












	
pyomo.core.expr.current.decompose_term(expr)

	A function that returns a tuple consisting of (1) a flag indicated
whether the expression is linear, and (2) a list of tuples that
represents the terms in the linear expression.





	Parameters:	expr (expression) – The root node of an expression tree


	Returns:	A tuple with the form (flag, list).  If flag is False, then
a nonlinear term has been found, and list is None.
Otherwise, list is a list of tuples: (coef, value).
If value is None, then this
represents a constant term with value coef.  Otherwise,
value is a variable object, and coef is the
numeric coefficient.










	
pyomo.core.expr.current.clone_expression(expr, substitute=None)

	A function that is used to clone an expression.

Cloning is equivalent to calling copy.deepcopy with no Block
scope.  That is, the expression tree is duplicated, but no Pyomo
components (leaf nodes or named Expressions) are duplicated.





	Parameters:	
	expr – The expression that will be cloned.

	substitute (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping object ids to
objects. This dictionary has the same semantics as
the memo object used with copy.deepcopy. Defaults
to None, which indicates that no user-defined
dictionary is used.






	Returns:	The cloned expression.












	
pyomo.core.expr.current.evaluate_expression(exp, exception=True, constant=False)

	Evaluate the value of the expression.





	Parameters:	
	expr – The root node of an expression tree.

	exception (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag that indicates whether
exceptions are raised.  If this flag is
False, then an exception that
occurs while evaluating the expression
is caught and the return value is None.
Default is True.

	constant (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, constant expressions are
evaluated and returned but nonconstant expressions
raise either FixedExpressionError or
NonconstantExpressionError (default=False).






	Returns:	A floating point value if the expression evaluates
normally, or None if an exception occurs
and is caught.












	
pyomo.core.expr.current.identify_components(expr, component_types)

	A generator that yields a sequence of nodes
in an expression tree that belong to a specified set.





	Parameters:	
	expr – The root node of an expression tree.

	component_types (set [https://docs.python.org/3/library/stdtypes.html#set] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A set of class
types that will be matched during the search.






	Yields:	Each node that is found.












	
pyomo.core.expr.current.identify_variables(expr, include_fixed=True)

	A generator that yields a sequence of variables
in an expression tree.





	Parameters:	
	expr – The root node of an expression tree.

	include_fixed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
this generator will yield variables whose
value is fixed.  Defaults to True.






	Yields:	Each variable that is found.












	
pyomo.core.expr.differentiate(expr, wrt=None, wrt_list=None, mode=Modes.reverse_numeric)

	Return derivative of expression.

This function returns the derivative of expr with respect to one or
more variables.  The type of the return value depends on the
arguments wrt, wrt_list, and mode. See below for details.





	Parameters:	
	expr (pyomo.core.expr.numeric_expr.ExpressionBase) – The expression to differentiate

	wrt (pyomo.core.base.var._GeneralVarData) – If specified, this function will return the derivative with
respect to wrt. wrt is normally a _GeneralVarData, but could
also be a _ParamData. wrt and wrt_list cannot both be specified.

	wrt_list (list [https://docs.python.org/3/library/stdtypes.html#list] of pyomo.core.base.var._GeneralVarData) – If specified, this function will return the derivative with
respect to each element in wrt_list.  A list will be returned
where the values are the derivatives with respect to the
corresponding entry in wrt_list.

	mode (pyomo.core.expr.calculus.derivatives.Modes) – Specifies the method to use for differentiation. Should be one
of the members of the Modes enum:



	Modes.sympy:
	The pyomo expression will be converted to a sympy
expression. Differentiation will then be done with
sympy, and the result will be converted back to a pyomo
expression.  The sympy mode only does symbolic
differentiation. The sympy mode requires exactly one of
wrt and wrt_list to be specified.

	Modes.reverse_symbolic:
	Symbolic differentiation will be performed directly with
the pyomo expression in reverse mode. If neither wrt nor
wrt_list are specified, then a ComponentMap is returned
where there will be a key for each node in the
expression tree, and the values will be the symbolic
derivatives.

	Modes.reverse_numeric:
	Numeric differentiation will be performed directly with
the pyomo expression in reverse mode. If neither wrt nor
wrt_list are specified, then a ComponentMap is returned
where there will be a key for each node in the
expression tree, and the values will be the floating
point values of the derivatives at the current values of
the variables.













	Returns:	res – The value or expression of the derivative(s)




	Return type:	float, ExpressionBase, ComponentMap, or list














Classes


	
class pyomo.core.expr.symbol_map.SymbolMap(labeler=None)

	A class for tracking assigned labels for modeling components.

