
Pyomo Documentation
Release 6.5.0

Pyomo

Feb 16, 2023

CONTENTS

1 Installation 3
1.1 Using CONDA . 3
1.2 Using PIP . 3
1.3 Conditional Dependencies . 3

2 Citing Pyomo 5
2.1 Pyomo . 5
2.2 PySP . 5

3 Pyomo Overview 7
3.1 Mathematical Modeling . 7
3.2 Overview of Modeling Components and Processes . 8
3.3 Abstract Versus Concrete Models . 9
3.4 Simple Models . 10

4 Pyomo Modeling Components 17
4.1 Sets . 17
4.2 Parameters . 24
4.3 Variables . 25
4.4 Objectives . 26
4.5 Constraints . 26
4.6 Expressions . 27
4.7 Suffixes . 33

5 Solving Pyomo Models 41
5.1 Solving ConcreteModels . 41
5.2 Solving AbstractModels . 41
5.3 pyomo solve Command . 41
5.4 Supported Solvers . 42

6 Working with Pyomo Models 43
6.1 Repeated Solves . 43
6.2 Changing the Model or Data and Re-solving . 47
6.3 Fixing Variables and Re-solving . 47
6.4 Extending the Objective Function . 49
6.5 Activating and Deactivating Objectives . 50
6.6 Activating and Deactivating Constraints . 50
6.7 Accessing Variable Values . 50
6.8 Accessing Parameter Values . 52
6.9 Accessing Duals . 53
6.10 Accessing Slacks . 55

i

6.11 Accessing Solver Status . 55
6.12 Display of Solver Output . 56
6.13 Sending Options to the Solver . 56
6.14 Specifying the Path to a Solver . 56
6.15 Warm Starts . 56
6.16 Solving Multiple Instances in Parallel . 57
6.17 Changing the temporary directory . 58

7 Working with Abstract Models 59
7.1 Instantiating Models . 59
7.2 Managing Data in AbstractModels . 61
7.3 The pyomo Command . 93
7.4 BuildAction and BuildCheck . 95

8 Model Transformations 99
8.1 Model Scaling Transformation . 99

9 Modeling Extensions 103
9.1 Bilevel Programming . 103
9.2 Dynamic Optimization with pyomo.DAE . 103
9.3 Generalized Disjunctive Programming . 121
9.4 MPEC . 135
9.5 Stochastic Programming in Pyomo . 135
9.6 Pyomo Network . 136

10 Pyomo Tutorial Examples 149

11 Debugging Pyomo Models 151
11.1 Interrogating Pyomo Models . 151
11.2 FAQ . 151
11.3 Getting Help . 152

12 Advanced Topics 153
12.1 Persistent Solvers . 153
12.2 Units Handling in Pyomo . 156
12.3 LinearExpression . 160
12.4 “Flattening” a Pyomo model . 160

13 Common Warnings/Errors 165
13.1 Warnings . 165
13.2 Errors . 167

14 Developer Reference 169
14.1 The Pyomo Configuration System . 169
14.2 Deprecation and Removal of Functionality . 176
14.3 Pyomo Expressions . 179

15 Library Reference 205
15.1 Common Utilities . 205
15.2 AML Library Reference . 235
15.3 Expression Reference . 280
15.4 Solver Interfaces . 311
15.5 Model Data Management . 331
15.6 APPSI . 333
15.7 The Kernel Library . 367

ii

16 Contributing to Pyomo 413
16.1 Contribution Requirements . 413
16.2 Working on Forks and Branches . 414
16.3 Review Process . 417
16.4 Where to put contributed code . 418
16.5 pyomo.contrib . 418

17 Third-Party Contributions 421
17.1 Community Detection for Pyomo models . 421
17.2 Pyomo.DoE . 431
17.3 GDPopt logic-based solver . 446
17.4 Infeasible Irreducible System (IIS) Tool . 451
17.5 Incidence Analysis . 451
17.6 MindtPy Solver . 468
17.7 MPC . 476
17.8 Multistart Solver . 480
17.9 Nonlinear Preprocessing Transformations . 482
17.10 Parameter Estimation with parmest . 488
17.11 PyNumero . 510
17.12 PyROS Solver . 561
17.13 Sensitivity Toolbox . 588
17.14 Trust Region Framework Method Solver . 592
17.15 MC++ Interface . 596
17.16 z3 SMT Sat Solver Interface . 597

18 Related Packages 599
18.1 Modeling Extensions . 599
18.2 Solvers and Solution Strategies . 599
18.3 Domain-Specific Applications . 600

19 Bibliography 601

20 Indices and Tables 603

21 Pyomo Resources 605

Bibliography 607

Python Module Index 609

Index 611

iii

iv

Pyomo Documentation, Release 6.5.0

Pyomo is a Python-based, open-source optimization modeling language with a diverse set of optimization capabilities.

CONTENTS 1

Pyomo Documentation, Release 6.5.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Pyomo currently supports the following versions of Python:

• CPython: 3.7, 3.8, 3.9, 3.10, 3.11

• PyPy: 3

At the time of the first Pyomo release after the end-of-life of a minor Python version, Pyomo will remove testing for
that Python version.

1.1 Using CONDA

We recommend installation with conda, which is included with the Anaconda distribution of Python. You can install
Pyomo in your system Python installation by executing the following in a shell:

conda install -c conda-forge pyomo

Optimization solvers are not installed with Pyomo, but some open source optimization solvers can be installed with
conda as well:

conda install -c conda-forge ipopt glpk

1.2 Using PIP

The standard utility for installing Python packages is pip. You can install Pyomo in your system Python installation by
executing the following in a shell:

pip install pyomo

1.3 Conditional Dependencies

Extensions to Pyomo, and many of the contributions in pyomo.contrib, often have conditional dependencies on a variety
of third-party Python packages including but not limited to: matplotlib, networkx, numpy, openpyxl, pandas, pint,
pymysql, pyodbc, pyro4, scipy, sympy, and xlrd.

A full list of conditional dependencies can be found in Pyomo’s setup.py and displayed using:

python setup.py dependencies --extra optional

3

Pyomo Documentation, Release 6.5.0

Pyomo extensions that require any of these packages will generate an error message for missing dependencies upon
use.

When using pip, all conditional dependencies can be installed at once using the following command:

pip install 'pyomo[optional]'

When using conda, many of the conditional dependencies are included with the standard Anaconda installation.

You can check which Python packages you have installed using the command conda list or pip list. Additional
Python packages may be installed as needed.

4 Chapter 1. Installation

CHAPTER

TWO

CITING PYOMO

2.1 Pyomo

Hart, William E., Jean-Paul Watson, and David L. Woodruff. “Pyomo: modeling and solving mathematical programs
in Python.” Mathematical Programming Computation 3, no. 3 (2011): 219-260.

Hart, William E., Carl Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil, Bethany L. Nicholson, and
John D. Siirola. Pyomo – Optimization Modeling in Python. Springer, 2017.

2.2 PySP

Watson, Jean-Paul, David L. Woodruff, and William E. Hart. “PySP: modeling and solving stochastic programs in
Python.” Mathematical Programming Computation 4, no. 2 (2012): 109-149.

5

Pyomo Documentation, Release 6.5.0

6 Chapter 2. Citing Pyomo

CHAPTER

THREE

PYOMO OVERVIEW

3.1 Mathematical Modeling

This section provides an introduction to Pyomo: Python Optimization Modeling Objects. A more complete description
is contained in the [PyomoBookII] book. Pyomo supports the formulation and analysis of mathematical models for
complex optimization applications. This capability is commonly associated with commercially available algebraic
modeling languages (AMLs) such as [AMPL], [AIMMS], and [GAMS]. Pyomo’s modeling objects are embedded
within Python, a full-featured, high-level programming language that contains a rich set of supporting libraries.

Modeling is a fundamental process in many aspects of scientific research, engineering and business. Modeling involves
the formulation of a simplified representation of a system or real-world object. Thus, modeling tools like Pyomo can
be used in a variety of ways:

• Explain phenomena that arise in a system,

• Make predictions about future states of a system,

• Assess key factors that influence phenomena in a system,

• Identify extreme states in a system, that might represent worst-case scenarios or minimal cost plans, and

• Analyze trade-offs to support human decision makers.

Mathematical models represent system knowledge with a formalized language. The following mathematical concepts
are central to modern modeling activities:

3.1.1 Variables

Variables represent unknown or changing parts of a model (e.g., whether or not to make a decision, or the
characteristic of a system outcome). The values taken by the variables are often referred to as a solution
and are usually an output of the optimization process.

3.1.2 Parameters

Parameters represents the data that must be supplied to perform the optimization. In fact, in some settings
the word data is used in place of the word parameters.

7

Pyomo Documentation, Release 6.5.0

3.1.3 Relations

These are equations, inequalities or other mathematical relationships that define how different parts of a
model are connected to each other.

3.1.4 Goals

These are functions that reflect goals and objectives for the system being modeled.

The widespread availability of computing resources has made the numerical analysis of mathematical models a com-
monplace activity. Without a modeling language, the process of setting up input files, executing a solver and extracting
the final results from the solver output is tedious and error-prone. This difficulty is compounded in complex, large-scale
real-world applications which are difficult to debug when errors occur. Additionally, there are many different formats
used by optimization software packages, and few formats are recognized by many optimizers. Thus the application of
multiple optimization solvers to analyze a model introduces additional complexities.

Pyomo is an AML that extends Python to include objects for mathematical modeling. [PyomoBookI], [PyomoBookII],
and [PyomoJournal] compare Pyomo with other AMLs. Although many good AMLs have been developed for opti-
mization models, the following are motivating factors for the development of Pyomo:

• Open Source

Pyomo is developed within Pyomo’s open source project to promote transparency of the modeling
framework and encourage community development of Pyomo capabilities.

• Customizable Capability

Pyomo supports a customizable capability through the extensive use of plug-ins to modularize soft-
ware components.

• Solver Integration

Pyomo models can be optimized with solvers that are written either in Python or in compiled, low-level
languages.

• Programming Language

Pyomo leverages a high-level programming language, which has several advantages over custom
AMLs: a very robust language, extensive documentation, a rich set of standard libraries, support
for modern programming features like classes and functions, and portability to many platforms.

3.2 Overview of Modeling Components and Processes

Pyomo supports an object-oriented design for the definition of optimization models. The basic steps of a simple mod-
eling process are:

• Create model and declare components

• Instantiate the model

• Apply solver

• Interrogate solver results

In practice, these steps may be applied repeatedly with different data or with different constraints applied to the model.
However, we focus on this simple modeling process to illustrate different strategies for modeling with Pyomo.

A Pyomo model consists of a collection of modeling components that define different aspects of the model. Pyomo
includes the modeling components that are commonly supported by modern AMLs: index sets, symbolic parameters,

8 Chapter 3. Pyomo Overview

Pyomo Documentation, Release 6.5.0

decision variables, objectives, and constraints. These modeling components are defined in Pyomo through the following
Python classes:

3.2.1 Set

set data that is used to define a model instance

3.2.2 Param

parameter data that is used to define a model instance

3.2.3 Var

decision variables in a model

3.2.4 Objective

expressions that are minimized or maximized in a model

3.2.5 Constraint

constraint expressions that impose restrictions on variable values in a model

3.3 Abstract Versus Concrete Models

A mathematical model can be defined using symbols that represent data values. For example, the following equations
represent a linear program (LP) to find optimal values for the vector 𝑥 with parameters 𝑛 and 𝑏, and parameter vectors

𝑎 and 𝑐:
min

∑︀𝑛
𝑗=1 𝑐𝑗𝑥𝑗

s.t.
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ∀𝑖 = 1 . . .𝑚

𝑥𝑗 ≥ 0 ∀𝑗 = 1 . . . 𝑛

Note: As a convenience, we use the symbol ∀ to mean “for all” or “for each.”

We call this an abstract or symbolic mathematical model since it relies on unspecified parameter values. Data values
can be used to specify a model instance. The AbstractModel class provides a context for defining and initializing
abstract optimization models in Pyomo when the data values will be supplied at the time a solution is to be obtained.

In many contexts, a mathematical model can and should be directly defined with the data values supplied at the time of
the model definition. We call these concrete mathematical models. For example, the following LP model is a concrete

instance of the previous abstract model:
min 2𝑥1 + 3𝑥2

s.t. 3𝑥1 + 4𝑥2 ≥ 1
𝑥1, 𝑥2 ≥ 0

The ConcreteModel class is used to define concrete

optimization models in Pyomo.

Note: Python programmers will probably prefer to write concrete models, while users of some other algebraic mod-
eling languages may tend to prefer to write abstract models. The choice is largely a matter of taste; some applications
may be a little more straightforward using one or the other.

3.3. Abstract Versus Concrete Models 9

Pyomo Documentation, Release 6.5.0

3.4 Simple Models

3.4.1 A Simple Concrete Pyomo Model

It is possible to get the same flexible behavior from models declared to be abstract and models declared to be concrete
in Pyomo; however, we will focus on a straightforward concrete example here where the data is hard-wired into the
model file. Python programmers will quickly realize that the data could have come from other sources.

Given the following model from the previous section:
min 2𝑥1 + 3𝑥2

s.t. 3𝑥1 + 4𝑥2 ≥ 1
𝑥1, 𝑥2 ≥ 0

This can be implemented as a concrete

model as follows:

import pyomo.environ as pyo

model = pyo.ConcreteModel()

model.x = pyo.Var([1,2], domain=pyo.NonNegativeReals)

model.OBJ = pyo.Objective(expr = 2*model.x[1] + 3*model.x[2])

model.Constraint1 = pyo.Constraint(expr = 3*model.x[1] + 4*model.x[2] >= 1)

Although rule functions can also be used to specify constraints and objectives, in this example we use the expr option
that is available only in concrete models. This option gives a direct specification of the expression.

3.4.2 A Simple Abstract Pyomo Model

We repeat the abstract model from the previous section:
min

∑︀𝑛
𝑗=1 𝑐𝑗𝑥𝑗

s.t.
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ∀𝑖 = 1 . . .𝑚

𝑥𝑗 ≥ 0 ∀𝑗 = 1 . . . 𝑛

One way to imple-

ment this in Pyomo is as shown as follows:

from __future__ import division
import pyomo.environ as pyo

model = pyo.AbstractModel()

model.m = pyo.Param(within=pyo.NonNegativeIntegers)
model.n = pyo.Param(within=pyo.NonNegativeIntegers)

model.I = pyo.RangeSet(1, model.m)
model.J = pyo.RangeSet(1, model.n)

model.a = pyo.Param(model.I, model.J)
model.b = pyo.Param(model.I)
model.c = pyo.Param(model.J)

the next line declares a variable indexed by the set J
model.x = pyo.Var(model.J, domain=pyo.NonNegativeReals)

def obj_expression(m):
(continues on next page)

10 Chapter 3. Pyomo Overview

Pyomo Documentation, Release 6.5.0

(continued from previous page)

return pyo.summation(m.c, m.x)

model.OBJ = pyo.Objective(rule=obj_expression)

def ax_constraint_rule(m, i):
return the expression for the constraint for i
return sum(m.a[i,j] * m.x[j] for j in m.J) >= m.b[i]

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = pyo.Constraint(model.I, rule=ax_constraint_rule)

Note: Python is interpreted one line at a time. A line continuation character, \ (backslash), is used for Python
statements that need to span multiple lines. In Python, indentation has meaning and must be consistent. For example,
lines inside a function definition must be indented and the end of the indentation is used by Python to signal the end of
the definition.

We will now examine the lines in this example. The first import line is used to ensure that int or long division
arguments are converted to floating point values before division is performed.

from __future__ import division

In Python versions before 3.0, division returns the floor of the mathematical result of division if arguments are int
or long. This import line avoids unexpected behavior when developing mathematical models with integer values in
Python 2.x (and is not necessary in Python 3.x).

The next import line that is required in every Pyomo model. Its purpose is to make the symbols used by Pyomo known
to Python.

import pyomo.environ as pyo

The declaration of a model is also required. The use of the name model is not required. Almost any name could be
used, but we will use the name model in most of our examples. In this example, we are declaring that it will be an
abstract model.

model = pyo.AbstractModel()

We declare the parameters 𝑚 and 𝑛 using the Pyomo Param component. This component can take a variety of argu-
ments; this example illustrates use of the within option that is used by Pyomo to validate the data value that is assigned
to the parameter. If this option were not given, then Pyomo would not object to any type of data being assigned to these
parameters. As it is, assignment of a value that is not a non-negative integer will result in an error.

model.m = pyo.Param(within=pyo.NonNegativeIntegers)
model.n = pyo.Param(within=pyo.NonNegativeIntegers)

Although not required, it is convenient to define index sets. In this example we use the RangeSet component to declare
that the sets will be a sequence of integers starting at 1 and ending at a value specified by the the parameters model.m
and model.n.

model.I = pyo.RangeSet(1, model.m)
model.J = pyo.RangeSet(1, model.n)

The coefficient and right-hand-side data are defined as indexed parameters. When sets are given as arguments to the
Param component, they indicate that the set will index the parameter.

3.4. Simple Models 11

Pyomo Documentation, Release 6.5.0

model.a = pyo.Param(model.I, model.J)
model.b = pyo.Param(model.I)
model.c = pyo.Param(model.J)

The next line that is interpreted by Python as part of the model declares the variable 𝑥. The first argument to the Var
component is a set, so it is defined as an index set for the variable. In this case the variable has only one index set,
but multiple sets could be used as was the case for the declaration of the parameter model.a. The second argument
specifies a domain for the variable. This information is part of the model and will passed to the solver when data is
provided and the model is solved. Specification of the NonNegativeReals domain implements the requirement that
the variables be greater than or equal to zero.

the next line declares a variable indexed by the set J
model.x = pyo.Var(model.J, domain=pyo.NonNegativeReals)

Note: In Python, and therefore in Pyomo, any text after pound sign is considered to be a comment.

In abstract models, Pyomo expressions are usually provided to objective and constraint declarations via a function
defined with a Python def statement. The def statement establishes a name for a function along with its arguments.
When Pyomo uses a function to get objective or constraint expressions, it always passes in the model (i.e., itself) as the
the first argument so the model is always the first formal argument when declaring such functions in Pyomo. Additional
arguments, if needed, follow. Since summation is an extremely common part of optimization models, Pyomo provides
a flexible function to accommodate it. When given two arguments, the summation() function returns an expression for
the sum of the product of the two arguments over their indexes. This only works, of course, if the two arguments have
the same indexes. If it is given only one argument it returns an expression for the sum over all indexes of that argument.
So in this example, when summation() is passed the arguments m.c, m.x it returns an internal representation of the
expression

∑︀𝑛
𝑗=1 𝑐𝑗𝑥𝑗 .

def obj_expression(m):
return pyo.summation(m.c, m.x)

To declare an objective function, the Pyomo component called Objective is used. The rule argument gives the
name of a function that returns the objective expression. The default sense is minimization. For maximization, the
sense=pyo.maximize argument must be used. The name that is declared, which is OBJ in this case, appears in some
reports and can be almost any name.

model.OBJ = pyo.Objective(rule=obj_expression)

Declaration of constraints is similar. A function is declared to generate the constraint expression. In this case, there
can be multiple constraints of the same form because we index the constraints by 𝑖 in the expression

∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≥

𝑏𝑖 ∀𝑖 = 1 . . .𝑚, which states that we need a constraint for each value of 𝑖 from one to 𝑚. In order to parametrize the
expression by 𝑖 we include it as a formal parameter to the function that declares the constraint expression. Technically,
we could have used anything for this argument, but that might be confusing. Using an i for an 𝑖 seems sensible in this
situation.

def ax_constraint_rule(m, i):
return the expression for the constraint for i
return sum(m.a[i,j] * m.x[j] for j in m.J) >= m.b[i]

Note: In Python, indexes are in square brackets and function arguments are in parentheses.