Symbol maps are used, for example, when writing problem files for
input to an optimizer.


Warning

A symbol map should never be pickled.  This class is
typically constructed by solvers and writers, and it may be
owned by models.




Note

We should change the API to not use camelcase.




	
byObject

	maps (object id) to (string label)





	Type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
bySymbol

	maps (string label) to (object weakref)





	Type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
alias

	maps (string label) to (object weakref)





	Type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
default_labeler

	used to compute a string label from an object
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Context Managers


	
class pyomo.core.expr.current.nonlinear_expression

	Context manager for mutable sums.

This context manager is used to compute a sum while
treating the summation as a mutable object.






	
class pyomo.core.expr.current.linear_expression

	Context manager for mutable linear sums.

This context manager is used to compute a linear sum while
treating the summation as a mutable object.






	
class pyomo.core.expr.current.clone_counter

	Context manager for counting cloning events.

This context manager counts the number of times that the
clone_expression
function is executed.


	
property count

	A property that returns the clone count value.
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Core Classes

The following are the two core classes documented here:



	NumericValue

	ExpressionBase






The remaining classes are the public classes for expressions, which
developers may need to know about. The methods for these classes are not
documented because they are described in the
ExpressionBase class.


Sets with Expression Types

The following sets can be used to develop visitor patterns for
Pyomo expressions.


	
pyomo.core.expr.numvalue.native_numeric_types = {<class 'numpy.uint64'>, <class 'numpy.int64'>, <class 'numpy.ndarray'>, <class 'numpy.float64'>, <class 'bool'>, <class 'numpy.float16'>, <class 'float'>, <class 'numpy.uint8'>, <class 'numpy.int8'>, <class 'numpy.float32'>, <class 'numpy.uint16'>, <class 'numpy.int16'>, <class 'int'>, <class 'numpy.uint32'>, <class 'numpy.int32'>}

	set() -> new empty set object
set(iterable) -> new set object

Build an unordered collection of unique elements.






	
pyomo.core.expr.numvalue.native_types = {<class 'numpy.uint64'>, <class 'numpy.int64'>, <class 'numpy.float64'>, <class 'numpy.uint32'>, <class 'numpy.int32'>, <class 'slice'>, <class 'bool'>, <class 'numpy.float32'>, <class 'numpy.uint16'>, <class 'numpy.int16'>, <class 'numpy.bool_'>, <class 'NoneType'>, <class 'str'>, <class 'numpy.float16'>, <class 'numpy.uint8'>, <class 'numpy.int8'>, <class 'bytes'>, <class 'numpy.ndarray'>, <class 'float'>, <class 'int'>}

	set() -> new empty set object
set(iterable) -> new set object

Build an unordered collection of unique elements.






	
pyomo.core.expr.numvalue.nonpyomo_leaf_types = {<class 'numpy.uint64'>, <class 'numpy.int64'>, <class 'numpy.float16'>, <class 'numpy.uint8'>, <class 'numpy.int8'>, <class 'numpy.float64'>, <class 'numpy.uint32'>, <class 'numpy.int32'>, <class 'bytes'>, <class 'slice'>, <class 'numpy.ndarray'>, <class 'pyomo.core.expr.numvalue.NonNumericValue'>, <class 'bool'>, <class 'NoneType'>, <class 'float'>, <class 'numpy.float32'>, <class 'numpy.uint16'>, <class 'numpy.int16'>, <class 'numpy.bool_'>, <class 'int'>, <class 'str'>}

	set() -> new empty set object
set(iterable) -> new set object

Build an unordered collection of unique elements.








NumericValue and ExpressionBase


	
class pyomo.core.expr.numvalue.NumericValue

	This is the base class for numeric values used in Pyomo.


	
__abs__()

	Absolute value

This method is called when Python processes the statement:

abs(self)










	
__add__(other)

	Binary addition

This method is called when Python processes the statement:

self + other










	
__bool__()

	Coerce the value to a bool

Numeric values can be coerced to bool only if the value /
expression is constant.  Fixed (but non-constant) or variable
values will raise an exception.





	Raises:	PyomoException – 










	
__div__(other)

	Binary division

This method is called when Python processes the statement:

self / other










	
__eq__(other)

	Equal to operator

This method is called when Python processes the statement:

self == other










	
__float__()

	Coerce the value to a floating point

Numeric values can be coerced to float only if the value /
expression is constant.  Fixed (but non-constant) or variable
values will raise an exception.





	Raises:	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – 










	
__ge__(other)

	Greater than or equal operator

This method is called when Python processes statements of the form:

self >= other
other <= self










	
__getstate__()

	Prepare a picklable state of this instance for pickling.

Nominally, __getstate__() should execute the following:

state = super(Class, self).__getstate__()
for i in Class.__slots__:
    state[i] = getattr(self,i)
return state





However, in this case, the (nominal) parent class is ‘object’,
and object does not implement __getstate__.  So, we will
check to make sure that there is a base __getstate__() to
call.  You might think that there is nothing to check, but
multiple inheritance could mean that another class got stuck
between this class and “object” in the MRO.

Further, since there are actually no slots defined here, the
real question is to either return an empty dict or the
parent’s dict.






	
__gt__(other)

	Greater than operator

This method is called when Python processes statements of the form:

self > other
other < self










	
__hash__ = None

	




	
__iadd__(other)

	Binary addition

This method is called when Python processes the statement:

self += other










	
__idiv__(other)

	Binary division

This method is called when Python processes the statement:

self /= other










	
__imul__(other)

	Binary multiplication

This method is called when Python processes the statement:

self *= other










	
__int__()

	Coerce the value to an integer

Numeric values can be coerced to int only if the value /
expression is constant.  Fixed (but non-constant) or variable
values will raise an exception.





	Raises:	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – 










	
__ipow__(other)

	Binary power

This method is called when Python processes the statement:

self **= other










	
__isub__(other)

	Binary subtraction

This method is called when Python processes the statement:

self -= other










	
__itruediv__(other)

	Binary division (when __future__.division is in effect)

This method is called when Python processes the statement:

self /= other










	
__le__(other)

	Less than or equal operator

This method is called when Python processes statements of the form:

self <= other
other >= self










	
__lt__(other)

	Less than operator

This method is called when Python processes statements of the form:

self < other
other > self










	
__mul__(other)

	Binary multiplication

This method is called when Python processes the statement:

self * other










	
__neg__()

	Negation

This method is called when Python processes the statement:

- self










	
__pos__()

	Positive expression

This method is called when Python processes the statement:

+ self










	
__pow__(other)

	Binary power

This method is called when Python processes the statement:

self ** other










	
__radd__(other)

	Binary addition

This method is called when Python processes the statement:

other + self










	
__rdiv__(other)

	Binary division

This method is called when Python processes the statement:

other / self










	
__rmul__(other)

	Binary multiplication

This method is called when Python processes the statement:

other * self





when other is not a NumericValue object.






	
__rpow__(other)

	Binary power

This method is called when Python processes the statement:

other ** self










	
__rsub__(other)

	Binary subtraction

This method is called when Python processes the statement:

other - self










	
__rtruediv__(other)

	Binary division (when __future__.division is in effect)

This method is called when Python processes the statement:

other / self










	
__setstate__(state)

	Restore a pickled state into this instance

Our model for setstate is for derived classes to modify
the state dictionary as control passes up the inheritance
hierarchy (using super() calls).  All assignment of state ->
object attributes is handled at the last class before ‘object’,
which may – or may not (thanks to MRO) – be here.






	
__sub__(other)

	Binary subtraction

This method is called when Python processes the statement:

self - other










	
__truediv__(other)

	Binary division (when __future__.division is in effect)

This method is called when Python processes the statement:

self / other










	
_compute_polynomial_degree(values)

	Compute the polynomial degree of this expression given
the degree values of its children.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	None










	
getname(fully_qualified=False, name_buffer=None)

	If this is a component, return the component’s name on the owning
block; otherwise return the value converted to a string






	
is_constant()

	Return True if this numeric value is a constant value






	
is_fixed()

	Return True if this is a non-constant value that has been fixed






	
is_indexed()

	Return True if this numeric value is an indexed object






	
is_numeric_type()

	Return True if this class is a Pyomo numeric object






	
is_potentially_variable()

	Return True if variables can appear in this expression






	
is_relational()

	Return True if this numeric value represents a relational expression.






	
polynomial_degree()

	Return the polynomial degree of the expression.





	Returns:	None










	
to_string(verbose=None, labeler=None, smap=None, compute_values=False)

	Return a string representation of the expression tree.





	Parameters:	
	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.
Defaults to False.

	labeler – An object that generates string labels for
variables in the expression tree.  Defaults to None.






	Returns:	A string representation for the expression tree.
















	
class pyomo.core.expr.current.ExpressionBase(args)

	Bases: NumericValue

The base class for Pyomo expressions.

This class is used to define nodes in an expression
tree.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Children of this node.






	
__call__(exception=True)

	Evaluate the value of the expression tree.





	Parameters:	exception (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, then
an exception raised while evaluating
is captured, and the value returned is
None.  Default is True.


	Returns:	The value of the expression or None.