In order to declare constraints that use this expression, we use the Pyomo Constraint component that takes a variety

12 Chapter 3. Pyomo Overview

Pyomo Documentation, Release 6.5.0

of arguments. In this case, our model specifies that we can have more than one constraint of the same form and we
have created a set, model.I, over which these constraints can be indexed so that is the first argument to the constraint
declaration. The next argument gives the rule that will be used to generate expressions for the constraints. Taken as a
whole, this constraint declaration says that a list of constraints indexed by the set model.I will be created and for each
member of model.I, the function ax_constraint_rule will be called and it will be passed the model object as well
as the member of model.I

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = pyo.Constraint(model.I, rule=ax_constraint_rule)

In the object oriented view of all of this, we would say that model object is a class instance of the AbstractModel
class, and model.J is a Set object that is contained by this model. Many modeling components in Pyomo can be
optionally specified as indexed components: collections of components that are referenced using one or more values.
In this example, the parameter model.c is indexed with set model.J.

In order to use this model, data must be given for the values of the parameters. Here is one file that provides data (in
AMPL “.dat” format).

one way to input the data in AMPL format
for indexed parameters, the indexes are given before the value

param m := 1 ;
param n := 2 ;

param a :=
1 1 3
1 2 4
;

param c:=
1 2
2 3
;

param b := 1 1 ;

There are multiple formats that can be used to provide data to a Pyomo model, but the AMPL format works well for
our purposes because it contains the names of the data elements together with the data. In AMPL data files, text after a
pound sign is treated as a comment. Lines generally do not matter, but statements must be terminated with a semi-colon.

For this particular data file, there is one constraint, so the value of model.m will be one and there are two variables
(i.e., the vector model.x is two elements long) so the value of model.n will be two. These two assignments are
accomplished with standard assignments. Notice that in AMPL format input, the name of the model is omitted.

param m := 1 ;
param n := 2 ;

There is only one constraint, so only two values are needed for model.a. When assigning values to arrays and vectors
in AMPL format, one way to do it is to give the index(es) and the the value. The line 1 2 4 causes model.a[1,2] to
get the value 4. Since model.c has only one index, only one index value is needed so, for example, the line 1 2 causes
model.c[1] to get the value 2. Line breaks generally do not matter in AMPL format data files, so the assignment of
the value for the single index of model.b is given on one line since that is easy to read.

param a :=
1 1 3

(continues on next page)

3.4. Simple Models 13

Pyomo Documentation, Release 6.5.0

(continued from previous page)

1 2 4
;

param c:=
1 2
2 3
;

param b := 1 1 ;

3.4.3 Symbolic Index Sets

When working with Pyomo (or any other AML), it is convenient to write abstract models in a somewhat more abstract
way by using index sets that contain strings rather than index sets that are implied by 1, . . . ,𝑚 or the summation from
1 to 𝑛. When this is done, the size of the set is implied by the input, rather than specified directly. Furthermore, the
index entries may have no real order. Often, a mixture of integers and indexes and strings as indexes is needed in the
same model. To start with an illustration of general indexes, consider a slightly different Pyomo implementation of the
model we just presented.

abstract2.py

from __future__ import division
from pyomo.environ import *

model = AbstractModel()

model.I = Set()
model.J = Set()

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals)

def obj_expression(model):
return summation(model.c, model.x)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
return the expression for the constraint for i
return sum(model.a[i, j] * model.x[j] for j in model.J) >= model.b[i]

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)

14 Chapter 3. Pyomo Overview

Pyomo Documentation, Release 6.5.0

To get the same instantiated model, the following data file can be used.

abstract2a.dat AMPL format

set I := 1 ;
set J := 1 2 ;

param a :=
1 1 3
1 2 4
;

param c:=
1 2
2 3
;

param b := 1 1 ;

However, this model can also be fed different data for problems of the same general form using meaningful indexes.

abstract2.dat AMPL data format

set I := TV Film ;
set J := Graham John Carol ;

param a :=
TV Graham 3
TV John 4.4
TV Carol 4.9
Film Graham 1
Film John 2.4
Film Carol 1.1
;

param c := [*]
Graham 2.2
John 3.1416
Carol 3
;

param b := TV 1 Film 1 ;

3.4. Simple Models 15

Pyomo Documentation, Release 6.5.0

3.4.4 Solving the Simple Examples

Pyomo supports modeling and scripting but does not install a solver automatically. In order to solve a model, there
must be a solver installed on the computer to be used. If there is a solver, then the pyomo command can be used to solve
a problem instance.

Suppose that the solver named glpk (also known as glpsol) is installed on the computer. Suppose further that an abstract
model is in the file named abstract1.py and a data file for it is in the file named abstract1.dat. From the command
prompt, with both files in the current directory, a solution can be obtained with the command:

pyomo solve abstract1.py abstract1.dat --solver=glpk

Since glpk is the default solver, there really is no need specify it so the --solver option can be dropped.

Note: There are two dashes before the command line option names such as solver.

To continue the example, if CPLEX is installed then it can be listed as the solver. The command to solve with CPLEX
is

pyomo solve abstract1.py abstract1.dat --solver=cplex

This yields the following output on the screen:

[0.00] Setting up Pyomo environment
[0.00] Applying Pyomo preprocessing actions
[0.07] Creating model
[0.15] Applying solver
[0.37] Processing results
Number of solutions: 1
Solution Information
Gap: 0.0
Status: optimal
Function Value: 0.666666666667
Solver results file: results.json
[0.39] Applying Pyomo postprocessing actions
[0.39] Pyomo Finished

The numbers in square brackets indicate how much time was required for each step. Results are written to the file
named results.json, which has a special structure that makes it useful for post-processing. To see a summary of
results written to the screen, use the --summary option:

pyomo solve abstract1.py abstract1.dat --solver=cplex --summary

To see a list of Pyomo command line options, use:

pyomo solve --help

Note: There are two dashes before help.

For a concrete model, no data file is specified on the Pyomo command line.

16 Chapter 3. Pyomo Overview

CHAPTER

FOUR

PYOMO MODELING COMPONENTS

4.1 Sets

4.1.1 Declaration

Sets can be declared using instances of the Set and RangeSet classes or by assigning set expressions. The simplest
set declaration creates a set and postpones creation of its members:

model.A = pyo.Set()

The Set class takes optional arguments such as:

• dimen = Dimension of the members of the set

• doc = String describing the set

• filter = A Boolean function used during construction to indicate if a potential new member should be assigned
to the set

• initialize = An iterable containing the initial members of the Set, or function that returns an iterable of the
initial members the set.

• ordered = A Boolean indicator that the set is ordered; the default is True

• validate = A Boolean function that validates new member data

• within = Set used for validation; it is a super-set of the set being declared.

In general, Pyomo attempts to infer the “dimensionality” of Set components (that is, the number of apparent indices)
when they are constructed. However, there are situations where Pyomo either cannot detect a dimensionality (e.g., a
Set that was not initialized with any members), or you the user may want to assert the dimensionality of the set. This
can be accomplished through the dimen keyword. For example, to create a set whose members will be tuples with two
items, one could write:

model.B = pyo.Set(dimen=2)

To create a set of all the numbers in set model.A doubled, one could use

def DoubleA_init(model):
return (i*2 for i in model.A)

model.C = pyo.Set(initialize=DoubleA_init)

As an aside we note that as always in Python, there are lot of ways to accomplish the same thing. Also, note that this
will generate an error if model.A contains elements for which multiplication times two is not defined.

17

Pyomo Documentation, Release 6.5.0

The initialize option can accept any Python iterable, including a set, list, or tuple. This data may be returned
from a function or specified directly as in

model.D = pyo.Set(initialize=['red', 'green', 'blue'])

The initialize option can also specify either a generator or a function to specify the Set members. In the case of a
generator, all data yielded by the generator will become the initial set members:

def X_init(m):
for i in range(10):

yield 2*i+1
model.X = pyo.Set(initialize=X_init)

For initialization functions, Pyomo supports two signatures. In the first, the function returns an iterable (set, list, or
tuple) containing the data with which to initialize the Set:

def Y_init(m):
return [2*i+1 for i in range(10)]

model.Y = pyo.Set(initialize=Y_init)

In the second signature, the function is called for each element, passing the element number in as an extra argument.
This is repeated until the function returns the special value Set.End:

def Z_init(model, i):
if i > 10:

return pyo.Set.End
return 2*i+1

model.Z = pyo.Set(initialize=Z_init)

Note that the element number starts with 1 and not 0:

>>> model.X.pprint()
X : Size=1, Index=None, Ordered=Insertion

Key : Dimen : Domain : Size : Members
None : 1 : Any : 10 : {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

>>> model.Y.pprint()
Y : Size=1, Index=None, Ordered=Insertion

Key : Dimen : Domain : Size : Members
None : 1 : Any : 10 : {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

>>> model.Z.pprint()
Z : Size=1, Index=None, Ordered=Insertion

Key : Dimen : Domain : Size : Members
None : 1 : Any : 10 : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21}

Additional information about iterators for set initialization is in the [PyomoBookII] book.

Note: For Abstract models, data specified in an input file or through the data argument to AbstractModel.
create_instance() will override the data specified by the initialize options.

If sets are given as arguments to Set without keywords, they are interpreted as indexes for an array of sets. For example,
to create an array of sets that is indexed by the members of the set model.A, use:

model.E = pyo.Set(model.A)

18 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

Arguments can be combined. For example, to create an array of sets, indexed by set model.A where each set contains
three dimensional members, use:

model.F = pyo.Set(model.A, dimen=3)

The initialize option can be used to create a set that contains a sequence of numbers, but the RangeSet class
provides a concise mechanism for simple sequences. This class takes as its arguments a start value, a final value, and a
step size. If the RangeSet has only a single argument, then that value defines the final value in the sequence; the first
value and step size default to one. If two values given, they are the first and last value in the sequence and the step size
defaults to one. For example, the following declaration creates a set with the numbers 1.5, 5 and 8.5:

model.G = pyo.RangeSet(1.5, 10, 3.5)

4.1.2 Operations

Sets may also be created by storing the result of set operations using other Pyomo sets. Pyomo supports set operations
including union, intersection, difference, and symmetric difference:

model.I = model.A | model.D # union
model.J = model.A & model.D # intersection
model.K = model.A - model.D # difference
model.L = model.A ^ model.D # exclusive-or

For example, the cross-product operator is the asterisk (*). To define a new set M that is the cross product of sets B and
C, one could use

model.M = model.B * model.C

This creates a virtual set that holds references to the original sets, so any updates to the original sets (B and C) will be
reflected in the new set (M). In contrast, you can also create a concrete set, which directly stores the values of the cross
product at the time of creation and will not reflect subsequent changes in the original sets with:

model.M_concrete = pyo.Set(initialize=model.B * model.C)

Finally, you can indicate that the members of a set are restricted to be in the cross product of two other sets, one can
use the within keyword:

model.N = pyo.Set(within=model.B * model.C)

4.1.3 Predefined Virtual Sets

For use in specifying domains for sets, parameters and variables, Pyomo provides the following pre-defined virtual
sets:

• Any = all possible values

• Reals = floating point values

• PositiveReals = strictly positive floating point values

• NonPositiveReals = non-positive floating point values

• NegativeReals = strictly negative floating point values

• NonNegativeReals = non-negative floating point values

4.1. Sets 19

Pyomo Documentation, Release 6.5.0

• PercentFraction = floating point values in the interval [0,1]

• UnitInterval = alias for PercentFraction

• Integers = integer values

• PositiveIntegers = positive integer values

• NonPositiveIntegers = non-positive integer values

• NegativeIntegers = negative integer values

• NonNegativeIntegers = non-negative integer values

• Boolean = Boolean values, which can be represented as False/True, 0/1, ’False’/’True’ and ’F’/’T’

• Binary = the integers {0, 1}

For example, if the set model.O is declared to be within the virtual set NegativeIntegers then an attempt to add
anything other than a negative integer will result in an error. Here is the declaration:

model.O = pyo.Set(within=pyo.NegativeIntegers)

4.1.4 Sparse Index Sets

Sets provide indexes for parameters, variables and other sets. Index set issues are important for modelers in part because
of efficiency considerations, but primarily because the right choice of index sets can result in very natural formulations
that are conducive to understanding and maintenance. Pyomo leverages Python to provide a rich collection of options
for index set creation and use.

The choice of how to represent indexes often depends on the application and the nature of the instance data that are
expected. To illustrate some of the options and issues, we will consider problems involving networks. In many network
applications, it is useful to declare a set of nodes, such as

model.Nodes = pyo.Set()

and then a set of arcs can be created with reference to the nodes.

Consider the following simple version of minimum cost flow problem:

minimize
∑︀

𝑎∈𝒜 𝑐𝑎𝑥𝑎

subject to: 𝑆𝑛 +
∑︀

(𝑖,𝑛)∈𝒜 𝑥(𝑖,𝑛)

−𝐷𝑛 −
∑︀

(𝑛,𝑗)∈𝒜 𝑥(𝑛,𝑗) 𝑛 ∈ 𝒩
𝑥𝑎 ≥ 0, 𝑎 ∈ 𝒜

where

• Set: Nodes ≡ 𝒩

• Set: Arcs ≡ 𝒜 ⊆ 𝒩 ×𝒩

• Var: Flow on arc (𝑖, 𝑗) ≡ 𝑥𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝒜

• Param: Flow Cost on arc (𝑖, 𝑗) ≡ 𝑐𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝒜

• Param: Demand at node latexmath:i ≡ 𝐷𝑖, 𝑖 ∈ 𝒩

• Param: Supply at node latexmath:i ≡ 𝑆𝑖, 𝑖 ∈ 𝒩

In the simplest case, the arcs can just be the cross product of the nodes, which is accomplished by the definition

model.Arcs = model.Nodes*model.Nodes

20 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

that creates a set with two dimensional members. For applications where all nodes are always connected to all other
nodes this may suffice. However, issues can arise when the network is not fully dense. For example, the burden of
avoiding flow on arcs that do not exist falls on the data file where high-enough costs must be provided for those arcs.
Such a scheme is not very elegant or robust.

For many network flow applications, it might be better to declare the arcs using

model.Arcs = pyo.Set(dimen=2)

or

model.Arcs = pyo.Set(within=model.Nodes*model.Nodes)

where the difference is that the first version will provide error checking as data is assigned to the set elements. This
would enable specification of a sparse network in a natural way. But this results in a need to change the FlowBalance
constraint because as it was written in the simple example, it sums over the entire set of nodes for each node. One way
to remedy this is to sum only over the members of the set model.arcs as in

def FlowBalance_rule(m, node):
return m.Supply[node] \

+ sum(m.Flow[i, node] for i in m.Nodes if (i,node) in m.Arcs) \
- m.Demand[node] \
- sum(m.Flow[node, j] for j in m.Nodes if (j,node) in m.Arcs) \
== 0

This will be OK unless the number of nodes becomes very large for a sparse network, then the time to generate this
constraint might become an issue (admittely, only for very large networks, but such networks do exist).

Another method, which comes in handy in many network applications, is to have a set for each node that contain the
nodes at the other end of arcs going to the node at hand and another set giving the nodes on out-going arcs. If these
sets are called model.NodesIn and model.NodesOut respectively, then the flow balance rule can be re-written as

def FlowBalance_rule(m, node):
return m.Supply[node] \

+ sum(m.Flow[i, node] for i in m.NodesIn[node]) \
- m.Demand[node] \
- sum(m.Flow[node, j] for j in m.NodesOut[node]) \
== 0

The data for NodesIn and NodesOut could be added to the input file, and this may be the most efficient option.

For all but the largest networks, rather than reading Arcs, NodesIn and NodesOut from a data file, it might be more
elegant to read only Arcs from a data file and declare model.NodesIn with an initialize option specifying the
creation as follows:

def NodesIn_init(m, node):
for i, j in m.Arcs:

if j == node:
yield i

model.NodesIn = pyo.Set(model.Nodes, initialize=NodesIn_init)

with a similar definition for model.NodesOut. This code creates a list of sets for NodesIn, one set of nodes for each
node. The full model is:

import pyomo.environ as pyo

(continues on next page)

4.1. Sets 21

Pyomo Documentation, Release 6.5.0

(continued from previous page)

model = pyo.AbstractModel()

model.Nodes = pyo.Set()
model.Arcs = pyo.Set(dimen=2)

def NodesOut_init(m, node):
for i, j in m.Arcs:

if i == node:
yield j

model.NodesOut = pyo.Set(model.Nodes, initialize=NodesOut_init)

def NodesIn_init(m, node):
for i, j in m.Arcs:

if j == node:
yield i

model.NodesIn = pyo.Set(model.Nodes, initialize=NodesIn_init)

model.Flow = pyo.Var(model.Arcs, domain=pyo.NonNegativeReals)
model.FlowCost = pyo.Param(model.Arcs)

model.Demand = pyo.Param(model.Nodes)
model.Supply = pyo.Param(model.Nodes)

def Obj_rule(m):
return pyo.summation(m.FlowCost, m.Flow)

model.Obj = pyo.Objective(rule=Obj_rule, sense=pyo.minimize)

def FlowBalance_rule(m, node):
return m.Supply[node] \

+ sum(m.Flow[i, node] for i in m.NodesIn[node]) \
- m.Demand[node] \
- sum(m.Flow[node, j] for j in m.NodesOut[node]) \
== 0

model.FlowBalance = pyo.Constraint(model.Nodes, rule=FlowBalance_rule)

for this model, a toy data file (in AMPL “.dat” format) would be:

set Nodes := CityA CityB CityC ;

set Arcs :=
CityA CityB
CityA CityC
CityC CityB
;

param : FlowCost :=
CityA CityB 1.4
CityA CityC 2.7
CityC CityB 1.6
;

param Demand :=
(continues on next page)

22 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

(continued from previous page)

CityA 0
CityB 1
CityC 1
;

param Supply :=
CityA 2
CityB 0
CityC 0
;

This can also be done somewhat more efficiently, and perhaps more clearly, using a BuildAction (for more informa-
tion, see BuildAction and BuildCheck):

model.NodesOut = pyo.Set(model.Nodes, within=model.Nodes)
model.NodesIn = pyo.Set(model.Nodes, within=model.Nodes)

def Populate_In_and_Out(model):
loop over the arcs and record the end points
for i, j in model.Arcs:

model.NodesIn[j].add(i)
model.NodesOut[i].add(j)

model.In_n_Out = pyo.BuildAction(rule=Populate_In_and_Out)

Sparse Index Sets Example

One may want to have a constraint that holds

∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑘

There are many ways to accomplish this, but one good way is to create a set of tuples composed of all model.k,
model.V[k] pairs. This can be done as follows:

def kv_init(m):
return ((k,v) for k in m.K for v in m.V[k])

model.KV = pyo.Set(dimen=2, initialize=kv_init)

We can now create the constraint 𝑥𝑖,𝑘,𝑣 ≤ 𝑎𝑖,𝑘𝑦𝑖 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑘 with:

model.a = pyo.Param(model.I, model.K, default=1)

model.y = pyo.Var(model.I)
model.x = pyo.Var(model.I, model.KV)

def c1_rule(m, i, k, v):
return m.x[i,k,v] <= m.a[i,k]*m.y[i]

model.c1 = pyo.Constraint(model.I, model.KV, rule=c1_rule)

4.1. Sets 23

Pyomo Documentation, Release 6.5.0

4.2 Parameters

The word “parameters” is used in many settings. When discussing a Pyomo model, we use the word to refer to data that
must be provided in order to find an optimal (or good) assignment of values to the decision variables. Parameters are
declared as instances of a Param class, which takes arguments that are somewhat similar to the Set class. For example,
the following code snippet declares sets model.A and model.B, and then a parameter model.P that is indexed by
model.A and model.B:

model.A = pyo.RangeSet(1,3)
model.B = pyo.Set()
model.P = pyo.Param(model.A, model.B)

In addition to sets that serve as indexes, Param takes the following options:

• default = The parameter value absent any other specification.

• doc = A string describing the parameter.

• initialize = A function (or Python object) that returns data used to initialize the parameter values.

• mutable = Boolean value indicating if the Param values are allowed to change after the Param is initialized.

• validate = A callback function that takes the model, proposed value, and indices of the proposed value; re-
turning True if the value is valid. Returning False will generate an exception.

• within = Set used for validation; it specifies the domain of valid parameter values.

These options perform in the same way as they do for Set. For example, given model.A with values {1, 2, 3}, then
there are many ways to create a parameter that represents a square matrix with 9, 16, 25 on the main diagonal and zeros
elsewhere, here are two ways to do it. First using a Python object to initialize:

v={}
v[1,1] = 9
v[2,2] = 16
v[3,3] = 25
model.S1 = pyo.Param(model.A, model.A, initialize=v, default=0)

And now using an initialization function that is automatically called once for each index tuple (remember that we are
assuming that model.A contains {1, 2, 3})

def s_init(model, i, j):
if i == j:

return i*i
else:

return 0.0
model.S2 = pyo.Param(model.A, model.A, initialize=s_init)

In this example, the index set contained integers, but index sets need not be numeric. It is very common to use strings.

Note: Data specified in an input file will override the data specified by the initialize option.

Parameter values can be checked by a validation function. In the following example, the every value of the parameter
T (indexed by model.A) is checked to be greater than 3.14159. If a value is provided that is less than that, the model
instantation will be terminated and an error message issued. The validation function should be written so as to return
True if the data is valid and False otherwise.

24 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

t_data = {1: 10, 2: 3, 3: 20}

def t_validate(model, v, i):
return v > 3.14159

model.T = pyo.Param(model.A, validate=t_validate, initialize=t_data)

This example will prodice the following error, indicating that the value provided for T[2] failed validation:

Traceback (most recent call last):
...

ValueError: Invalid parameter value: T[2] = '3', value type=<class 'int'>.
Value failed parameter validation rule

4.3 Variables

Variables are intended to ultimately be given values by an optimization package. They are declared and optionally
bounded, given initial values, and documented using the Pyomo Var function. If index sets are given as arguments to
this function they are used to index the variable. Other optional directives include:

• bounds = A function (or Python object) that gives a (lower,upper) bound pair for the variable

• domain = A set that is a super-set of the values the variable can take on.

• initialize = A function (or Python object) that gives a starting value for the variable; this is particularly important
for non-linear models

• within = (synonym for domain)

The following code snippet illustrates some aspects of these options by declaring a singleton (i.e. unindexed) variable
named model.LumberJack that will take on real values between zero and 6 and it initialized to be 1.5:

model.LumberJack = Var(within=NonNegativeReals, bounds=(0, 6), initialize=1.5)

Instead of the initialize option, initialization is sometimes done with a Python assignment statement as in

model.LumberJack = 1.5

For indexed variables, bounds and initial values are often specified by a rule (a Python function) that itself may make
reference to parameters or other data. The formal arguments to these rules begins with the model followed by the
indexes. This is illustrated in the following code snippet that makes use of Python dictionaries declared as lb and ub
that are used by a function to provide bounds:

model.A = Set(initialize=['Scones', 'Tea'])
lb = {'Scones': 2, 'Tea': 4}
ub = {'Scones': 5, 'Tea': 7}

def fb(model, i):
return (lb[i], ub[i])

model.PriceToCharge = Var(model.A, domain=PositiveIntegers, bounds=fb)

4.3. Variables 25

Pyomo Documentation, Release 6.5.0

Note: Many of the pre-defined virtual sets that are used as domains imply bounds. A strong example is the set Boolean
that implies bounds of zero and one.

4.4 Objectives

An objective is a function of variables that returns a value that an optimization package attempts to maximize or
minimize. The Objective function in Pyomo declares an objective. Although other mechanisms are possible, this
function is typically passed the name of another function that gives the expression. Here is a very simple version of
such a function that assumes model.x has previously been declared as a Var:

>>> def ObjRule(model):
... return 2*model.x[1] + 3*model.x[2]
>>> model.obj1 = pyo.Objective(rule=ObjRule)

It is more common for an objective function to refer to parameters as in this example that assumes that model.p has
been declared as a Param and that model.x has been declared with the same index set, while model.y has been
declared as a singleton:

>>> def ObjRule(model):
... return pyo.summation(model.p, model.x) + model.y
>>> model.obj2 = pyo.Objective(rule=ObjRule, sense=pyo.maximize)

This example uses the sense option to specify maximization. The default sense is minimize.

4.5 Constraints

Most constraints are specified using equality or inequality expressions that are created using a rule, which is a Python
function. For example, if the variable model.x has the indexes ‘butter’ and ‘scones’, then this constraint limits the sum
over these indexes to be exactly three:

def teaOKrule(model):
return model.x['butter'] + model.x['scones'] == 3

model.TeaConst = Constraint(rule=teaOKrule)

Instead of expressions involving equality (==) or inequalities (<= or >=), constraints can also be expressed using a
3-tuple if the form (lb, expr, ub) where lb and ub can be None, which is interpreted as lb <= expr <= ub. Variables can
appear only in the middle expr. For example, the following two constraint declarations have the same meaning:

model.x = Var()

def aRule(model):
return model.x >= 2

model.Boundx = Constraint(rule=aRule)

(continues on next page)

26 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

(continued from previous page)

def bRule(model):
return (2, model.x, None)

model.boundx = Constraint(rule=bRule)

For this simple example, it would also be possible to declare model.x with a bounds option to accomplish the same
thing.

Constraints (and objectives) can be indexed by lists or sets. When the declaration contains lists or sets as arguments,
the elements are iteratively passed to the rule function. If there is more than one, then the cross product is sent. For
example the following constraint could be interpreted as placing a budget of 𝑖 on the 𝑖th item to buy where the cost per
item is given by the parameter model.a:

model.A = RangeSet(1, 10)
model.a = Param(model.A, within=PositiveReals)
model.ToBuy = Var(model.A)

def bud_rule(model, i):
return model.a[i] * model.ToBuy[i] <= i

aBudget = Constraint(model.A, rule=bud_rule)

Note: Python and Pyomo are case sensitive so model.a is not the same as model.A.

4.6 Expressions

In this section, we use the word “expression” in two ways: first in the general sense of the word and second to desribe
a class of Pyomo objects that have the name Expression as described in the subsection on expression objects.

4.6.1 Rules to Generate Expressions

Both objectives and constraints make use of rules to generate expressions. These are Python functions that return the
appropriate expression. These are first-class functions that can access global data as well as data passed in, including
the model object.

Operations on model elements results in expressions, which seems natural in expressions like the constraints we have
seen so far. It is also possible to build up expressions. The following example illustrates this, along with a reference to
global Python data in the form of a Python variable called switch:

switch = 3

model.A = RangeSet(1, 10)
model.c = Param(model.A)
model.d = Param()
model.x = Var(model.A, domain=Boolean)

(continues on next page)

4.6. Expressions 27

Pyomo Documentation, Release 6.5.0

(continued from previous page)

def pi_rule(model):
accexpr = summation(model.c, model.x)
if switch >= 2:

accexpr = accexpr - model.d
return accexpr >= 0.5

PieSlice = Constraint(rule=pi_rule)

In this example, the constraint that is generated depends on the value of the Python variable called switch. If the
value is 2 or greater, then the constraint is summation(model.c, model.x) - model.d >= 0.5; otherwise, the
model.d term is not present.

Warning: Because model elements result in expressions, not values, the following does not work as expected in
an abstract model!
model.A = RangeSet(1, 10)
model.c = Param(model.A)
model.d = Param()
model.x = Var(model.A, domain=Boolean)

def pi_rule(model):
accexpr = summation(model.c, model.x)
if model.d >= 2: # NOT in an abstract model!!

accexpr = accexpr - model.d
return accexpr >= 0.5

PieSlice = Constraint(rule=pi_rule)

The trouble is that model.d >= 2 results in an expression, not its evaluated value. Instead use if value(model.
d) >= 2

Note: Pyomo supports non-linear expressions and can call non-linear solvers such as Ipopt.

4.6.2 Piecewise Linear Expressions

Pyomo has facilities to add piecewise constraints of the form y=f(x) for a variety of forms of the function f.

The piecewise types other than SOS2, BIGM_SOS1, BIGM_BIN are implement as described in the paper
[Vielma_et_al].

There are two basic forms for the declaration of the constraint:

model.pwconst = Piecewise(indexes, yvar, xvar, **Keywords)
model.pwconst = Piecewise(yvar,xvar,**Keywords)

28 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

where pwconst can be replaced by a name appropriate for the application. The choice depends on whether the x and
y variables are indexed. If so, they must have the same index sets and these sets are give as the first arguments.

Keywords:

• pw_pts={ },[],()
A dictionary of lists (where keys are the index set) or a single list (for the non-indexed case or when an identical
set of breakpoints is used across all indices) defining the set of domain breakpoints for the piecewise linear
function.

Note: pw_pts is always required. These give the breakpoints for the piecewise function and are expected to
fully span the bounds for the independent variable(s).

• pw_repn=<Option>
Indicates the type of piecewise representation to use. This can have a major impact on solver performance.
Options: (Default “SOS2”)

– “SOS2” - Standard representation using sos2 constraints.

– “BIGM_BIN” - BigM constraints with binary variables. The theoretically tightest M values are automati-
cally determined.

– “BIGM_SOS1” - BigM constraints with sos1 variables. The theoretically tightest M values are automati-
cally determined.

– “DCC” - Disaggregated convex combination model.

– “DLOG” - Logarithmic disaggregated convex combination model.

– “CC” - Convex combination model.

– “LOG” - Logarithmic branching convex combination.

– “MC” - Multiple choice model.

– “INC” - Incremental (delta) method.

Note: Step functions are supported for all but the two BIGM options. Refer to the ‘force_pw’ option.

• pw_constr_type= <Option>
Indicates the bound type of the piecewise function. Options:

– “UB” - y variable is bounded above by piecewise function.

– “LB” - y variable is bounded below by piecewise function.

– “EQ” - y variable is equal to the piecewise function.

• f_rule=f(model,i,j,. . . ,x), { }, [], ()
An object that returns a numeric value that is the range value corresponding to each piecewise domain point.
For functions, the first argument must be a Pyomo model. The last argument is the domain value at which the
function evaluates (Not a Pyomo Var). Intermediate arguments are the corresponding indices of the Piecewise
component (if any). Otherwise, the object can be a dictionary of lists/tuples (with keys the same as the indexing
set) or a singe list/tuple (when no indexing set is used or when all indices use an identical piecewise function).
Examples:

4.6. Expressions 29

Pyomo Documentation, Release 6.5.0

A function that changes with index
def f(model, j, x):

if j == 2:
return x**2 + 1.0

else:
return x**2 + 5.0

A nonlinear function
f = lambda model, x: exp(x) + value(model.p)

A step function
f = [0, 0, 1, 1, 2, 2]

• force_pw=True/False
Using the given function rule and pw_pts, a check for convexity/concavity is implemented. If (1) the function
is convex and the piecewise constraints are lower bounds or if (2) the function is concave and the piecewise
constraints are upper bounds then the piecewise constraints will be substituted for linear constraints. Setting
‘force_pw=True’ will force the use of the original piecewise constraints even when one of these two cases applies.

• warning_tol=<float>
To aid in debugging, a warning is printed when consecutive slopes of piecewise segments are within <warn-
ing_tol> of each other. Default=1e-8

• warn_domain_coverage=True/False
Print a warning when the feasible region of the domain variable is not completely covered by the piecewise
breakpoints. Default=True

• unbounded_domain_var=True/False
Allow an unbounded or partially bounded Pyomo Var to be used as the domain variable. Default=False

Note: This does not imply unbounded piecewise segments will be constructed. The outermost piecewise break-
points will bound the domain variable at each index. However, the Var attributes .lb and .ub will not be modified.

Here is an example of an assignment to a Python dictionary variable that has keywords for a picewise constraint:

kwds = {'pw_constr_type': 'EQ', 'pw_repn': 'SOS2', 'sense': maximize, 'force_pw': True}

Here is a simple example based on the example given earlier in Symbolic Index Sets. In this new example, the objective
function is the sum of c times x to the fourth. In this example, the keywords are passed directly to the Piecewise
function without being assigned to a dictionary variable. The upper bound on the x variables was chosen whimsically
just to make the example. The important thing to note is that variables that are going to appear as the independent
variable in a piecewise constraint must have bounds.

abstract2piece.py
Similar to abstract2.py, but the objective is now c times x to the fourth power

from pyomo.environ import *

model = AbstractModel()

(continues on next page)

30 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

(continued from previous page)

model.I = Set()
model.J = Set()

Topx = 6.1 # range of x variables

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals, bounds=(0, Topx))
model.y = Var(model.J, domain=NonNegativeReals)

to avoid warnings, we set breakpoints at or beyond the bounds
PieceCnt = 100
bpts = []
for i in range(PieceCnt + 2):

bpts.append(float((i * Topx) / PieceCnt))

def f4(model, j, xp):
we not need j, but it is passed as the index for the constraint
return xp**4

model.ComputeObj = Piecewise(
model.J, model.y, model.x, pw_pts=bpts, pw_constr_type='EQ', f_rule=f4

)

def obj_expression(model):
return summation(model.c, model.y)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
return the expression for the constraint for i
return sum(model.a[i, j] * model.x[j] for j in model.J) >= model.b[i]

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)

A more advanced example is provided in abstract2piecebuild.py in BuildAction and BuildCheck.

4.6. Expressions 31

Pyomo Documentation, Release 6.5.0

4.6.3 Expression Objects

Pyomo Expression objects are very similar to the Param component (with mutable=True) except that the underlying
values can be numeric constants or Pyomo expressions. Here’s an illustration of expression objects in an AbstractModel.
An expression object with an index set that is the numbers 1, 2, 3 is created and initialized to be the model variable x
times the index. Later in the model file, just to illustrate how to do it, the expression is changed but just for the first
index to be x squared.

model = ConcreteModel()
model.x = Var(initialize=1.0)

def _e(m, i):
return m.x * i

model.e = Expression([1, 2, 3], rule=_e)

instance = model.create_instance()

print(value(instance.e[1])) # -> 1.0
print(instance.e[1]()) # -> 1.0
print(instance.e[1].value) # -> a pyomo expression object

Change the underlying expression
instance.e[1].value = instance.x**2

... solve
... load results

print the value of the expression given the loaded optimal solution
print(value(instance.e[1]))

An alternative is to create Python functions that, potentially, manipulate model objects. E.g., if you define a function

def f(x, p):
return x + p

You can call this function with or without Pyomo modeling components as the arguments. E.g., f(2,3) will return a
number, whereas f(model.x, 3) will return a Pyomo expression due to operator overloading.

If you take this approach you should note that anywhere a Pyomo expression is used to generate another expression
(e.g., f(model.x, 3) + 5), the initial expression is always cloned so that the new generated expression is independent of
the old. For example:

model = ConcreteModel()
model.x = Var()

create a Pyomo expression
e1 = model.x + 5

create another Pyomo expression
(continues on next page)

32 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

(continued from previous page)

e1 is copied when generating e2
e2 = e1 + model.x

If you want to create an expression that is shared between other expressions, you can use the Expression component.

4.7 Suffixes

Suffixes provide a mechanism for declaring extraneous model data, which can be used in a number of contexts. Most
commonly, suffixes are used by solver plugins to store extra information about the solution of a model. This and other
suffix functionality is made available to the modeler through the use of the Suffix component class. Uses of Suffix
include:

• Importing extra information from a solver about the solution of a mathematical program (e.g., constraint duals,
variable reduced costs, basis information).

• Exporting information to a solver or algorithm to aid in solving a mathematical program (e.g., warm-starting
information, variable branching priorities).

• Tagging modeling components with local data for later use in advanced scripting algorithms.

4.7.1 Suffix Notation and the Pyomo NL File Interface

The Suffix component used in Pyomo has been adapted from the suffix notation used in the modeling language AMPL
[AMPL]. Therefore, it follows naturally that AMPL style suffix functionality is fully available using Pyomo’s NL file
interface. For information on AMPL style suffixes the reader is referred to the AMPL website:

http://www.ampl.com

A number of scripting examples that highlight the use AMPL style suffix functionality are available in the examples/
pyomo/suffixes directory distributed with Pyomo.

4.7.2 Declaration

The effects of declaring a Suffix component on a Pyomo model are determined by the following traits:

• direction: This trait defines the direction of information flow for the suffix. A suffix direction can be assigned
one of four possible values:

– LOCAL - suffix data stays local to the modeling framework and will not be imported or exported by a solver
plugin (default)

– IMPORT - suffix data will be imported from the solver by its respective solver plugin

– EXPORT - suffix data will be exported to a solver by its respective solver plugin

– IMPORT_EXPORT - suffix data flows in both directions between the model and the solver or algorithm

• datatype: This trait advertises the type of data held on the suffix for those interfaces where it matters (e.g., the
NL file interface). A suffix datatype can be assigned one of three possible values:

– FLOAT - the suffix stores floating point data (default)

– INT - the suffix stores integer data

– None - the suffix stores any type of data

4.7. Suffixes 33

http://www.ampl.com

Pyomo Documentation, Release 6.5.0

Note: Exporting suffix data through Pyomo’s NL file interface requires all active export suffixes have a strict datatype
(i.e., datatype=None is not allowed).