	
__getstate__()

	Pickle the expression object





	Returns:	The pickled state.










	
__init__(args)

	




	
__str__()

	Returns a string description of the expression.


Note

The value of pyomo.core.expr.expr_common.TO_STRING_VERBOSE
is used to configure the execution of this method.
If this value is True, then the string
representation is a nested function description of the expression.
The default is False, which is an algebraic
description of the expression.







	Returns:	A string.










	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_associativity()

	Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if
it is right-to-left associative.  Any other return value will be
interpreted as “not associative” (implying any arguments that
are at this operator’s _precedence() will be enclosed in parens).






	
_compute_polynomial_degree(values)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_is_fixed(values)

	Compute whether this expression is fixed given
the fixed values of its children.

This method is called by the _IsFixedVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of boolean values that indicate whether
the children of this expression are fixed


	Returns:	A boolean that is True if the fixed values of the
children are all True.










	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
arg(i)

	Return the i-th child node.





	Parameters:	i (int [https://docs.python.org/3/library/functions.html#int]) – Nonnegative index of the child that is returned.


	Returns:	The i-th child node.










	
property args

	Return the child nodes


	Returns: Either a list or tuple (depending on the node storage
	model) containing only the child nodes of this node








	
clone(substitute=None)

	Return a clone of the expression tree.


Note

This method does not clone the leaves of the
tree, which are numeric constants and variables.
It only clones the interior nodes, and
expression leaf nodes like
_MutableLinearExpression.
However, named expressions are treated like
leaves, and they are not cloned.







	Parameters:	substitute (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary that maps object ids to clone
objects generated earlier during the cloning process.


	Returns:	A new expression tree.










	
create_node_with_local_data(args, classtype=None)

	Construct a node using given arguments.

This method provides a consistent interface for constructing a
node, which is used in tree visitor scripts.  In the simplest
case, this simply returns:

self.__class__(args)





But in general this creates an expression object using local
data as well as arguments that represent the child nodes.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of child nodes for the new expression
object


	Returns:	A new expression object with the same type as the current
class.










	
create_potentially_variable_object()

	Create a potentially variable version of this object.

This method returns an object that is a potentially variable
version of the current object.  In the simplest
case, this simply sets the value of __class__:


self.__class__ = self.__class__.__mro__[1]


Note that this method is allowed to modify the current object
and return it.  But in some cases it may create a new
potentially variable object.





	Returns:	An object that is potentially variable.










	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
is_constant()

	Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method.  This method
returns True if the expression is an atomic constant, that is it
is composed exclusively of constants and immutable parameters.
NumericValue objects returning is_constant() == True may be
simplified to their numeric value at any point without warning.

Note:  This defaults to False, but gets redefined in sub-classes.






	
is_expression_type()

	Return True if this object is an expression.

This method obviously returns True for this class, but it
is included in other classes within Pyomo that are not expressions,
which allows for a check for expressions without
evaluating the class type.





	Returns:	A boolean.










	
is_fixed()

	Return True if this expression contains no free variables.





	Returns:	A boolean.










	
is_named_expression_type()

	Return True if this object is a named expression.

This method returns False for this class, and it
is included in other classes within Pyomo that are not named
expressions, which allows for a check for named expressions
without evaluating the class type.





	Returns:	A boolean.










	
is_potentially_variable()

	Return True if this expression might represent
a variable expression.

This method returns True when (a) the expression
tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the
expression cannot be treated as constant since (a) the variables
may not be fixed, or (b) the named expressions may be changed
at a later time to include non-fixed variables.





	Returns:	A boolean.  Defaults to True for expressions.










	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.










	
polynomial_degree()

	Return the polynomial degree of the expression.





	Returns:	A non-negative integer that is the polynomial
degree if the expression is polynomial, or None otherwise.










	
size()

	Return the number of nodes in the expression tree.





	Returns:	A nonnegative integer that is the number of interior and leaf
nodes in the expression tree.










	
to_string(verbose=None, labeler=None, smap=None, compute_values=False)

	Return a string representation of the expression tree.





	Parameters:	
	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.
Defaults to False.

	labeler – An object that generates string labels for
variables in the expression tree.  Defaults to None.

	smap – If specified, this
SymbolMap
is used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.  Default is False.






	Returns:	A string representation for the expression tree.


















Other Public Classes


	
class pyomo.core.expr.current.NegationExpression(args)

	Bases: ExpressionBase

Negation expressions:

- x






	
PRECEDENCE = 4

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_precedence()

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.ExternalFunctionExpression(args, fcn=None)

	Bases: ExpressionBase

External function expressions

Example:

model = ConcreteModel()
model.a = Var()
model.f = ExternalFunction(library='foo.so', function='bar')
expr = model.f(model.a)









	Parameters:	
	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – children of this node

	fcn – a class that defines this external function










	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_fcn

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
create_node_with_local_data(args, classtype=None)

	Construct a node using given arguments.

This method provides a consistent interface for constructing a
node, which is used in tree visitor scripts.  In the simplest
case, this simply returns:

self.__class__(args)





But in general this creates an expression object using local
data as well as arguments that represent the child nodes.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of child nodes for the new expression
object


	Returns:	A new expression object with the same type as the current
class.










	
get_arg_units()

	Return the units for this external functions arguments






	
get_units()

	Get the units of the return value for this external function






	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.ProductExpression(args)

	Bases: ExpressionBase

Product expressions:

x*y






	
PRECEDENCE = 4

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_is_fixed(args)

	Compute whether this expression is fixed given
the fixed values of its children.

This method is called by the _IsFixedVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of boolean values that indicate whether
the children of this expression are fixed


	Returns:	A boolean that is True if the fixed values of the
children are all True.










	
_precedence()

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.
















	
class pyomo.core.expr.current.DivisionExpression(args)

	Bases: ExpressionBase

Division expressions:

x/y






	
PRECEDENCE = 4

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_precedence()

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.InequalityExpression(args, strict)

	Bases: _LinearOperatorExpression

Inequality expressions, which define less-than or
less-than-or-equal relations:

x < y
x <= y









	Parameters:	
	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – child nodes

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – a flag that indicates whether the inequality is strict










	
PRECEDENCE = 9

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_precedence()

	




	
_strict

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
create_node_with_local_data(args)

	Construct a node using given arguments.

This method provides a consistent interface for constructing a
node, which is used in tree visitor scripts.  In the simplest
case, this simply returns:

self.__class__(args)





But in general this creates an expression object using local
data as well as arguments that represent the child nodes.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of child nodes for the new expression
object


	Returns:	A new expression object with the same type as the current
class.










	
is_constant()

	Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method.  This method
returns True if the expression is an atomic constant, that is it
is composed exclusively of constants and immutable parameters.
NumericValue objects returning is_constant() == True may be
simplified to their numeric value at any point without warning.

Note:  This defaults to False, but gets redefined in sub-classes.






	
is_potentially_variable()

	Return True if this expression might represent
a variable expression.

This method returns True when (a) the expression
tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the
expression cannot be treated as constant since (a) the variables
may not be fixed, or (b) the named expressions may be changed
at a later time to include non-fixed variables.





	Returns:	A boolean.  Defaults to True for expressions.










	
is_relational()

	Return True if this numeric value represents a relational expression.






	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.










	
property strict

	








	
class pyomo.core.expr.current.EqualityExpression(args)

	Bases: _LinearOperatorExpression

Equality expression:

x == y






	
PRECEDENCE = 9

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_precedence()

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
is_constant()

	Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method.  This method
returns True if the expression is an atomic constant, that is it
is composed exclusively of constants and immutable parameters.
NumericValue objects returning is_constant() == True may be
simplified to their numeric value at any point without warning.

Note:  This defaults to False, but gets redefined in sub-classes.






	
is_potentially_variable()

	Return True if this expression might represent
a variable expression.

This method returns True when (a) the expression
tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the
expression cannot be treated as constant since (a) the variables
may not be fixed, or (b) the named expressions may be changed
at a later time to include non-fixed variables.





	Returns:	A boolean.  Defaults to True for expressions.










	
is_relational()

	Return True if this numeric value represents a relational expression.






	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.SumExpression(args)

	Bases: SumExpressionBase

Sum expression:

x + y









	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – Children nodes






	
PRECEDENCE = 6

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_nargs

	




	
_precedence()

	




	
_shared_args

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
add(new_arg)

	




	
create_node_with_local_data(args, classtype=None)

	Construct a node using given arguments.

This method provides a consistent interface for constructing a
node, which is used in tree visitor scripts.  In the simplest
case, this simply returns:

self.__class__(args)





But in general this creates an expression object using local
data as well as arguments that represent the child nodes.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of child nodes for the new expression
object


	Returns:	A new expression object with the same type as the current
class.










	
is_constant()

	Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method.  This method
returns True if the expression is an atomic constant, that is it
is composed exclusively of constants and immutable parameters.
NumericValue objects returning is_constant() == True may be
simplified to their numeric value at any point without warning.

Note:  This defaults to False, but gets redefined in sub-classes.






	
is_potentially_variable()

	Return True if this expression might represent
a variable expression.