The following code snippet shows examples of declaring a Suffix component on a Pyomo model:

import pyomo.environ as pyo

model = pyo.ConcreteModel()

Export integer data
model.priority = pyo.Suffix(

direction=pyo.Suffix.EXPORT, datatype=pyo.Suffix.INT)

Export and import floating point data
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT_EXPORT)

Store floating point data
model.junk = pyo.Suffix()

Declaring a Suffix with a non-local direction on a model is not guaranteed to be compatible with all solver plugins in
Pyomo. Whether a given Suffix is acceptable or not depends on both the solver and solver interface being used. In
some cases, a solver plugin will raise an exception if it encounters a Suffix type that it does not handle, but this is not
true in every situation. For instance, the NL file interface is generic to all AMPL-compatible solvers, so there is no way
to validate that a Suffix of a given name, direction, and datatype is appropriate for a solver. One should be careful in
verifying that Suffix declarations are being handled as expected when switching to a different solver or solver interface.

4.7.3 Operations

The Suffix component class provides a dictionary interface for mapping Pyomo modeling components to arbitrary data.
This mapping functionality is captured within the ComponentMap base class, which is also available within Pyomo’s
modeling environment. The ComponentMap can be used as a more lightweight replacement for Suffix in cases where
a simple mapping from Pyomo modeling components to arbitrary data values is required.

Note: ComponentMap and Suffix use the built-in id() function for hashing entry keys. This design decision arises
from the fact that most of the modeling components found in Pyomo are either not hashable or use a hash based on a
mutable numeric value, making them unacceptable for use as keys with the built-in dict class.

Warning: The use of the built-in id() function for hashing entry keys in ComponentMap and Suffix makes them
inappropriate for use in situations where built-in object types must be used as keys. It is strongly recommended that
only Pyomo modeling components be used as keys in these mapping containers (Var, Constraint, etc.).

Warning: Do not attempt to pickle or deepcopy instances of ComponentMap or Suffix unless doing so along with
the components for which they hold mapping entries. As an example, placing one of these objects on a model and
then cloning or pickling that model is an acceptable scenario.

In addition to the dictionary interface provided through the ComponentMap base class, the Suffix component class
also provides a number of methods whose default semantics are more convenient for working with indexed modeling

34 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

components. The easiest way to highlight this functionality is through the use of an example.

model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var([1,2,3])
model.foo = pyo.Suffix()

In this example we have a concrete Pyomo model with two different types of variable components (indexed and non-
indexed) as well as a Suffix declaration (foo). The next code snippet shows examples of adding entries to the suffix
foo.

Assign a suffix value of 1.0 to model.x
model.foo.set_value(model.x, 1.0)

Same as above with dict interface
model.foo[model.x] = 1.0

Assign a suffix value of 0.0 to all indices of model.y
By default this expands so that entries are created for
every index (y[1], y[2], y[3]) and not model.y itself
model.foo.set_value(model.y, 0.0)

The same operation using the dict interface results in an entry only
for the parent component model.y
model.foo[model.y] = 50.0

Assign a suffix value of -1.0 to model.y[1]
model.foo.set_value(model.y[1], -1.0)

Same as above with the dict interface
model.foo[model.y[1]] = -1.0

In this example we highlight the fact that the __setitem__ and setValue entry methods can be used interchangeably
except in the case where indexed components are used (model.y). In the indexed case, the __setitem__ approach
creates a single entry for the parent indexed component itself, whereas the setValue approach by default creates an
entry for each index of the component. This behavior can be controlled using the optional keyword ‘expand’, where
assigning it a value of False results in the same behavior as __setitem__.

Other operations like accessing or removing entries in our mapping can performed as if the built-in dict class is in
use.

>>> print(model.foo.get(model.x))
1.0
>>> print(model.foo[model.x])
1.0

>>> print(model.foo.get(model.y[1]))
-1.0
>>> print(model.foo[model.y[1]])
-1.0

>>> print(model.foo.get(model.y[2]))
0.0
>>> print(model.foo[model.y[2]])

(continues on next page)

4.7. Suffixes 35

Pyomo Documentation, Release 6.5.0

(continued from previous page)

0.0

>>> print(model.foo.get(model.y))
50.0
>>> print(model.foo[model.y])
50.0

>>> del model.foo[model.y]
>>> print(model.foo.get(model.y))
None

>>> print(model.foo[model.y])
Traceback (most recent call last):
...

KeyError: "Component with id '...': y"

The non-dict method clear_value can be used in place of __delitem__ to remove entries, where it inherits the same
default behavior as setValue for indexed components and does not raise a KeyError when the argument does not exist
as a key in the mapping.

>>> model.foo.clear_value(model.y)

>>> print(model.foo[model.y[1]])
Traceback (most recent call last):
...

KeyError: "Component with id '...': y[1]"

>>> del model.foo[model.y[1]]
Traceback (most recent call last):
...

KeyError: "Component with id '...': y[1]"

>>> model.foo.clear_value(model.y[1])

A summary non-dict Suffix methods is provided here:

clearAllValues()
Clears all suffix data.

clear_value(component, expand=True)
Clears suffix information for a component.

setAllValues(value)
Sets the value of this suffix on all components.

setValue(component, value, expand=True)
Sets the value of this suffix on the specified component.

updateValues(data_buffer, expand=True)
Updates the suffix data given a list of component,value tuples. Provides
an improvement in efficiency over calling setValue on every component.

36 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

getDatatype()
Return the suffix datatype.

setDatatype(datatype)
Set the suffix datatype.

getDirection()
Return the suffix direction.

setDirection(direction)
Set the suffix direction.

importEnabled()
Returns True when this suffix is enabled for import from solutions.

exportEnabled()
Returns True when this suffix is enabled for export to solvers.

4.7.4 Importing Suffix Data

Importing suffix information from a solver solution is achieved by declaring a Suffix component with the appropriate
name and direction. Suffix names available for import may be specific to third-party solvers as well as individual solver
interfaces within Pyomo. The most common of these, available with most solvers and solver interfaces, is constraint dual
multipliers. Requesting that duals be imported into suffix data can be accomplished by declaring a Suffix component
on the model.

model = pyo.ConcreteModel()
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)
model.x = pyo.Var()
model.obj = pyo.Objective(expr=model.x)
model.con = pyo.Constraint(expr=model.x >= 1.0)

The existence of an active suffix with the name dual that has an import style suffix direction will cause constraint dual
information to be collected into the solver results (assuming the solver supplies dual information). In addition to this,
after loading solver results into a problem instance (using a python script or Pyomo callback functions in conjunction
with the pyomo command), one can access the dual values associated with constraints using the dual Suffix component.

>>> results = pyo.SolverFactory('glpk').solve(model)
>>> pyo.assert_optimal_termination(results)
>>> print(model.dual[model.con])
1.0

Alternatively, the pyomo option --solver-suffixes can be used to request suffix information from a solver. In the
event that suffix names are provided via this command-line option, the pyomo script will automatically declare these
Suffix components on the constructed instance making these suffixes available for import.

4.7. Suffixes 37

Pyomo Documentation, Release 6.5.0

4.7.5 Exporting Suffix Data

Exporting suffix data is accomplished in a similar manner as to that of importing suffix data. One simply needs to declare
a Suffix component on the model with an export style suffix direction and associate modeling component values with
it. The following example shows how one can declare a special ordered set of type 1 using AMPL-style suffix notation
in conjunction with Pyomo’s NL file interface.

model = pyo.ConcreteModel()
model.y = pyo.Var([1,2,3], within=pyo.NonNegativeReals)

model.sosno = pyo.Suffix(direction=pyo.Suffix.EXPORT)
model.ref = pyo.Suffix(direction=pyo.Suffix.EXPORT)

Add entry for each index of model.y
model.sosno.set_value(model.y, 1)
model.ref[model.y[1]] = 0
model.ref[model.y[2]] = 1
model.ref[model.y[3]] = 2

Most AMPL-compatible solvers will recognize the suffix names sosno and ref as declaring a special ordered set,
where a positive value for sosno indicates a special ordered set of type 1 and a negative value indicates a special
ordered set of type 2.

Note: Pyomo provides the SOSConstraint component for declaring special ordered sets, which is recognized by all
solver interfaces, including the NL file interface.

Pyomo’s NL file interface will recognize an EXPORT style Suffix component with the name ‘dual’ as supplying initial-
izations for constraint multipliers. As such it will be treated separately than all other EXPORT style suffixes encountered
in the NL writer, which are treated as AMPL-style suffixes. The following example script shows how one can warmstart
the interior-point solver Ipopt by supplying both primal (variable values) and dual (suffixes) solution information. This
dual suffix information can be both imported and exported using a single Suffix component with an IMPORT_EXPORT
direction.

model = pyo.ConcreteModel()
model.x1 = pyo.Var(bounds=(1,5),initialize=1.0)
model.x2 = pyo.Var(bounds=(1,5),initialize=5.0)
model.x3 = pyo.Var(bounds=(1,5),initialize=5.0)
model.x4 = pyo.Var(bounds=(1,5),initialize=1.0)
model.obj = pyo.Objective(

expr=model.x1*model.x4*(model.x1 + model.x2 + model.x3) + model.x3)
model.inequality = pyo.Constraint(

expr=model.x1*model.x2*model.x3*model.x4 >= 25.0)
model.equality = pyo.Constraint(

expr=model.x1**2 + model.x2**2 + model.x3**2 + model.x4**2 == 40.0)

Declare all suffixes
Ipopt bound multipliers (obtained from solution)
model.ipopt_zL_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
model.ipopt_zU_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
Ipopt bound multipliers (sent to solver)
model.ipopt_zL_in = pyo.Suffix(direction=pyo.Suffix.EXPORT)
model.ipopt_zU_in = pyo.Suffix(direction=pyo.Suffix.EXPORT)
Obtain dual solutions from first solve and send to warm start

(continues on next page)

38 Chapter 4. Pyomo Modeling Components

Pyomo Documentation, Release 6.5.0

(continued from previous page)

model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT_EXPORT)

ipopt = pyo.SolverFactory('ipopt')

The difference in performance can be seen by examining Ipopt’s iteration log with and without warm starting:

• Without Warmstart:

ipopt.solve(model, tee=True)

...
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 1.6109693e+01 1.12e+01 5.28e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 1.6982239e+01 7.30e-01 1.02e+01 -1.0 6.11e-01 - 7.19e-02 1.00e+00f 1
2 1.7318411e+01 ...
...
8 1.7014017e+01 ...

Number of Iterations....: 8
...

• With Warmstart:

Set Ipopt options for warm-start
The current values on the ipopt_zU_out and ipopt_zL_out suffixes will
be used as initial conditions for the bound multipliers to solve the
new problem
model.ipopt_zL_in.update(model.ipopt_zL_out)
model.ipopt_zU_in.update(model.ipopt_zU_out)
ipopt.options['warm_start_init_point'] = 'yes'
ipopt.options['warm_start_bound_push'] = 1e-6
ipopt.options['warm_start_mult_bound_push'] = 1e-6
ipopt.options['mu_init'] = 1e-6

ipopt.solve(model, tee=True)

...
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 1.7014032e+01 2.00e-06 4.07e-06 -6.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 1.7014019e+01 3.65e-12 1.00e-11 -6.0 2.50e-01 - 1.00e+00 1.00e+00h 1
2 1.7014017e+01 ...

Number of Iterations....: 2
...

4.7. Suffixes 39

Pyomo Documentation, Release 6.5.0

4.7.6 Using Suffixes With an AbstractModel

In order to allow the declaration of suffix data within the framework of an AbstractModel, the Suffix component can
be initialized with an optional construction rule. As with constraint rules, this function will be executed at the time
of model construction. The following simple example highlights the use of the rule keyword in suffix initialization.
Suffix rules are expected to return an iterable of (component, value) tuples, where the expand=True semantics are
applied for indexed components.

model = pyo.AbstractModel()
model.x = pyo.Var()
model.c = pyo.Constraint(expr=model.x >= 1)

def foo_rule(m):
return ((m.x, 2.0), (m.c, 3.0))

model.foo = pyo.Suffix(rule=foo_rule)

>>> # Instantiate the model
>>> inst = model.create_instance()

>>> print(inst.foo[inst.x])
2.0
>>> print(inst.foo[inst.c])
3.0

>>> # Note that model.x and inst.x are not the same object
>>> print(inst.foo[model.x])
Traceback (most recent call last):
...

KeyError: "Component with id '...': x"

The next example shows an abstract model where suffixes are attached only to the variables:

model = pyo.AbstractModel()
model.I = pyo.RangeSet(1,4)
model.x = pyo.Var(model.I)
def c_rule(m, i):

return m.x[i] >= i
model.c = pyo.Constraint(model.I, rule=c_rule)

def foo_rule(m):
return ((m.x[i], 3.0*i) for i in m.I)

model.foo = pyo.Suffix(rule=foo_rule)

>>> # instantiate the model
>>> inst = model.create_instance()
>>> for i in inst.I:
... print((i, inst.foo[inst.x[i]]))
(1, 3.0)
(2, 6.0)
(3, 9.0)
(4, 12.0)

40 Chapter 4. Pyomo Modeling Components

CHAPTER

FIVE

SOLVING PYOMO MODELS

5.1 Solving ConcreteModels

If you have a ConcreteModel, add these lines at the bottom of your Python script to solve it

>>> opt = pyo.SolverFactory('glpk')
>>> opt.solve(model)

5.2 Solving AbstractModels

If you have an AbstractModel, you must create a concrete instance of your model before solving it using the same lines
as above:

>>> instance = model.create_instance()
>>> opt = pyo.SolverFactory('glpk')
>>> opt.solve(instance)

5.3 pyomo solve Command

To solve a ConcreteModel contained in the file my_model.py using the pyomo command and the solver GLPK, use
the following line in a terminal window:

pyomo solve my_model.py --solver='glpk'

To solve an AbstractModel contained in the file my_model.py with data in the file my_data.dat using the pyomo
command and the solver GLPK, use the following line in a terminal window:

pyomo solve my_model.py my_data.dat --solver='glpk'

41

Pyomo Documentation, Release 6.5.0

5.4 Supported Solvers

Pyomo supports a wide variety of solvers. Pyomo has specialized interfaces to some solvers (for example, BARON,
CBC, CPLEX, and Gurobi). It also has generic interfaces that support calling any solver that can read AMPL “.nl”
and write “.sol” files and the ability to generate GAMS-format models and retrieve the results. You can get the current
list of supported solvers using the pyomo command:

pyomo help --solvers

42 Chapter 5. Solving Pyomo Models

CHAPTER

SIX

WORKING WITH PYOMO MODELS

This section gives an overview of commonly used scripting commands when working with Pyomo models. These
commands must be applied to a concrete model instance or in other words an instantiated model.

6.1 Repeated Solves

>>> import pyomo.environ as pyo
>>> from pyomo.opt import SolverFactory
>>> model = pyo.ConcreteModel()
>>> model.nVars = pyo.Param(initialize=4)
>>> model.N = pyo.RangeSet(model.nVars)
>>> model.x = pyo.Var(model.N, within=pyo.Binary)
>>> model.obj = pyo.Objective(expr=pyo.summation(model.x))
>>> model.cuts = pyo.ConstraintList()
>>> opt = SolverFactory('glpk')
>>> opt.solve(model)

>>> # Iterate, adding a cut to exclude the previously found solution
>>> for i in range(5):
... expr = 0
... for j in model.x:
... if pyo.value(model.x[j]) < 0.5:
... expr += model.x[j]
... else:
... expr += (1 - model.x[j])
... model.cuts.add(expr >= 1)
... results = opt.solve(model)
... print ("\n===== iteration",i)
... model.display()

To illustrate Python scripts for Pyomo we consider an example that is in the file iterative1.py and is executed using
the command

python iterative1.py

Note: This is a Python script that contains elements of Pyomo, so it is executed using the python command. The
pyomo command can be used, but then there will be some strange messages at the end when Pyomo finishes the script
and attempts to send the results to a solver, which is what the pyomo command does.

43

Pyomo Documentation, Release 6.5.0

This script creates a model, solves it, and then adds a constraint to preclude the solution just found. This process is
repeated, so the script finds and prints multiple solutions. The particular model it creates is just the sum of four binary
variables. One does not need a computer to solve the problem or even to iterate over solutions. This example is provided
just to illustrate some elementary aspects of scripting.

iterative1.py
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = pyo.SolverFactory('glpk')

#
A simple model with binary variables and
an empty constraint list.
#
model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)

def o_rule(model):
return pyo.summation(model.x)

model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

Create a model instance and optimize
instance = model.create_instance()
results = opt.solve(instance)
instance.display()

Iterate to eliminate the previously found solution
for i in range(5):

expr = 0
for j in instance.x:

if pyo.value(instance.x[j]) == 0:
expr += instance.x[j]

else:
expr += 1 - instance.x[j]

instance.c.add(expr >= 1)
results = opt.solve(instance)
print("\n===== iteration", i)
instance.display()

Let us now analyze this script. The first line is a comment that happens to give the name of the file. This is followed by
two lines that import symbols for Pyomo. The pyomo namespace is imported as pyo. Therefore, pyo. must precede
each use of a Pyomo name.

iterative1.py
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

(continues on next page)

44 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

An object to perform optimization is created by calling SolverFactory with an argument giving the name of the
solver. The argument would be 'gurobi' if, e.g., Gurobi was desired instead of glpk:

Create a solver
opt = pyo.SolverFactory('glpk')

The next lines after a comment create a model. For our discussion here, we will refer to this as the base model because
it will be extended by adding constraints later. (The words “base model” are not reserved words, they are just being
introduced for the discussion of this example). There are no constraints in the base model, but that is just to keep it
simple. Constraints could be present in the base model. Even though it is an abstract model, the base model is fully
specified by these commands because it requires no external data:

model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)

def o_rule(model):
return pyo.summation(model.x)

model.o = pyo.Objective(rule=o_rule)

The next line is not part of the base model specification. It creates an empty constraint list that the script will use to
add constraints.

model.c = pyo.ConstraintList()

The next non-comment line creates the instantiated model and refers to the instance object with a Python variable
instance. Models run using the pyomo script do not typically contain this line because model instantiation is done by
the pyomo script. In this example, the create function is called without arguments because none are needed; however,
the name of a file with data commands is given as an argument in many scripts.

instance = model.create_instance()

The next line invokes the solver and refers to the object contain results with the Python variable results.

results = opt.solve(instance)

The solve function loads the results into the instance, so the next line writes out the updated values.

instance.display()

The next non-comment line is a Python iteration command that will successively assign the integers from 0 to 4 to the
Python variable i, although that variable is not used in script. This loop is what causes the script to generate five more
solutions:

for i in range(5):

An expression is built up in the Python variable named expr. The Python variable j will be iteratively assigned all
of the indexes of the variable x. For each index, the value of the variable (which was loaded by the load method
just described) is tested to see if it is zero and the expression in expr is augmented accordingly. Although expr is

6.1. Repeated Solves 45

Pyomo Documentation, Release 6.5.0

initialized to 0 (an integer), its type will change to be a Pyomo expression when it is assigned expressions involving
Pyomo variable objects:

expr = 0
for j in instance.x:

if pyo.value(instance.x[j]) == 0:
expr += instance.x[j]

else:
expr += 1 - instance.x[j]

During the first iteration (when i is 0), we know that all values of x will be 0, so we can anticipate what the expression
will look like. We know that x is indexed by the integers from 1 to 4 so we know that j will take on the values from 1 to
4 and we also know that all value of x will be zero for all indexes so we know that the value of expr will be something
like

0 + instance.x[1] + instance.x[2] + instance.x[3] + instance.x[4]

The value of j will be evaluated because it is a Python variable; however, because it is a Pyomo variable, the value of
instance.x[j] not be used, instead the variable object will appear in the expression. That is exactly what we want
in this case. When we wanted to use the current value in the if statement, we used the value function to get it.

The next line adds to the constaint list called c the requirement that the expression be greater than or equal to one:

instance.c.add(expr >= 1)

The proof that this precludes the last solution is left as an exerise for the reader.

The final lines in the outer for loop find a solution and display it:

results = opt.solve(instance)
print("\n===== iteration", i)
instance.display()

Note: The assignment of the solve output to a results object is somewhat anachronistic. Many scripts just use

>>> opt.solve(instance)

since the results are moved to the instance by default, leaving the results object with little of interest. If, for some
reason, you want the results to stay in the results object and not be moved to the instance, you would use

>>> results = opt.solve(instance, load_solutions=False)

This approach can be useful if there is a concern that the solver did not terminate with an optimal solution. For example,

>>> results = opt.solve(instance, load_solutions=False)
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... instance.solutions.load_from(results)

46 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

6.2 Changing the Model or Data and Re-solving

The iterative1.py example above illustrates how a model can be changed and then re-solved. In that example, the
model is changed by adding a constraint, but the model could also be changed by altering the values of parameters. Note,
however, that in these examples, we make the changes to the concrete model instances. This is particularly important for
AbstractModel users, as this implies working with the instance object rather than the model object, which allows
us to avoid creating a new model object for each solve. Here is the basic idea for users of an AbstractModel:

1. Create an AbstractModel (suppose it is called model)

2. Call model.create_instance() to create an instance (suppose it is called instance)

3. Solve instance

4. Change someting in instance

5. Solve instance again

Note: Users of ConcreteModel typically name their models model, which can cause confusion to novice readers
of documentation. Examples based on an AbstractModel will refer to instance where users of a ConcreteModel
would typically use the name model.

If instance has a parameter whose name is Theta that was declared to be mutable (i.e., mutable=True) with an
index that contains idx, then the value in NewVal can be assigned to it using

>>> instance.Theta[idx] = NewVal

For a singleton parameter named sigma (i.e., if it is not indexed), the assignment can be made using

>>> instance.sigma = NewVal

Note: If the Param is not declared to be mutable, an error will occur if an assignment to it is attempted.

For more information about access to Pyomo parameters, see the section in this document on Param access Accessing
Parameter Values. Note that for concrete models, the model is the instance.

6.3 Fixing Variables and Re-solving

Instead of changing model data, scripts are often used to fix variable values. The following example illustrates this.

iterative2.py

import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = pyo.SolverFactory('cplex')

#
A simple model with binary variables and
an empty constraint list.

(continues on next page)

6.2. Changing the Model or Data and Re-solving 47

Pyomo Documentation, Release 6.5.0

(continued from previous page)

#
model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)

def o_rule(model):
return pyo.summation(model.x)

model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

Create a model instance and optimize
instance = model.create_instance()
results = opt.solve(instance)
instance.display()

"flip" the value of x[2] (it is binary)
then solve again

if pyo.value(instance.x[2]) == 0:
instance.x[2].fix(1)

else:
instance.x[2].fix(0)

results = opt.solve(instance)
instance.display()

In this example, the variables are binary. The model is solved and then the value of model.x[2] is flipped to the
opposite value before solving the model again. The main lines of interest are:

if pyo.value(instance.x[2]) == 0:
instance.x[2].fix(1)

else:
instance.x[2].fix(0)

results = opt.solve(instance)

This could also have been accomplished by setting the upper and lower bounds:

>>> if instance.x[2].value == 0:
... instance.x[2].setlb(1)
... instance.x[2].setub(1)
... else:
... instance.x[2].setlb(0)
... instance.x[2].setub(0)

Notice that when using the bounds, we do not set fixed to True because that would fix the variable at whatever value
it presently has and then the bounds would be ignored by the solver.

For more information about access to Pyomo variables, see the section in this document on Var access Accessing
Variable Values.

48 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

Note that

>>> instance.x.fix(1)

is equivalent to

>>> instance.x.value = 1
>>> instance.x.fixed = True

and

>>> instance.x.fix()

is equivalent to

>>> instance.x.fixed = True

6.4 Extending the Objective Function

One can add terms to an objective function of a ConcreteModel (or and instantiated AbstractModel) using the expr
attribute of the objective function object. Here is a simple example:

>>> import pyomo.environ as pyo
>>> from pyomo.opt import SolverFactory

>>> model = pyo.ConcreteModel()

>>> model.x = pyo.Var(within=pyo.PositiveReals)
>>> model.y = pyo.Var(within=pyo.PositiveReals)

>>> model.sillybound = pyo.Constraint(expr = model.x + model.y <= 2)

>>> model.obj = pyo.Objective(expr = 20 * model.x)

>>> opt = SolverFactory('glpk')
>>> opt.solve(model)

>>> model.pprint()

>>> print ("------------- extend obj --------------")
>>> model.obj.expr += 10 * model.y

>>> opt.solve(model)
>>> model.pprint()

6.4. Extending the Objective Function 49

Pyomo Documentation, Release 6.5.0

6.5 Activating and Deactivating Objectives

Multiple objectives can be declared, but only one can be active at a time (at present, Pyomo does not support any
solvers that can be given more than one objective). If both model.obj1 and model.obj2 have been declared using
Objective, then one can ensure that model.obj2 is passed to the solver as shown in this simple example:

>>> model = pyo.ConcreteModel()
>>> model.obj1 = pyo.Objective(expr = 0)
>>> model.obj2 = pyo.Objective(expr = 0)

>>> model.obj1.deactivate()
>>> model.obj2.activate()

For abstract models this would be done prior to instantiation or else the activate and deactivate calls would be on
the instance rather than the model.

6.6 Activating and Deactivating Constraints

Constraints can be temporarily disabled using the deactivate() method. When the model is sent to a solver inactive
constraints are not included. Disabled constraints can be re-enabled using the activate() method.

>>> model = pyo.ConcreteModel()
>>> model.v = pyo.Var()
>>> model.con = pyo.Constraint(expr=model.v**2 + model.v >= 3)
>>> model.con.deactivate()
>>> model.con.activate()

Indexed constraints can be deactivated/activated as a whole or by individual index:

>>> model = pyo.ConcreteModel()
>>> model.s = pyo.Set(initialize=[1,2,3])
>>> model.v = pyo.Var(model.s)
>>> def _con(m, s):
... return m.v[s]**2 + m.v[s] >= 3
>>> model.con = pyo.Constraint(model.s, rule=_con)
>>> model.con.deactivate() # Deactivate all indices
>>> model.con[1].activate() # Activate single index

6.7 Accessing Variable Values

6.7.1 Primal Variable Values

Often, the point of optimization is to get optimal values of variables. Some users may want to process the values in a
script. We will describe how to access a particular variable from a Python script as well as how to access all variables
from a Python script and from a callback. This should enable the reader to understand how to get the access that they
desire. The Iterative example given above also illustrates access to variable values.

50 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

6.7.2 One Variable from a Python Script

Assuming the model has been instantiated and solved and the results have been loded back into the instance object, then
we can make use of the fact that the variable is a member of the instance object and its value can be accessed using its
value member. For example, suppose the model contains a variable named quant that is a singleton (has no indexes)
and suppose further that the name of the instance object is instance. Then the value of this variable can be accessed
using pyo.value(instance.quant). Variables with indexes can be referenced by supplying the index.

Consider the following very simple example, which is similar to the iterative example. This is a concrete model. In
this example, the value of x[2] is accessed.

noiteration1.py

import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = SolverFactory('glpk')

#
A simple model with binary variables and
an empty constraint list.
#
model = pyo.ConcreteModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)

def o_rule(model):
return pyo.summation(model.x)

model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

results = opt.solve(model)

if pyo.value(model.x[2]) == 0:
print("The second index has a zero")

else:
print("x[2]=", pyo.value(model.x[2]))

Note: If this script is run without modification, Pyomo is likely to issue a warning because there are no constraints.
The warning is because some solvers may fail if given a problem instance that does not have any constraints.

6.7. Accessing Variable Values 51

Pyomo Documentation, Release 6.5.0

6.7.3 All Variables from a Python Script

As with one variable, we assume that the model has been instantiated and solved. Assuming the instance object has the
name instance, the following code snippet displays all variables and their values:

>>> for v in instance.component_objects(pyo.Var, active=True):
... print("Variable",v)
... for index in v:
... print (" ",index, pyo.value(v[index]))

Alternatively,

>>> for v in instance.component_data_objects(pyo.Var, active=True):
... print(v, pyo.value(v))

This code could be improved by checking to see if the variable is not indexed (i.e., the only index value is None), then
the code could print the value without the word None next to it.

Assuming again that the model has been instantiated and solved and the results have been loded back into the instance
object. Here is a code snippet for fixing all integers at their current value:

>>> for var in instance.component_data_objects(pyo.Var, active=True):
... if not var.is_continuous():
... print ("fixing "+str(v))
... var.fixed = True # fix the current value

Another way to access all of the variables (particularly if there are blocks) is as follows (this particular snippet assumes
that instead of import pyomo.environ as pyo from pyo.environ import * was used):

for v in model.component_objects(Var, descend_into=True):
print("FOUND VAR:" + v.name)
v.pprint()

for v_data in model.component_data_objects(Var, descend_into=True):
print("Found: " + v_data.name + ", value = " + str(value(v_data)))

6.8 Accessing Parameter Values

Accessing parameter values is completely analogous to accessing variable values. For example, here is a code snippet
to print the name and value of every Parameter in a model:

>>> for parmobject in instance.component_objects(pyo.Param, active=True):
... nametoprint = str(str(parmobject.name))
... print ("Parameter ", nametoprint)
... for index in parmobject:
... vtoprint = pyo.value(parmobject[index])
... print (" ",index, vtoprint)

52 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

6.9 Accessing Duals

Access to dual values in scripts is similar to accessing primal variable values, except that dual values are not captured
by default so additional directives are needed before optimization to signal that duals are desired.

To get duals without a script, use the pyomo option --solver-suffixes='dual' which will cause dual values to be
included in output. Note: In addition to duals (dual) , reduced costs (rc) and slack values (slack) can be requested.
All suffixes can be requested using the pyomo option --solver-suffixes='.*'

Warning: Some of the duals may have the value None, rather than 0.

6.9.1 Access Duals in a Python Script

To signal that duals are desired, declare a Suffix component with the name “dual” on the model or instance with an
IMPORT or IMPORT_EXPORT direction.

Create a 'dual' suffix component on the instance
so the solver plugin will know which suffixes to collect
instance.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)

See the section on Suffixes Suffixes for more information on Pyomo’s Suffix component. After the results are obtained
and loaded into an instance, duals can be accessed in the following fashion.

display all duals
print("Duals")
for c in instance.component_objects(pyo.Constraint, active=True):

print(" Constraint", c)
for index in c:

print(" ", index, instance.dual[c[index]])

The following snippet will only work, of course, if there is a constraint with the name AxbConstraint that has and
index, which is the string Film.

access one dual
print("Dual for Film=", instance.dual[instance.AxbConstraint['Film']])

Here is a complete example that relies on the file abstract2.py to provide the model and the file abstract2.dat
to provide the data. Note that the model in abstract2.py does contain a constraint named AxbConstraint and
abstract2.dat does specify an index for it named Film.

driveabs2.py
from __future__ import division
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = SolverFactory('cplex')

get the model from another file
from abstract2 import model

(continues on next page)

6.9. Accessing Duals 53

Pyomo Documentation, Release 6.5.0

(continued from previous page)

Create a model instance and optimize
instance = model.create_instance('abstract2.dat')

Create a 'dual' suffix component on the instance
so the solver plugin will know which suffixes to collect
instance.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)

results = opt.solve(instance)
also puts the results back into the instance for easy access

display all duals
print("Duals")
for c in instance.component_objects(pyo.Constraint, active=True):

print(" Constraint", c)
for index in c:

print(" ", index, instance.dual[c[index]])

access one dual
print("Dual for Film=", instance.dual[instance.AxbConstraint['Film']])

Concrete models are slightly different because the model is the instance. Here is a complete example that relies on the
file concrete1.py to provide the model and instantiate it.

driveconc1.py
from __future__ import division
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = SolverFactory('cplex')

get the model from another file
from concrete1 import model

Create a 'dual' suffix component on the instance
so the solver plugin will know which suffixes to collect
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)

results = opt.solve(model) # also load results to model

display all duals
print("Duals")
for c in model.component_objects(pyo.Constraint, active=True):

print(" Constraint", c)
for index in c:

print(" ", index, model.dual[c[index]])

54 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

6.10 Accessing Slacks

The functions lslack() and uslack() return the upper and lower slacks, respectively, for a constraint.

6.11 Accessing Solver Status

After a solve, the results object has a member Solution.Status that contains the solver status. The following snippet
shows an example of access via a print statement:

results = opt.solve(instance)
#print ("The solver returned a status of:"+str(results.solver.status))

The use of the Python str function to cast the value to a be string makes it easy to test it. In particular, the value
‘optimal’ indicates that the solver succeeded. It is also possible to access Pyomo data that can be compared with the
solver status as in the following code snippet:

from pyomo.opt import SolverStatus, TerminationCondition

#...

if (results.solver.status == SolverStatus.ok) and (results.solver.termination_condition␣
→˓== TerminationCondition.optimal):

print ("this is feasible and optimal")
elif results.solver.termination_condition == TerminationCondition.infeasible:

print ("do something about it? or exit?")
else:

something else is wrong
print (str(results.solver))

Alternatively,

from pyomo.opt import TerminationCondition

...

results = opt.solve(model, load_solutions=False)
if results.solver.termination_condition == TerminationCondition.optimal:

model.solutions.load_from(results)
else:

print ("Solution is not optimal")
now do something about it? or exit? ...

6.10. Accessing Slacks 55

Pyomo Documentation, Release 6.5.0

6.12 Display of Solver Output

To see the output of the solver, use the option tee=True as in

results = opt.solve(instance, tee=True)

This can be useful for troubleshooting solver difficulties.

6.13 Sending Options to the Solver

Most solvers accept options and Pyomo can pass options through to a solver. In scripts or callbacks, the options can be
attached to the solver object by adding to its options dictionary as illustrated by this snippet:

optimizer = pyo.SolverFactory['cbc']
optimizer.options["threads"] = 4

If multiple options are needed, then multiple dictionary entries should be added.

Sometimes it is desirable to pass options as part of the call to the solve function as in this snippet:

results = optimizer.solve(instance, options={'threads' : 4}, tee=True)

The quoted string is passed directly to the solver. If multiple options need to be passed to the solver in this way, they
should be separated by a space within the quoted string. Notice that tee is a Pyomo option and is solver-independent,
while the string argument to options is passed to the solver without very little processing by Pyomo. If the solver
does not have a “threads” option, it will probably complain, but Pyomo will not.

There are no default values for options on a SolverFactory object. If you directly modify its options dictionary, as
was done above, those options will persist across every call to optimizer.solve(...) unless you delete them from
the options dictionary. You can also pass a dictionary of options into the opt.solve(...) method using the options
keyword. Those options will only persist within that solve and temporarily override any matching options in the options
dictionary on the solver object.

6.14 Specifying the Path to a Solver

Often, the executables for solvers are in the path; however, for situations where they are not, the SolverFactory function
accepts the keyword executable, which you can use to set an absolute or relative path to a solver executable. E.g.,

opt = pyo.SolverFactory("ipopt", executable="../ipopt")

6.15 Warm Starts

Some solvers support a warm start based on current values of variables. To use this feature, set the values of variables
in the instance and pass warmstart=True to the solve() method. E.g.,

instance = model.create()
instance.y[0] = 1
instance.y[1] = 0

(continues on next page)

56 Chapter 6. Working with Pyomo Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

opt = pyo.SolverFactory("cplex")

results = opt.solve(instance, warmstart=True)

Note: The Cplex and Gurobi LP file (and Python) interfaces will generate an MST file with the variable data and hand
this off to the solver in addition to the LP file.

Warning: Solvers using the NL file interface (e.g., “gurobi_ampl”, “cplexamp”) do not accept warmstart as a
keyword to the solve() method as the NL file format, by default, includes variable initialization data (drawn from
the current value of all variables).

6.16 Solving Multiple Instances in Parallel

Building and solving Pyomo models in parallel is a common requirement for many applications. We recommend
using MPI for Python (mpi4py) for this purpose. For more information on mpi4py, see the mpi4py documentation
(https://mpi4py.readthedocs.io/en/stable/). The example below demonstrates how to use mpi4py to solve two pyomo
models in parallel. The example can be run with the following command:

mpirun -np 2 python -m mpi4py parallel.py

parallel.py
run with mpirun -np 2 python -m mpi4py parallel.py
import pyomo.environ as pyo
from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
assert (

size == 2
), 'This example only works with 2 processes; please us mpirun -np 2 python -m mpi4py␣
→˓parallel.py'

Create a solver
opt = pyo.SolverFactory('cplex_direct')

#
A simple model with binary variables
#
model = pyo.ConcreteModel()
model.n = pyo.Param(initialize=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
model.obj = pyo.Objective(expr=sum(model.x.values()))

if rank == 1:
model.x[1].fix(1)

(continues on next page)

6.16. Solving Multiple Instances in Parallel 57

https://mpi4py.readthedocs.io/en/stable/

Pyomo Documentation, Release 6.5.0

(continued from previous page)

results = opt.solve(model)
print('rank: ', rank, ' objective: ', pyo.value(model.obj.expr))

6.17 Changing the temporary directory

A “temporary” directory is used for many intermediate files. Normally, the name of the directory for temporary files
is provided by the operating system, but the user can specify their own directory name. The pyomo command-line
--tempdir option propagates through to the TempFileManager service. One can accomplish the same through the
following few lines of code in a script:

from pyomo.common.tempfiles import TempfileManager
TempfileManager.tempdir = YourDirectoryNameGoesHere

58 Chapter 6. Working with Pyomo Models

CHAPTER

SEVEN

WORKING WITH ABSTRACT MODELS

7.1 Instantiating Models

If you start with a ConcreteModel, each component you add to the model will be fully constructed and initialized at
the time it attached to the model. However, if you are starting with an AbstractModel, construction occurs in two
phases. When you first declare and attach components to the model, those components are empty containers and not
fully constructed, even if you explicitly provide data.