This method returns True when (a) the expression
tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the
expression cannot be treated as constant since (a) the variables
may not be fixed, or (b) the named expressions may be changed
at a later time to include non-fixed variables.





	Returns:	A boolean.  Defaults to True for expressions.










	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.GetItemExpression(args)

	Bases: ExpressionBase

Expression to call __getitem__() on the base object.


	
PRECEDENCE = 1

	




	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_args_

	




	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_is_fixed(values)

	Compute whether this expression is fixed given
the fixed values of its children.

This method is called by the _IsFixedVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of boolean values that indicate whether
the children of this expression are fixed


	Returns:	A boolean that is True if the fixed values of the
children are all True.










	
_precedence()

	




	
_resolve_template(args)

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
is_potentially_variable()

	Return True if this expression might represent
a variable expression.

This method returns True when (a) the expression
tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the
expression cannot be treated as constant since (a) the variables
may not be fixed, or (b) the named expressions may be changed
at a later time to include non-fixed variables.





	Returns:	A boolean.  Defaults to True for expressions.










	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.Expr_ifExpression(IF_=None, THEN_=None, ELSE_=None)

	Bases: ExpressionBase

A logical if-then-else expression:

Expr_if(IF_=x, THEN_=y, ELSE_=z)









	Parameters:	
	IF (expression) – A relational expression

	THEN (expression) – An expression that is used if IF_ is true.

	ELSE (expression) – An expression that is used if IF_ is false.










	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_else

	




	
_if

	




	
_is_fixed(args)

	Compute whether this expression is fixed given
the fixed values of its children.

This method is called by the _IsFixedVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of boolean values that indicate whether
the children of this expression are fixed


	Returns:	A boolean that is True if the fixed values of the
children are all True.










	
_then

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
is_constant()

	Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method.  This method
returns True if the expression is an atomic constant, that is it
is composed exclusively of constants and immutable parameters.
NumericValue objects returning is_constant() == True may be
simplified to their numeric value at any point without warning.

Note:  This defaults to False, but gets redefined in sub-classes.






	
is_potentially_variable()

	Return True if this expression might represent
a variable expression.

This method returns True when (a) the expression
tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the
expression cannot be treated as constant since (a) the variables
may not be fixed, or (b) the named expressions may be changed
at a later time to include non-fixed variables.





	Returns:	A boolean.  Defaults to True for expressions.










	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.UnaryFunctionExpression(args, name=None, fcn=None)

	Bases: ExpressionBase

An expression object used to define intrinsic functions (e.g. sin, cos, tan).





	Parameters:	
	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Children nodes

	name (string) – The function name

	fcn – The function that is used to evaluate this expression










	
_apply_operation(result)

	Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class.  It must
be over-written by expression classes to customize this logic.


Note

This method applies the logical operation of the
operator to the arguments.  It does not evaluate
the arguments in the process, but assumes that they
have been previously evaluated.  But noted that if
this class contains auxilliary data (e.g. like the
numeric coefficients in the LinearExpression class, then
those values must be evaluated as part of this
function call.  An uninitialized parameter value
encountered during the execution of this method is
considered an error.







	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the value
of the children expressions.


	Returns:	A floating point value for this expression.










	
_compute_polynomial_degree(result)

	Compute the polynomial degree of this expression given
the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class.  It can
be over-written by expression classes to customize this
logic.





	Parameters:	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of values that indicate the degree
of the children expression.


	Returns:	A nonnegative integer that is the polynomial degree of the
expression, or None.  Default is None.










	
_fcn

	




	
_name

	




	
_to_string(values, verbose, smap, compute_values)

	Construct a string representation for this node, using the string
representations of its children.

This method is called by the _ToStringVisitor class.  It must
must be defined in subclasses.





	Parameters:	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The string representations of the children of this
node.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the the string
representation consists of nested functions.  Otherwise,
the string representation is an algebraic equation.

	smap – If specified, this SymbolMap is
used to cache labels for variables.

	compute_values (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then
parameters and fixed variables are evaluated before the
expression string is generated.






	Returns:	A string representation for this node.












	
create_node_with_local_data(args, classtype=None)

	Construct a node using given arguments.

This method provides a consistent interface for constructing a
node, which is used in tree visitor scripts.  In the simplest
case, this simply returns:

self.__class__(args)





But in general this creates an expression object using local
data as well as arguments that represent the child nodes.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of child nodes for the new expression
object


	Returns:	A new expression object with the same type as the current
class.










	
getname(*args, **kwds)

	Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.





	Parameters:	
	*arg – a variable length list of arguments

	**kwds – keyword arguments






	Returns:	A string name for the function.












	
nargs()

	Returns the number of child nodes.

By default, Pyomo expressions represent binary operations
with two arguments.