>>> import pyomo.environ as pyo
>>> model = pyo.AbstractModel()
>>> model.is_constructed()
False

>>> model.p = pyo.Param(initialize=5)
>>> model.p.is_constructed()
False

>>> model.I = pyo.Set(initialize=[1,2,3])
>>> model.x = pyo.Var(model.I)
>>> model.x.is_constructed()
False

If you look at the model at this point, you will see that everything is “empty”:

>>> model.pprint()
1 Set Declarations

I : Size=0, Index=None, Ordered=Insertion
Not constructed

1 Param Declarations
p : Size=0, Index=None, Domain=Any, Default=None, Mutable=False

Not constructed

1 Var Declarations
x : Size=0, Index=I

Not constructed

3 Declarations: p I x

Before you can manipulate modeling components or solve the model, you must first create a concrete instance by
applying data to your abstract model. This can be done using the create_instance() method, which takes the

59

Pyomo Documentation, Release 6.5.0

abstract model and optional data and returns a new concrete instance by constructing each of the model components
in the order in which they were declared (attached to the model). Note that the instance creation is performed “out of
place”; that is, the original abstract model is left untouched.

>>> instance = model.create_instance()
>>> model.is_constructed()
False
>>> type(instance)
<class 'pyomo.core.base.PyomoModel.ConcreteModel'>
>>> instance.is_constructed()
True
>>> instance.pprint()
1 Set Declarations

I : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 3 : {1, 2, 3}

1 Param Declarations
p : Size=1, Index=None, Domain=Any, Default=None, Mutable=False

Key : Value
None : 5

1 Var Declarations
x : Size=3, Index=I

Key : Lower : Value : Upper : Fixed : Stale : Domain
1 : None : None : None : False : True : Reals
2 : None : None : None : False : True : Reals
3 : None : None : None : False : True : Reals

3 Declarations: p I x

Note: AbstractModel users should note that in some examples, your concrete model instance is called “instance” and
not “model”. This is the case here, where we are explicitly calling instance = model.create_instance().

The create_instance() method can also take a reference to external data, which overrides any data specified in the
original component declarations. The data can be provided from several sources, including using a dict, DataPortal,
or DAT file. For example:

>>> instance2 = model.create_instance({None: {'I': {None: [4,5]}}})
>>> instance2.pprint()
1 Set Declarations

I : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 2 : {4, 5}

1 Param Declarations
p : Size=1, Index=None, Domain=Any, Default=None, Mutable=False

Key : Value
None : 5

1 Var Declarations
x : Size=2, Index=I

(continues on next page)

60 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

Key : Lower : Value : Upper : Fixed : Stale : Domain
4 : None : None : None : False : True : Reals
5 : None : None : None : False : True : Reals

3 Declarations: p I x

7.2 Managing Data in AbstractModels

There are roughly three ways of using data to construct a Pyomo model:

1. use standard Python objects,

2. initialize a model with data loaded with a DataPortal object, and

3. load model data from a Pyomo data command file.

Standard Python data objects include native Python data types (e.g. lists, sets, and dictionaries) as well as standard
data formats like numpy arrays and Pandas data frames. Standard Python data objects can be used to define constant
values in a Pyomo model, and they can be used to initialize Set and Param components. However, initializing Set and
Param components in this manner provides few advantages over direct use of standard Python data objects. (An import
exception is that components indexed by Set objects use less memory than components indexed by native Python data.)

The DataPortal class provides a generic facility for loading data from disparate sources. A DataPortal object can
load data in a consistent manner, and this data can be used to simply initialize all Set and Param components in a
model. DataPortal objects can be used to initialize both concrete and abstract models in a uniform manner, which is
important in some scripting applications. But in practice, this capability is only necessary for abstract models, whose
data components are initialized after being constructed. (In fact, all abstract data components in an abstract model are
loaded from DataPortal objects.)

Finally, Pyomo data command files provide a convenient mechanism for initializing Set and Param components with
a high-level data specification. Data command files can be used with both concrete and abstract models, though in
a different manner. Data command files are parsed using a DataPortal object, which must be done explicitly for a
concrete model. However, abstract models can load data from a data command file directly, after the model is con-
structed. Again, this capability is only necessary for abstract models, whose data components are initialized after being
constructed.

The following sections provide more detail about how data can be used to initialize Pyomo models.

7.2.1 Using Standard Data Types

Defining Constant Values

In many cases, Pyomo models can be constructed without Set and Param data components. Native Python data
types class can be simply used to define constant values in Pyomo expressions. Consequently, Python sets, lists and
dictionaries can be used to construct Pyomo models, as well as a wide range of other Python classes.

TODO
More examples here: set, list, dict, numpy, pandas.

7.2. Managing Data in AbstractModels 61

Pyomo Documentation, Release 6.5.0

Initializing Set and Parameter Components

The Set and Param components used in a Pyomo model can also be initialized with standard Python data types.
This enables some modeling efficiencies when manipulating sets (e.g. when re-using sets for indices), and it supports
validation of set and parameter data values. The Set and Param components are initialized with Python data using the
initialize option.

Set Components

In general, Set components can be initialized with iterable data. For example, simple sets can be initialized with:

• list, set and tuple data:

model.A = Set(initialize=[2, 3, 5])
model.B = Set(initialize=set([2, 3, 5]))
model.C = Set(initialize=(2, 3, 5))

• generators:

model.D = Set(initialize=range(9))
model.E = Set(initialize=(i for i in model.B if i % 2 == 0))

• numpy arrays:

f = numpy.array([2, 3, 5])
model.F = Set(initialize=f)

Sets can also be indirectly initialized with functions that return native Python data:

def g(model):
return [2, 3, 5]

model.G = Set(initialize=g)

Indexed sets can be initialized with dictionary data where the dictionary values are iterable data:

H_init = {}
H_init[2] = [1, 3, 5]
H_init[3] = [2, 4, 6]
H_init[4] = [3, 5, 7]
model.H = Set([2, 3, 4], initialize=H_init)

Parameter Components

When a parameter is a single value, then a Param component can be simply initialized with a value:

model.a = Param(initialize=1.1)

More generally, Param components can be initialized with dictionary data where the dictionary values are single values:

model.b = Param([1, 2, 3], initialize={1: 1, 2: 2, 3: 3})

62 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

Parameters can also be indirectly initialized with functions that return native Python data:

def c(model):
return {1: 1, 2: 2, 3: 3}

model.c = Param([1, 2, 3], initialize=c)

7.2.2 Using a Python Dictionary

Data can be passed to the model create_instance() method through a series of nested native Python dictionar-
ies. The structure begins with a dictionary of namespaces, with the only required entry being the None namespace.
Each namespace contains a dictionary that maps component names to dictionaries of component values. For scalar
components, the required data dictionary maps the implicit index None to the desired value:

>>> from pyomo.environ import *
>>> m = AbstractModel()
>>> m.I = Set()
>>> m.p = Param()
>>> m.q = Param(m.I)
>>> m.r = Param(m.I, m.I, default=0)
>>> data = {None: {
... 'I': {None: [1,2,3]},
... 'p': {None: 100},
... 'q': {1: 10, 2:20, 3:30},
... 'r': {(1,1): 110, (1,2): 120, (2,3): 230},
... }}
>>> i = m.create_instance(data)
>>> i.pprint()
2 Set Declarations

I : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 3 : {1, 2, 3}

r_index : Size=1, Index=None, Ordered=True
Key : Dimen : Domain : Size : Members
None : 2 : I*I : 9 : {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2),

→˓ (2, 3), (3, 1), (3, 2), (3, 3)}

3 Param Declarations
p : Size=1, Index=None, Domain=Any, Default=None, Mutable=False

Key : Value
None : 100

q : Size=3, Index=I, Domain=Any, Default=None, Mutable=False
Key : Value
1 : 10
2 : 20
3 : 30

r : Size=9, Index=r_index, Domain=Any, Default=0, Mutable=False
Key : Value
(1, 1) : 110
(1, 2) : 120
(2, 3) : 230

(continues on next page)

7.2. Managing Data in AbstractModels 63

Pyomo Documentation, Release 6.5.0

(continued from previous page)

5 Declarations: I p q r_index r

7.2.3 Data Command Files

Note: The discussion and presentation below are adapted from Chapter 6 of the “Pyomo Book” [PyomoBookII]. The
discussion of the DataPortal class uses these same examples to illustrate how data can be loaded into Pyomo models
within Python scripts (see the Data Portals section).

Model Data

Pyomo’s data command files employ a domain-specific language whose syntax closely resembles the syntax of AMPL’s
data commands [AMPL]. A data command file consists of a sequence of commands that either (a) specify set and
parameter data for a model, or (b) specify where such data is to be obtained from external sources (e.g. table files, CSV
files, spreadsheets and databases).

The following commands are used to declare data:

• The set command declares set data.

• The param command declares a table of parameter data, which can also include the declaration of the set data
used to index the parameter data.

• The table command declares a two-dimensional table of parameter data.

• The load command defines how set and parameter data is loaded from external data sources, including ASCII
table files, CSV files, XML files, YAML files, JSON files, ranges in spreadsheets, and database tables.

The following commands are also used in data command files:

• The include command specifies a data command file that is processed immediately.

• The data and end commands do not perform any actions, but they provide compatibility with AMPL scripts
that define data commands.

• The namespace keyword allows data commands to be organized into named groups that can be enabled or
disabled during model construction.

The following data types can be represented in a data command file:

• Numeric value: Any Python numeric value (e.g. integer, float, scientific notation, or boolean).

• Simple string: A sequence of alpha-numeric characters.

• Quoted string: A simple string that is included in a pair of single or double quotes. A quoted string can include
quotes within the quoted string.

Numeric values are automatically converted to Python integer or floating point values when a data command file is
parsed. Additionally, if a quoted string can be intepreted as a numeric value, then it will be converted to Python
numeric types when the data is parsed. For example, the string “100” is converted to a numeric value automatically.

Warning: Pyomo data commands do not exactly correspond to AMPL data commands. The set and param
commands are designed to closely match AMPL’s syntax and semantics, though these commands only support

64 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

a subset of the corresponding declarations in AMPL. However, other Pyomo data commands are not generally
designed to match the semantics of AMPL.

Note: Pyomo data commands are terminated with a semicolon, and the syntax of data commands does not depend on
whitespace. Thus, data commands can be broken across multiple lines – newlines and tab characters are ignored – and
data commands can be formatted with whitespace with few restrictions.

The set Command

Simple Sets

The set data command explicitly specifies the members of either a single set or an array of sets, i.e., an indexed set. A
single set is specified with a list of data values that are included in this set. The formal syntax for the set data command
is:

set <setname> := [<value>] ... ;

A set may be empty, and it may contain any combination of numeric and non-numeric string values. For example, the
following are valid set commands:

An empty set
set A := ;

A set of numbers
set A := 1 2 3;

A set of strings
set B := north south east west;

A set of mixed types
set C :=
0
-1.0e+10
'foo bar'
infinity
"100"
;

Sets of Tuple Data

The set data command can also specify tuple data with the standard notation for tuples. For example, suppose that set
A contains 3-tuples:

model.A = Set(dimen=3)

The following set data command then specifies that A is the set containing the tuples (1,2,3) and (4,5,6):

set A := (1,2,3) (4,5,6) ;

7.2. Managing Data in AbstractModels 65

Pyomo Documentation, Release 6.5.0

Alternatively, set data can simply be listed in the order that the tuple is represented:

set A := 1 2 3 4 5 6 ;

Obviously, the number of data elements specified using this syntax should be a multiple of the set dimension.

Sets with 2-tuple data can also be specified in a matrix denoting set membership. For example, the following set data
command declares 2-tuples in A using plus (+) to denote valid tuples and minus (-) to denote invalid tuples:

set A : A1 A2 A3 A4 :=
1 + - - +
2 + - + -
3 - + - - ;

This data command declares the following five 2-tuples: ('A1',1), ('A1',2), ('A2',3), ('A3',2), and ('A4',1).

Finally, a set of tuple data can be concisely represented with tuple templates that represent a slice of tuple data. For
example, suppose that the set A contains 4-tuples:

model.A = Set(dimen=4)

The following set data command declares groups of tuples that are defined by a template and data to complete this
template:

set A :=
(1,2,*,4) A B
(*,2,*,4) A B C D ;

A tuple template consists of a tuple that contains one or more asterisk (*) symbols instead of a value. These represent
indices where the tuple value is replaced by the values from the list of values that follows the tuple template. In this
example, the following tuples are in set A:

(1, 2, 'A', 4)
(1, 2, 'B', 4)
('A', 2, 'B', 4)
('C', 2, 'D', 4)

Set Arrays

The set data command can also be used to declare data for a set array. Each set in a set array must be declared with a
separate set data command with the following syntax:

set <set-name>[<index>] := [<value>] ... ;

Because set arrays can be indexed by an arbitrary set, the index value may be a numeric value, a non-numeric string
value, or a comma-separated list of string values.

Suppose that a set A is used to index a set B as follows:

model.A = Set()
model.B = Set(model.A)

Then set B is indexed using the values declared for set A:

66 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

set A := 1 aaa 'a b';

set B[1] := 0 1 2;
set B[aaa] := aa bb cc;
set B['a b'] := 'aa bb cc';

The param Command

Simple or non-indexed parameters are declared in an obvious way, as shown by these examples:

param A := 1.4;
param B := 1;
param C := abc;
param D := true;
param E := 1.0e+04;

Parameters can be defined with numeric data, simple strings and quoted strings. Note that parameters cannot be defined
without data, so there is no analog to the specification of an empty set.

One-dimensional Parameter Data

Most parameter data is indexed over one or more sets, and there are a number of ways the param data command can
be used to specify indexed parameter data. One-dimensional parameter data is indexed over a single set. Suppose that
the parameter B is a parameter indexed by the set A:

model.A = Set()
model.B = Param(model.A)

A param data command can specify values for B with a list of index-value pairs:

set A := a c e;

param B := a 10 c 30 e 50;

Because whitespace is ignored, this example data command file can be reorganized to specify the same data in a tabular
format:

set A := a c e;

param B :=
a 10
c 30
e 50
;

Multiple parameters can be defined using a single param data command. For example, suppose that parameters B, C,
and D are one-dimensional parameters all indexed by the set A:

model.A = Set()
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)

7.2. Managing Data in AbstractModels 67

Pyomo Documentation, Release 6.5.0

Values for these parameters can be specified using a single param data command that declares these parameter names
followed by a list of index and parameter values:

set A := a c e;

param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

The values in the param data command are interpreted as a list of sublists, where each sublist consists of an index
followed by the corresponding numeric value.

Note that parameter values do not need to be defined for all indices. For example, the following data command file is
valid:

set A := a c e g;

param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

The index g is omitted from the param command, and consequently this index is not valid for the model instance that
uses this data. More complex patterns of missing data can be specified using the period (.) symbol to indicate a missing
value. This syntax is useful when specifying multiple parameters that do not necessarily have the same index values:

set A := a c e;

param : B C D :=
a . -1 1.1
c 30 . 3.3
e 50 -5 .
;

This example provides a concise representation of parameters that share a common index set while using different index
values.

Note that this data file specifies the data for set A twice: (1) when A is defined and (2) implicitly when the parameters
are defined. An alternate syntax for param allows the user to concisely specify the definition of an index set along with
associated parameters:

param : A : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

Finally, we note that default values for missing data can also be specified using the default keyword:

set A := a c e;

param B default 0.0 :=
(continues on next page)

68 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

c 30
e 50
;

Note that default values can only be specified in param commands that define values for a single parameter.

Multi-Dimensional Parameter Data

Multi-dimensional parameter data is indexed over either multiple sets or a single multi-dimensional set. Suppose that
parameter B is a parameter indexed by set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)

The syntax of the param data command remains essentially the same when specifying values for B with a list of index
and parameter values:

set A := a 1 c 2 e 3;

param B :=
a 1 10
c 2 30
e 3 50;

Missing and default values are also handled in the same way with multi-dimensional index sets:

set A := a 1 c 2 e 3;

param B default 0 :=
a 1 10
c 2 .
e 3 50;

Similarly, multiple parameters can defined with a single param data command. Suppose that parameters B, C, and D
are parameters indexed over set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)

These parameters can be defined with a single param command that declares the parameter names followed by a list
of index and parameter values:

set A := a 1 c 2 e 3;

param : B C D :=
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;

Similarly, the following param data command defines the index set along with the parameters:

7.2. Managing Data in AbstractModels 69

Pyomo Documentation, Release 6.5.0

param : A : B C D :=
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;

The param command also supports a matrix syntax for specifying the values in a parameter that has a 2-dimensional
index. Suppose parameter B is indexed over set A that has dimension 2:

model.A = Set(dimen=2)
model.B = Param(model.A)

The following param command defines a matrix of parameter values:

set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;

param B : a c e :=
1 1 2 3
2 4 5 6
3 7 8 9
;

Additionally, the following syntax can be used to specify a transposed matrix of parameter values:

set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;

param B (tr) : 1 2 3 :=
a 1 4 7
c 2 5 8
e 3 6 9
;

This functionality facilitates the presentation of parameter data in a natural format. In particular, the transpose syntax
may allow the specification of tables for which the rows comfortably fit within a single line. However, a matrix may be
divided column-wise into shorter rows since the line breaks are not significant in Pyomo data commands.

For parameters with three or more indices, the parameter data values may be specified as a series of slices. Each slice
is defined by a template followed by a list of index and parameter values. Suppose that parameter B is indexed over set
A that has dimension 4:

model.A = Set(dimen=4)
model.B = Param(model.A)

The following param command defines a matrix of parameter values with multiple templates:

set A := (a,1,a,1) (a,2,a,2) (b,1,b,1) (b,2,b,2);

param B :=

[*,1,*,1] a a 10 b b 20
[*,2,*,2] a a 30 b b 40

;

The B parameter consists of four values: B[a,1,a,1]=10, B[b,1,b,1]=20, B[a,2,a,2]=30, and B[b,2,b,2]=40.

70 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

The table Command

The table data command explicitly specifies a two-dimensional array of parameter data. This command provides a
more flexible and complete data declaration than is possible with a param declaration. The following example illustrates
a simple table command that declares data for a single parameter:

table M(A) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

The parameter M is indexed by column A, which must be pre-defined unless declared separately (see below). The column
labels are provided after the colon and before the colon-equal (:=). Subsequently, the table data is provided. The syntax
is not sensitive to whitespace, so the following is an equivalent table command:

table M(A) :
A B M N :=
A1 B1 4.3 5.3 A2 B2 4.4 5.4 A3 B3 4.5 5.5 ;

Multiple parameters can be declared by simply including additional parameter names. For example:

table M(A) N(A,B) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

This example declares data for the M and N parameters, which have different indexing columns. The indexing columns
represent set data, which is specified separately. For example:

table A={A} Z={A,B} M(A) N(A,B) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

This example declares data for the M and N parameters, along with the A and Z indexing sets. The correspondence
between the index set Z and the indices of parameter N can be made more explicit by indexing N by Z:

table A={A} Z={A,B} M(A) N(Z) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Set data can also be specified independent of parameter data:

table Z={A,B} Y={M,N} :
A B M N :=

(continues on next page)

7.2. Managing Data in AbstractModels 71

Pyomo Documentation, Release 6.5.0

(continued from previous page)

A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Warning: If a table command does not explicitly indicate the indexing sets, then these are assumed to be
initialized separately. A table command can separately initialize sets and parameters in a Pyomo model, and there
is no presumed association between the data that is initialized. For example, the table command initializes a set
Z and a parameter M that are not related:

table Z={A,B} M(A):
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Finally, simple parameter values can also be specified with a table command:

table pi := 3.1416 ;

The previous examples considered examples of the table command where column labels are provided. The table
command can also be used without column labels. For example, the first example can be revised to omit column labels
as follows:

table columns=4 M(1)={3} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

The columns=4 is a keyword-value pair that defines the number of columns in this table; this must be explicitly specified
in tables without column labels. The default column labels are integers starting from 1; the labels are columns 1, 2, 3,
and 4 in this example. The M parameter is indexed by column 1. The braces syntax declares the column where the M
data is provided.

Similarly, set data can be declared referencing the integer column labels:

table columns=4 A={1} Z={1,2} M(1)={3} N(1,2)={4} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

Declared set names can also be used to index parameters:

table columns=4 A={1} Z={1,2} M(A)={3} N(Z)={4} :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;

72 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

Finally, we compare and contrast the table and param commands. Both commands can be used to declare parameter
and set data, and both commands can be used to declare a simple parameter. However, there are some important
differences between these data commands:

• The param command can declare a single set that is used to index one or more parameters. The table command
can declare data for any number of sets, independent of whether they are used to index parameter data.

• The param command can declare data for multiple parameters only if they share the same index set. The table
command can declare data for any number of parameters that are may be indexed separately.

• The table syntax unambiguously describes the dimensionality of indexing sets. The param command must be
interpreted with a model that provides the dimension of the indexing set.

This last point provides a key motivation for the table command. Specifically, the table command can be used to
reliably initialize concrete models using Pyomo’s DataPortal class. By contrast, the param command can only be
used to initialize concrete models with parameters that are indexed by a single column (i.e., a simple set).

The load Command

The load command provides a mechanism for loading data from a variety of external tabular data sources. This
command loads a table of data that represents set and parameter data in a Pyomo model. The table consists of rows and
columns for which all rows have the same length, all columns have the same length, and the first row represents labels
for the column data.

The load command can load data from a variety of different external data sources:

• TAB File: A text file format that uses whitespace to separate columns of values in each row of a table.

• CSV File: A text file format that uses comma or other delimiters to separate columns of values in each row of a
table.

• XML File: An extensible markup language for documents and data structures. XML files can represent tabular
data.

• Excel File: A spreadsheet data format that is primarily used by the Microsoft Excel application.

• Database: A relational database.

This command uses a data manager that coordinates how data is extracted from a specified data source. In this way, the
load command provides a generic mechanism that enables Pyomo models to interact with standard data repositories
that are maintained in an application-specific manner.

Simple Load Examples

The simplest illustration of the load command is specifying data for an indexed parameter. Consider the file Y.tab:

A Y
A1 3.3
A2 3.4
A3 3.5

This file specifies the values of parameter Ywhich is indexed by set A. The following load command loads the parameter
data:

load Y.tab : [A] Y;

The first argument is the filename. The options after the colon indicate how the table data is mapped to model data.
Option [A] indicates that set A is used as the index, and option Y indicates the parameter that is initialized.

7.2. Managing Data in AbstractModels 73

Pyomo Documentation, Release 6.5.0

Similarly, the following load command loads both the parameter data as well as the index set A:

load Y.tab : A=[A] Y;

The difference is the specification of the index set, A=[A], which indicates that set A is initialized with the index loaded
from the ASCII table file.

Set data can also be loaded from a ASCII table file that contains a single column of data:

A
A1
A2
A3

The format option must be specified to denote the fact that the relational data is being interpreted as a set:

load A.tab format=set : A;

Note that this allows for specifying set data that contains tuples. Consider file C.tab:

A B
A1 1
A1 2
A1 3
A2 1
A2 2
A2 3
A3 1
A3 2
A3 3

A similar load syntax will load this data into set C:

load C.tab format=set : C;

Note that this example requires that C be declared with dimension two.

Load Syntax Options

The syntax of the load command is broken into two parts. The first part ends with the colon, and it begins with a
filename, database URL, or DSN (data source name). Additionally, this first part can contain option value pairs. The
following options are recognized:

format A string that denotes how the relational table is interpreted
password The password that is used to access a database
query The query that is used to request data from a database
range The subset of a spreadsheet that is requestedindex{spreadsheet}
user The user name that is used to access the data source
using The data manager that is used to process the data source
table The database table that is requested

The format option is the only option that is required for all data managers. This option specifies how a relational table
is interpreted to represent set and parameter data. If the using option is omitted, then the filename suffix is used to
select the data manager. The remaining options are specific to spreadsheets and relational databases (see below).

74 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

The second part of the load command consists of the specification of column names for indices and data. The remainder
of this section describes different specifications and how they define how data is loaded into a model. Suppose file
ABCD.tab defines the following relational table:

A B C D
A1 B1 1 10
A2 B2 2 20
A3 B3 3 30

There are many ways to interpret this relational table. It could specify a set of 4-tuples, a parameter indexed by 3-tuples,
two parameters indexed by 2-tuples, and so on. Additionally, we may wish to select a subset of this table to initialize
data in a model. Consequently, the load command provides a variety of syntax options for specifying how a table is
interpreted.

A simple specification is to interpret the relational table as a set:

load ABCD.tab format=set : Z ;

Note that Z is a set in the model that the data is being loaded into. If this set does not exist, an error will occur while
loading data from this table.

Another simple specification is to interpret the relational table as a parameter with indexed by 3-tuples:

load ABCD.tab : [A,B,C] D ;

Again, this requires that D be a parameter in the model that the data is being loaded into. Additionally, the index set for
D must contain the indices that are specified in the table. The load command also allows for the specification of the
index set:

load ABCD.tab : Z=[A,B,C] D ;

This specifies that the index set is loaded into the Z set in the model. Similarly, data can be loaded into another parameter
than what is specified in the relational table:

load ABCD.tab : Z=[A,B,C] Y=D ;

This specifies that the index set is loaded into the Z set and that the data in the D column in the table is loaded into the
Y parameter.

This syntax allows the load command to provide an arbitrary specification of data mappings from columns in a rela-
tional table into index sets and parameters. For example, suppose that a model is defined with set Z and parameters Y
and W:

model.Z = Set()
model.Y = Param(model.Z)
model.W = Param(model.Z)

Then the following command defines how these data items are loaded using columns B, C and D:

load ABCD.tab : Z=[B] Y=D W=C;

When the using option is omitted the data manager is inferred from the filename suffix. However, the filename suffix
does not always reflect the format of the data it contains. For example, consider the relational table in the file ABCD.txt:

A,B,C,D
A1,B1,1,10

(continues on next page)

7.2. Managing Data in AbstractModels 75

Pyomo Documentation, Release 6.5.0

(continued from previous page)

A2,B2,2,20
A3,B3,3,30

We can specify the using option to load from this file into parameter D and set Z:

load ABCD.txt using=csv : Z=[A,B,C] D ;

Note: The data managers supported by Pyomo can be listed with the pyomo help subcommand

pyomo help --data-managers

The following data managers are supported in Pyomo 5.1:

Pyomo Data Managers

csv

CSV file interface
dat

Pyomo data command file interface
json

JSON file interface
pymysql

pymysql database interface
pyodbc

pyodbc database interface
pypyodbc

pypyodbc database interface
sqlite3

sqlite3 database interface
tab

TAB file interface
xls

Excel XLS file interface
xlsb

Excel XLSB file interface
xlsm

Excel XLSM file interface
xlsx

Excel XLSX file interface
xml

XML file interface
yaml

YAML file interface

76 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

Interpreting Tabular Data

By default, a table is interpreted as columns of one or more parameters with associated index columns. The format
option can be used to specify other interpretations of a table:

array The table is a matrix representation of a two dimensional parameter.
param The data is a simple parameter value.
set Each row is a set element.
set_array The table is a matrix representation of a set of 2-tuples.
transposed_array The table is a transposed matrix representation of a two dimensional parameter.

We have previously illustrated the use of the set format value to interpret a relational table as a set of values or tuples.
The following examples illustrate the other format values.

A table with a single value can be interpreted as a simple parameter using the param format value. Suppose that Z.tab
contains the following table:

1.1

The following load command then loads this value into parameter p:

load Z.tab format=param: p;

Sets with 2-tuple data can be represented with a matrix format that denotes set membership. The set_array format
value interprets a relational table as a matrix that defines a set of 2-tuples where + denotes a valid tuple and - denotes
an invalid tuple. Suppose that D.tab contains the following relational table:

B A1 A2 A3
1 + - -
2 - + -
3 - - +

Then the following load command loads data into set B:

load D.tab format=set_array: B;

This command declares the following 2-tuples: ('A1',1), ('A2',2), and ('A3',3).

Parameters with 2-tuple indices can be interpreted with a matrix format that where rows and columns are different
indices. Suppose that U.tab contains the following table:

I A1 A2 A3
I1 1.3 2.3 3.3
I2 1.4 2.4 3.4
I3 1.5 2.5 3.5
I4 1.6 2.6 3.6

Then the following load command loads this value into parameter Uwith a 2-dimensional index using the array format
value.:

load U.tab format=array: A=[X] U;

The transpose_array format value also interprets the table as a matrix, but it loads the data in a transposed format:

7.2. Managing Data in AbstractModels 77

Pyomo Documentation, Release 6.5.0

load U.tab format=transposed_array: A=[X] U;

Note that these format values do not support the initialization of the index data.

Loading from Spreadsheets and Relational Databases

Many of the options for the load command are specific to spreadsheets and relational databases. The range option is
used to specify the range of cells that are loaded from a spreadsheet. The range of cells represents a table in which the
first row of cells defines the column names for the table.

Suppose that file ABCD.xls contains the range ABCD that is shown in the following figure:

The following command loads this data to initialize parameter D and index Z:

load ABCD.xls range=ABCD : Z=[A,B,C] Y=D ;

Thus, the syntax for loading data from spreadsheets only differs from CSV and ASCII text files by the use of the range
option.

When loading from a relational database, the data source specification is a filename or data connection string. Access
to a database may be restricted, and thus the specification of username and password options may be required.
Alternatively, these options can be specified within a data connection string.

A variety of database interface packages are available within Python. The using option is used to specify the database
interface package that will be used to access a database. For example, the pyodbc interface can be used to connect
to Excel spreadsheets. The following command loads data from the Excel spreadsheet ABCD.xls using the pyodbc
interface. The command loads this data to initialize parameter D and index Z:

load ABCD.xls using=pyodbc table=ABCD : Z=[A,B,C] Y=D ;

The using option specifies that the pyodbc package will be used to connect with the Excel spreadsheet. The table
option specifies that the table ABCD is loaded from this spreadsheet. Similarly, the following command specifies a data
connection string to specify the ODBC driver explicitly:

load "Driver={Microsoft Excel Driver (*.xls)}; Dbq=ABCD.xls;"
using=pyodbc
table=ABCD : Z=[A,B,C] Y=D ;

ODBC drivers are generally tailored to the type of data source that they work with; this syntax illustrates how the load
command can be tailored to the details of the database that a user is working with.

78 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

The previous examples specified the table option, which declares the name of a relational table in a database. Many
databases support the Structured Query Language (SQL), which can be used to dynamically compose a relational table
from other tables in a database. The classic diet problem will be used to illustrate the use of SQL queries to initialize
a Pyomo model. In this problem, a customer is faced with the task of minimizing the cost for a meal at a fast food
restaurant – they must purchase a sandwich, side, and a drink for the lowest cost. The following is a Pyomo model for
this problem:

diet1.py
from pyomo.environ import *

infinity = float('inf')
MAX_FOOD_SUPPLY = 20.0 # There is a finite food supply

model = AbstractModel()

--

model.FOOD = Set()
model.cost = Param(model.FOOD, within=PositiveReals)
model.f_min = Param(model.FOOD, within=NonNegativeReals, default=0.0)

def f_max_validate(model, value, j):
return model.f_max[j] > model.f_min[j]

model.f_max = Param(model.FOOD, validate=f_max_validate, default=MAX_FOOD_SUPPLY)

model.NUTR = Set()
model.n_min = Param(model.NUTR, within=NonNegativeReals, default=0.0)
model.n_max = Param(model.NUTR, default=infinity)
model.amt = Param(model.NUTR, model.FOOD, within=NonNegativeReals)

--

def Buy_bounds(model, i):
return (model.f_min[i], model.f_max[i])

model.Buy = Var(model.FOOD, bounds=Buy_bounds, within=NonNegativeIntegers)

--

def Total_Cost_rule(model):
return sum(model.cost[j] * model.Buy[j] for j in model.FOOD)

model.Total_Cost = Objective(rule=Total_Cost_rule, sense=minimize)

--

(continues on next page)

7.2. Managing Data in AbstractModels 79

Pyomo Documentation, Release 6.5.0

(continued from previous page)

def Entree_rule(model):
entrees = [

'Cheeseburger',
'Ham Sandwich',
'Hamburger',
'Fish Sandwich',
'Chicken Sandwich',

]
return sum(model.Buy[e] for e in entrees) >= 1

model.Entree = Constraint(rule=Entree_rule)

def Side_rule(model):
sides = ['Fries', 'Sausage Biscuit']
return sum(model.Buy[s] for s in sides) >= 1

model.Side = Constraint(rule=Side_rule)

def Drink_rule(model):
drinks = ['Lowfat Milk', 'Orange Juice']
return sum(model.Buy[d] for d in drinks) >= 1

model.Drink = Constraint(rule=Drink_rule)

Suppose that the file diet1.sqlite be a SQLite database file that contains the following data in the Food table:

FOOD cost
Cheeseburger 1.84
Ham Sandwich 2.19
Hamburger 1.84
Fish Sandwich 1.44
Chicken Sandwich 2.29
Fries 0.77
Sausage Biscuit 1.29
Lowfat Milk 0.60
Orange Juice 0.72

In addition, the Food table has two additional columns, f_min and f_max, with no data for any row. These columns
exist to match the structure for the parameters used in the model.

We can solve the diet1model using the Python definition in diet1.py and the data from this database. The file diet.
sqlite.dat specifies a load command that uses that sqlite3 data manager and embeds a SQL query to retrieve the
data:

File diet.sqlite.dat

(continues on next page)

80 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

load "diet.sqlite"
using=sqlite3
query="SELECT FOOD,cost,f_min,f_max FROM Food"
: FOOD=[FOOD] cost f_min f_max ;

The PyODBC driver module will pass the SQL query through an Access ODBC connector, extract the data from the
diet1.mdb file, and return it to Pyomo. The Pyomo ODBC handler can then convert the data received into the proper
format for solving the model internally. More complex SQL queries are possible, depending on the underlying database
and ODBC driver in use. However, the name and ordering of the columns queried are specified in the Pyomo data file;
using SQL wildcards (e.g., SELECT *) or column aliasing (e.g., SELECT f AS FOOD) may cause errors in Pyomo’s
mapping of relational data to parameters.

The include Command

The include command allows a data command file to execute data commands from another file. For example, the
following command file executes data commands from ex1.dat and then ex2.dat:

include ex1.dat;
include ex2.dat;

Pyomo is sensitive to the order of execution of data commands, since data commands can redefine set and parameter
values. The include command respects this data ordering; all data commands in the included file are executed before
the remaining data commands in the current file are executed.

The namespace Keyword

The namespace keyword is not a data command, but instead it is used to structure the specification of Pyomo’s data
commands. Specifically, a namespace declaration is used to group data commands and to provide a group label. Con-
sider the following data command file:

set C := 1 2 3 ;

namespace ns1
{

set C := 4 5 6 ;
}

namespace ns2
{

set C := 7 8 9 ;
}

This data file defines two namespaces: ns1 and ns2 that initialize a set C. By default, data commands contained within
a namespace are ignored during model construction; when no namespaces are specified, the set C has values 1,2,3.
When namespace ns1 is specified, then the set C values are overridden with the set 4,5,6.

7.2. Managing Data in AbstractModels 81

Pyomo Documentation, Release 6.5.0

7.2.4 Data Portals

Pyomo’s DataPortal class standardizes the process of constructing model instances by managing the process of load-
ing data from different data sources in a uniform manner. A DataPortal object can load data from the following data
sources:

• TAB File: A text file format that uses whitespace to separate columns of values in each row of a table.

• CSV File: A text file format that uses comma or other delimiters to separate columns of values in each row of a
table.

• JSON File: A popular lightweight data-interchange format that is easily parsed.

• YAML File: A human friendly data serialization standard.

• XML File: An extensible markup language for documents and data structures. XML files can represent tabular
data.

• Excel File: A spreadsheet data format that is primarily used by the Microsoft Excel application.

• Database: A relational database.

• DAT File: A Pyomo data command file.

Note that most of these data formats can express tabular data.

Warning: The DataPortal class requires the installation of Python packages to support some of these data
formats:

• YAML File: pyyaml

• Excel File: win32com, openpyxl or xlrd

These packages support different data Excel data formats: the win32com package supports .xls,
.xlsm and .xlsx, the openpyxl package supports .xlsx and the xlrd package supports .xls.

• Database: pyodbc, pypyodbc, sqlite3 or pymysql

These packages support different database interface APIs: the pyodbc and pypyodbc packages
support the ODBC database API, the sqlite3 package uses the SQLite C library to directly inter-
face with databases using the DB-API 2.0 specification, and pymysql is a pure-Python MySQL
client.

DataPortal objects can be used to initialize both concrete and abstract Pyomo models. Consider the file A.tab, which
defines a simple set with a tabular format:

A
A1
A2
A3

The load method is used to load data into a DataPortal object. Components in a concrete model can be explicitly
initialized with data loaded by a DataPortal object:

data = DataPortal()
data.load(filename='A.tab', set="A", format="set")

model = ConcreteModel()
model.A = Set(initialize=data['A'])

82 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

All data needed to initialize an abstract model must be provided by a DataPortal object, and the use of the
DataPortal object to initialize components is automated for the user:

model = AbstractModel()
model.A = Set()
data = DataPortal()
data.load(filename='A.tab', set=model.A)
instance = model.create_instance(data)

Note the difference in the execution of the load method in these two examples: for concrete models data is loaded by
name and the format must be specified, and for abstract models the data is loaded by component, from which the data
format can often be inferred.