Note

This function does not simply compute the length of
_args_ because some expression classes use
a subset of the _args_ array.  Thus, it
is imperative that developers use this method!







	Returns:	A nonnegative integer that is the number of child nodes.














	
class pyomo.core.expr.current.AbsExpression(arg)

	Bases: UnaryFunctionExpression

An expression object for the abs() [https://docs.python.org/3/library/functions.html#abs] function.





	Parameters:	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Children nodes






	
create_node_with_local_data(args, classtype=None)

	Construct a node using given arguments.

This method provides a consistent interface for constructing a
node, which is used in tree visitor scripts.  In the simplest
case, this simply returns:

self.__class__(args)





But in general this creates an expression object using local
data as well as arguments that represent the child nodes.





	Parameters:	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of child nodes for the new expression
object


	Returns:	A new expression object with the same type as the current
class.
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Visitor Classes


	
class pyomo.core.expr.current.SimpleExpressionVisitor

	
Note

This class is a customization of the PyUtilib SimpleVisitor class that is tailored
to efficiently walk Pyomo expression trees.  However, this class
is not a subclass of the PyUtilib SimpleVisitor class because all key methods
are reimplemented.




	
finalize()

	Return the “final value” of the search.

The default implementation returns None, because
the traditional visitor pattern does not return a value.





	Returns:	The final value after the search.  Default is None.










	
visit(node)

	Visit a node in an expression tree and perform some operation on
it.

This method should be over-written by a user
that is creating a sub-class.





	Parameters:	node – a node in an expression tree


	Returns:	nothing










	
xbfs(node)

	Breadth-first search of an expression tree,
except that leaf nodes are immediately visited.


Note

This method has the same functionality as the
PyUtilib SimpleVisitor.xbfs
method.  The difference is that this method
is tailored to efficiently walk Pyomo expression trees.







	Parameters:	node – The root node of the expression tree that is searched.


	Returns:	The return value is determined by the finalize() function,
which may be defined by the user.  Defaults to None.










	
xbfs_yield_leaves(node)

	Breadth-first search of an expression tree, except that
leaf nodes are immediately visited.


Note

This method has the same functionality as the
PyUtilib SimpleVisitor.xbfs_yield_leaves
method.  The difference is that this method
is tailored to efficiently walk Pyomo expression trees.







	Parameters:	node – The root node of the expression tree
that is searched.


	Returns:	The return value is determined by the finalize() function,
which may be defined by the user.  Defaults to None.














	
class pyomo.core.expr.current.ExpressionValueVisitor

	
Note

This class is a customization of the PyUtilib ValueVisitor class that is tailored
to efficiently walk Pyomo expression trees.  However, this class
is not a subclass of the PyUtilib ValueVisitor class because all key methods
are reimplemented.




	
dfs_postorder_stack(node)

	Perform a depth-first search in postorder using a stack
implementation.


Note

This method has the same functionality as the
PyUtilib ValueVisitor.dfs_postorder_stack
method.  The difference is that this method
is tailored to efficiently walk Pyomo expression trees.







	Parameters:	node – The root node of the expression tree
that is searched.


	Returns:	The return value is determined by the finalize() function,
which may be defined by the user.










	
finalize(ans)

	This method defines the return value for the search methods
in this class.

The default implementation returns the value of the
initial node (aka the root node), because
this visitor pattern computes and returns value for each
node to enable the computation of this value.





	Parameters:	ans – The final value computed by the search method.


	Returns:	The final value after the search. Defaults to simply
returning ans.










	
visit(node, values)

	Visit a node in a tree and compute its value using
the values of its children.

This method should be over-written by a user
that is creating a sub-class.





	Parameters:	
	node – a node in a tree

	values – a list of values of this node’s children






	Returns:	The value for this node, which is computed using values












	
visiting_potential_leaf(node)

	Visit a node and return its value if it is a leaf.


Note

This method needs to be over-written for a specific
visitor application.







	Parameters:	node – a node in a tree


	Returns:	(flag, value).   If flag is False,
then the node is not a leaf and value is None.
Otherwise, value is the computed value for this node.


	Return type:	A tuple














	
class pyomo.core.expr.current.ExpressionReplacementVisitor(substitute=None, descend_into_named_expressions=True, remove_named_expressions=True)

	
	
dfs_postorder_stack(expr)

	DEPRECATED.


Deprecated since version 6.2: ExpressionReplacementVisitor: this walker has been ported to derive from StreamBasedExpressionVisitor.  dfs_postorder_stack() has been replaced with walk_expression()
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Solver Interfaces



	GAMS

	CPLEXPersistent

	GurobiPersistent

	XpressPersistent
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GAMS


GAMSShell Solver



	GAMSShell.available([exception_flag])
	True if the solver is available.


	GAMSShell.executable()
	Returns the executable used by this solver.


	GAMSShell.solve(*args,
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CPLEXPersistent


	
class pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent(**kwds)

	Bases: PersistentSolver, CPLEXDirect

A class that provides a persistent interface to Cplex. Direct solver interfaces do not use any file io.
Rather, they interface directly with the python bindings for the specific solver. Persistent solver interfaces
are similar except that they “remember” their model. Thus, persistent solver interfaces allow incremental changes
to the solver model (e.g., the gurobi python model or the cplex python model). Note that users are responsible
for notifying the persistent solver interfaces when changes are made to the corresponding pyomo model.





	Keyword Arguments:

	 	
	model (ConcreteModel) – Passing a model to the constructor is equivalent to calling the set_instance mehtod.

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – String indicating the class type of the solver instance.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – String representing either the class type of the solver instance or an assigned name.

	doc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Documentation for the solver

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of solver options










	
add_block(block)

	Add a single Pyomo Block to the solver’s model.

This will keep any existing model components intact.





	Parameters:	block (Block (scalar Block or single _BlockData)) – 










	
add_column(model, var, obj_coef, constraints, coefficients)

	Add a column to the solver’s and Pyomo model

This will add the Pyomo variable var to the solver’s
model, and put the coefficients on the associated
constraints in the solver model. If the obj_coef is
not zero, it will add obj_coef*var to the objective
of both the Pyomo and solver’s model.





	Parameters:	
	model (pyomo ConcreteModel to which the column will be added) – 

	var (Var (scalar Var or single _VarData)) – 

	obj_coef (float [https://docs.python.org/3/library/functions.html#float], pyo.Param) – 

	constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of scalar Constraints of single _ConstraintDatas) – 

	coefficients (list [https://docs.python.org/3/library/stdtypes.html#list] of the coefficient to put on var in the associated constraint) – 














	
add_constraint(con)

	Add a single constraint to the solver’s model.

This will keep any existing model components intact.





	Parameters:	con (Constraint (scalar Constraint or single _ConstraintData)) – 










	
add_sos_constraint(con)

	Add a single SOS constraint to the solver’s model (if supported).

This will keep any existing model components intact.





	Parameters:	con (SOSConstraint) – 










	
add_var(var)

	Add a single variable to the solver’s model.

This will keep any existing model components intact.





	Parameters:	var (Var) – 










	
available(exception_flag=True)

	True if the solver is available.






	
has_capability(cap)

	Returns a boolean value representing whether a solver supports
a specific feature. Defaults to ‘False’ if the solver is unaware
of an option. Expects a string.

Example:
# prints True if solver supports sos1 constraints, and False otherwise
print(solver.has_capability(‘sos1’)

# prints True is solver supports ‘feature’, and False otherwise
print(solver.has_capability(‘feature’)





	Parameters:	cap (str [https://docs.python.org/3/library/stdtypes.html#str]) – The feature


	Returns:	val – Whether or not the solver has the specified capability.


	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]










	
has_instance()

	True if set_instance has been called and this solver interface has a pyomo model and a solver model.





	Returns:	tmp


	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]










	
license_is_valid()

	True if the solver is present and has a valid license (if applicable)






	
load_duals(cons_to_load=None)

	Load the duals into the ‘dual’ suffix. The ‘dual’ suffix must live on the parent model.





	Parameters:	cons_to_load (list [https://docs.python.org/3/library/stdtypes.html#list] of Constraint) – 










	
load_rc(vars_to_load)

	Load the reduced costs into the ‘rc’ suffix. The ‘rc’ suffix must live on the parent model.





	Parameters:	vars_to_load (list [https://docs.python.org/3/library/stdtypes.html#list] of Var) – 










	
load_slacks(cons_to_load=None)

	Load the values of the slack variables into the ‘slack’ suffix. The ‘slack’ suffix must live on the parent
model.





	Parameters:	cons_to_load (list [https://docs.python.org/3/library/stdtypes.html#list] of Constraint) – 










	
load_vars(vars_to_load=None)

	Load the values from the solver’s variables into the corresponding pyomo variables.





	Parameters:	vars_to_load (list [https://docs.python.org/3/library/stdtypes.html#list] of Var) – 










	
problem_format()

	Returns the current problem format.






	
remove_block(block)

	Remove a single block from the solver’s model.

This will keep any other model components intact.

WARNING: Users must call remove_block BEFORE modifying the block.





	Parameters:	block (Block (scalar Block or a sing