The load method opens the data file, processes it, and loads the data in a format that can be used to construct a model
instance. The load method can be called multiple times to load data for different sets or parameters, or to override data
processed earlier. The load method takes a variety of arguments that define how data is loaded:

• filename: This option specifies the source data file.

• format: This option specifies the how to interpret data within a table. Valid formats are: set, set_array,
param, table, array, and transposed_array.

• set: This option is either a string or model compent that defines a set that will be initialized with this data.

• param: This option is either a string or model compent that defines a parameter that will be initialized with this
data. A list or tuple of strings or model components can be used to define multiple parameters that are initialized.

• index: This option is either a string or model compent that defines an index set that will be initialized with this
data.

• using: This option specifies the Python package used to load this data source. This option is used when loading
data from databases.

• select: This option defines the columns that are selected from the data source. The column order may be
changed from the data source, which allows the DataPortal object to define

• namespace: This option defines the data namespace that will contain this data.

The use of these options is illustrated below.

The DataPortal class also provides a simple API for accessing set and parameter data that are loaded from different
data sources. The [] operator is used to access set and parameter values. Consider the following example, which loads
data and prints the value of the [] operator:

data = DataPortal()
data.load(filename='A.tab', set="A", format="set")
print(data['A']) # ['A1', 'A2', 'A3']

data.load(filename='Z.tab', param="z", format="param")
print(data['z']) # 1.1

data.load(filename='Y.tab', param="y", format="table")
for key in sorted(data['y']):

print("%s %s" % (key, data['y'][key]))

The DataPortal class also has several methods for iterating over the data that has been loaded:

• keys(): Returns an iterator of the data keys.

• values(): Returns an iterator of the data values.

7.2. Managing Data in AbstractModels 83

Pyomo Documentation, Release 6.5.0

• items(): Returns an iterator of (name, value) tuples from the data.

Finally, the data() method provides a generic mechanism for accessing the underlying data representation used by
DataPortal objects.

Loading Structured Data

JSON and YAML files are structured data formats that are well-suited for data serialization. These data formats do not
represent data in tabular format, but instead they directly represent set and parameter values with lists and dictionaries:

• Simple Set: a list of string or numeric value

• Indexed Set: a dictionary that maps an index to a list of string or numeric value

• Simple Parameter: a string or numeric value

• Indexed Parameter: a dictionary that maps an index to a numeric value

For example, consider the following JSON file:

{ "A": ["A1", "A2", "A3"],
"B": [[1, "B1"], [2, "B2"], [3, "B3"]],
"C": {"A1": [1, 2, 3], "A3": [10, 20, 30]},
"p": 0.1,
"q": {"A1": 3.3, "A2": 3.4, "A3": 3.5},
"r": [{"index": [1, "B1"], "value": 3.3},

{"index": [2, "B2"], "value": 3.4},
{"index": [3, "B3"], "value": 3.5}]}

The data in this file can be used to load the following model:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.B = Set(dimen=2)
model.C = Set(model.A)
model.p = Param()
model.q = Param(model.A)
model.r = Param(model.B)
data.load(filename='T.json')

Note that no set or param option needs to be specified when loading a JSON or YAML file. All of the set and parameter
data in the file are loaded by the DataPortal> object, and only the data needed for model construction is used.

The following YAML file has a similar structure:

A: [A1, A2, A3]
B:
- [1, B1]
- [2, B2]
- [3, B3]
C:
'A1': [1, 2, 3]
'A3': [10, 20, 30]

p: 0.1
q: {A1: 3.3, A2: 3.4, A3: 3.5}
r:

(continues on next page)

84 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

- index: [1, B1]
value: 3.3

- index: [2, B2]
value: 3.4

- index: [3, B3]
value: 3.5

The data in this file can be used to load a Pyomo model with the same syntax as a JSON file:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.B = Set(dimen=2)
model.C = Set(model.A)
model.p = Param()
model.q = Param(model.A)
model.r = Param(model.B)
data.load(filename='T.yaml')

Loading Tabular Data

Many data sources supported by Pyomo are tabular data formats. Tabular data is numerical or textual data that is
organized into one or more simple tables, where data is arranged in a matrix. Each table consists of a matrix of
numeric string values, simple strings, and quoted strings. All rows have the same length, all columns have the same
length, and the first row typically represents labels for the column data.

The following section describes the tabular data sources supported by Pyomo, and the subsequent sections illustrate
ways that data can be loaded from tabular data using TAB files. Subsequent sections describe options for loading data
from Excel spreadsheets and relational databases.

Tabular Data

TAB files represent tabular data in an ascii file using whitespace as a delimiter. A TAB file consists of rows of values,
where each row has the same length. For example, the file PP.tab has the format:

A B PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5

CSV files represent tabular data in a format that is very similar to TAB files. Pyomo assumes that a CSV file consists
of rows of values, where each row has the same length. For example, the file PP.csv has the format:

A,B,PP
A1,B1,4.3
A2,B2,4.4
A3,B3,4.5

Excel spreadsheets can express complex data relationships. A range is a contiguous, rectangular block of cells in an
Excel spreadsheet. Thus, a range in a spreadsheet has the same tabular structure as is a TAB file or a CSV file. For
example, consider the file excel.xls that has the range PPtable:

7.2. Managing Data in AbstractModels 85

Pyomo Documentation, Release 6.5.0

A relational database is an application that organizes data into one or more tables (or relations) with a unique key in
each row. Tables both reflect the data in a database as well as the result of queries within a database.

XML files represent tabular using table and row elements. Each sub-element of a row element represents a different
column, where each row has the same length. For example, the file PP.xml has the format:

<table>
<row>
<B value="B1"/><PP value="4.3"/>

</row>
<row>
<B value="B2"/><PP value="4.4"/>

</row>
<row>
<B value="B3"/><PP value="4.5"/>

</row>
</table>

Loading Set Data

The set option is used specify a Set component that is loaded with data.

Loading a Simple Set

Consider the file A.tab, which defines a simple set:

A
A1
A2
A3

In the following example, a DataPortal object loads data for a simple set A:

model = AbstractModel()
model.A = Set()
data = DataPortal()
data.load(filename='A.tab', set=model.A)
instance = model.create_instance(data)

86 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

Loading a Set of Tuples

Consider the file C.tab:

A B
A1 1
A1 2
A1 3
A2 1
A2 2
A2 3
A3 1
A3 2
A3 3

In the following example, a DataPortal object loads data for a two-dimensional set C:

model = AbstractModel()
model.C = Set(dimen=2)
data = DataPortal()
data.load(filename='C.tab', set=model.C)
instance = model.create_instance(data)

In this example, the column titles do not directly impact the process of loading data. Column titles can be used to select
a subset of columns from a table that is loaded (see below).

Loading a Set Array

Consider the file D.tab, which defines an array representation of a two-dimensional set:

B A1 A2 A3
1 + - -
2 - + -
3 - - +

In the following example, a DataPortal object loads data for a two-dimensional set D:

model = AbstractModel()
model.D = Set(dimen=2)
data = DataPortal()
data.load(filename='D.tab', set=model.D, format='set_array')
instance = model.create_instance(data)

The format option indicates that the set data is declared in a array format.

7.2. Managing Data in AbstractModels 87

Pyomo Documentation, Release 6.5.0

Loading Parameter Data

The param option is used specify a Param component that is loaded with data.

Loading a Simple Parameter

The simplest parameter is simply a singleton value. Consider the file Z.tab:

1.1

In the following example, a DataPortal object loads data for a simple parameter z:

model = AbstractModel()
data = DataPortal()
model.z = Param()
data.load(filename='Z.tab', param=model.z)
instance = model.create_instance(data)

Loading an Indexed Parameter

An indexed parameter can be defined by a single column in a table. For example, consider the file Y.tab:

A Y
A1 3.3
A2 3.4
A3 3.5

In the following example, a DataPortal object loads data for an indexed parameter y:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1', 'A2', 'A3'])
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y)
instance = model.create_instance(data)

When column names are not used to specify the index and parameter data, then the DataPortal object assumes that
the rightmost column defines parameter values. In this file, the A column contains the index values, and the Y column
contains the parameter values.

Loading Set and Parameter Values

Note that the data for set A is predefined in the previous example. The index set can be loaded with the parameter data
using the index option. In the following example, a DataPortal object loads data for set A and the indexed parameter
y

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.y = Param(model.A)

(continues on next page)

88 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

data.load(filename='Y.tab', param=model.y, index=model.A)
instance = model.create_instance(data)

An index set with multiple dimensions can also be loaded with an indexed parameter. Consider the file PP.tab:

A B PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5

In the following example, a DataPortal object loads data for a tuple set and an indexed parameter:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='PP.tab', param=model.p, index=model.A)
instance = model.create_instance(data)

Loading a Parameter with Missing Values

Missing parameter data can be expressed in two ways. First, parameter data can be defined with indices that are a subset
of valid indices in the model. The following example loads the indexed parameter y:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1', 'A2', 'A3', 'A4'])
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y)
instance = model.create_instance(data)

The model defines an index set with four values, but only three parameter values are declared in the data file Y.tab.

Parameter data can also be declared with missing values using the period (.) symbol. For example, consider the file
S.tab:

A B PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5

In the following example, a DataPortal object loads data for the index set A and indexed parameter y:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.s = Param(model.A)
data.load(filename='S.tab', param=model.s, index=model.A)
instance = model.create_instance(data)

The period (.) symbol indicates a missing parameter value, but the index set A contains the index value for the missing
parameter.

7.2. Managing Data in AbstractModels 89

Pyomo Documentation, Release 6.5.0

Loading Multiple Parameters

Multiple parameters can be initialized at once by specifying a list (or tuple) of component parameters. Consider the
file XW.tab:

A X W
A1 3.3 4.3
A2 3.4 4.4
A3 3.5 4.5

In the following example, a DataPortal object loads data for parameters x and w:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1', 'A2', 'A3'])
model.x = Param(model.A)
model.w = Param(model.A)
data.load(filename='XW.tab', param=(model.x, model.w))
instance = model.create_instance(data)

Selecting Parameter Columns

We have previously noted that the column names do not need to be specified to load set and parameter data. However,
the select option can be to identify the columns in the table that are used to load parameter data. This option specifies
a list (or tuple) of column names that are used, in that order, to form the table that defines the component data.

For example, consider the following load declaration:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.w = Param(model.A)
data.load(filename='XW.tab', select=('A', 'W'), param=model.w, index=model.A)
instance = model.create_instance(data)

The columns A and W are selected from the file XW.tab, and a single parameter is defined.

Loading a Parameter Array

Consider the file U.tab, which defines an array representation of a multiply-indexed parameter:

I A1 A2 A3
I1 1.3 2.3 3.3
I2 1.4 2.4 3.4
I3 1.5 2.5 3.5
I4 1.6 2.6 3.6

In the following example, a DataPortal object loads data for a two-dimensional parameter u:

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1', 'A2', 'A3'])

(continues on next page)

90 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

model.I = Set(initialize=['I1', 'I2', 'I3', 'I4'])
model.u = Param(model.I, model.A)
data.load(filename='U.tab', param=model.u, format='array')
instance = model.create_instance(data)

The format option indicates that the parameter data is declared in a array format. The format option can also indicate
that the parameter data should be transposed.

model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1', 'A2', 'A3'])
model.I = Set(initialize=['I1', 'I2', 'I3', 'I4'])
model.t = Param(model.A, model.I)
data.load(filename='U.tab', param=model.t, format='transposed_array')
instance = model.create_instance(data)

Note that the transposed parameter data changes the index set for the parameter.

Loading from Spreadsheets and Databases

Tabular data can be loaded from spreadsheets and databases using auxilliary Python packages that provide an interface
to these data formats. Data can be loaded from Excel spreadsheets using the win32com, xlrd and openpyxl packages.
For example, consider the following range of cells, which is named PPtable:

In the following example, a DataPortal object loads the named range PPtable from the file excel.xls:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='excel.xls', range='PPtable', param=model.p, index=model.A)
instance = model.create_instance(data)

Note that the range option is required to specify the table of cell data that is loaded from the spreadsheet.

There are a variety of ways that data can be loaded from a relational database. In the simplest case, a table can be
specified within a database:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(

filename='PP.sqlite', using='sqlite3', table='PPtable', param=model.p, index=model.A
)
instance = model.create_instance(data)

7.2. Managing Data in AbstractModels 91

Pyomo Documentation, Release 6.5.0

In this example, the interface sqlite3 is used to load data from an SQLite database in the file PP.sqlite. More
generally, an SQL query can be specified to dynamicly generate a table. For example:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.p = Param(model.A)
data.load(

filename='PP.sqlite',
using='sqlite3',
query="SELECT A,PP FROM PPtable",
param=model.p,
index=model.A,

)
instance = model.create_instance(data)

Data Namespaces

The DataPortal class supports the concept of a namespace to organize data into named groups that can be enabled
or disabled during model construction. Various DataPortal methods have an optional namespace argument that
defaults to None:

• data(name=None, namespace=None): Returns the data associated with data in the specified namespace

• []: For a DataPortal object data, the function data['A'] returns data corresponding to A in the default
namespace, and data['ns1','A'] returns data corresponding to A in namespace ns1.

• namespaces(): Returns an iteratore for the data namespaces.

• keys(namespace=None): Returns an iterator of the data keys in the specified namespace.

• values(namespace=None): Returns and iterator of the data values in the specified namespace.

• items(namespace=None): Returns an iterator of (name, value) tuples in the specified namespace.

By default, data within a namespace are ignored during model construction. However, concrete models can be initial-
ized with data from a specific namespace. Further, abstract models can be initialized with a list of namespaces that
define the data used to initialized model components. For example, the following script generates two model instances
from an abstract model using data loaded into different namespaces:

model = AbstractModel()
model.C = Set(dimen=2)
data = DataPortal()
data.load(filename='C.tab', set=model.C, namespace='ns1')
data.load(filename='D.tab', set=model.C, namespace='ns2', format='set_array')
instance1 = model.create_instance(data, namespaces=['ns1'])
instance2 = model.create_instance(data, namespaces=['ns2'])

92 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

7.2.5 Storing Data from Pyomo Models

Currently, Pyomo has rather limited capabilities for storing model data into standard Python data types and serialized
data formats. However, this capability is under active development.

Storing Model Data in Excel

TODO
More here.

7.3 The pyomo Command

The pyomo command is issued to the DOS prompt or a Unix shell. To see a list of Pyomo command line options, use:

pyomo solve --help

Note: There are two dashes before help.

In this section we will detail some of the options.

7.3.1 Passing Options to a Solver

To pass arguments to a solver when using the pyomo solve command, appned the Pyomo command line with the
argument --solver-options= followed by an argument that is a string to be sent to the solver (perhaps with dashes
added by Pyomo). So for most MIP solvers, the mip gap can be set using

--solver-options="mipgap=0.01"

Multiple options are separated by a space. Options that do not take an argument should be specified with the equals
sign followed by either a space or the end of the string.

For example, to specify that the solver is GLPK, then to specify a mipgap of two percent and the GLPK cuts option,
use

--solver=glpk --solver-options="mipgap=0.02 cuts="

If there are multiple “levels” to the keyword, as is the case for some Gurobi and CPLEX options, the tokens are separated
by underscore. For example, mip cuts all would be specified as mip_cuts_all. For another example, to set the
solver to be CPLEX, then to set a mip gap of one percent and to specify ‘y’ for the sub-option numerical to the option
emphasis use

--solver=cplex --solver-options="mipgap=0.001 emphasis_numerical=y"

See Sending Options to the Solver for a discussion of passing options in a script.

7.3. The pyomo Command 93

Pyomo Documentation, Release 6.5.0

7.3.2 Troubleshooting

Many of things that can go wrong are covered by error messages, but sometimes they can be confusing or do not provide
enough information. Depending on what the troubles are, there might be ways to get a little additional information.

If there are syntax errors in the model file, for example, it can occasionally be helpful to get error messages directly
from the Python interpreter rather than through Pyomo. Suppose the name of the model file is scuc.py, then

python scuc.py

can sometimes give useful information for fixing syntax errors.

When there are no syntax errors, but there troubles reading the data or generating the information to pass to a solver,
then the --verbose option provides a trace of the execution of Pyomo. The user should be aware that for some models
this option can generate a lot of output.

If there are troubles with solver (i.e., after Pyomo has output “Applying Solver”), it is often helpful to use the option
--stream-solver that causes the solver output to be displayed rather than trapped. (See <<TeeTrue>> for information
about getting this output in a script). Advanced users may wish to examine the files that are generated to be passed to
a solver. The type of file generated is controlled by the --solver-io option and the --keepfiles option instructs
pyomo to keep the files and output their names. However, the --symbolic-solver-labels option should usually
also be specified so that meaningful names are used in these files.

When there seem to be troubles expressing the model, it is often useful to embed print commands in the model in places
that will yield helpful information. Consider the following snippet:

def ax_constraint_rule(model, i):
return the expression for the constraint for i
print("ax_constraint_rule was called for i=", str(i))
return sum(model.a[i, j] * model.x[j] for j in model.J) >= model.b[i]

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)

The effect will be to output every member of the set model.I at the time the constraint named model.AxbConstraint
is constructed.

7.3.3 Direct Interfaces to Solvers

In many applications, the default solver interface works well. However, in some cases it is useful to specify the interface
using the solver-io option. For example, if the solver supports a direct Python interface, then the option would be
specified on the command line as

--solver-io=python

Here are some of the choices:

• lp: generate a standard linear programming format file with filename extension lp

• nlp: generate a file with a standard format that supports linear and nonlinear optimization with filename extension
n1lp

• os: generate an OSiL format XML file.

• python: use the direct Python interface.

94 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

Note: Not all solvers support all interfaces.

7.4 BuildAction and BuildCheck

This is a somewhat advanced topic. In some cases, it is desirable to trigger actions to be done as part of the model
building process. The BuildAction function provides this capability in a Pyomo model. It takes as arguments optional
index sets and a function to peform the action. For example,

model.BuildBpts = BuildAction(model.J, rule=bpts_build)

calls the function bpts_build for each member of model.J. The function bpts_build should have the model and a
variable for the members of model.J as formal arguments. In this example, the following would be a valid declaration
for the function:

def bpts_build(model, j):

A full example, which extends the Symbolic Index Sets and Piecewise Linear Expressions examples, is

abstract2piecebuild.py
Similar to abstract2piece.py, but the breakpoints are created using a build action

from pyomo.environ import *

model = AbstractModel()

model.I = Set()
model.J = Set()

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

model.Topx = Param(default=6.1) # range of x variables
model.PieceCnt = Param(default=100)

the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals, bounds=(0, model.Topx))
model.y = Var(model.J, domain=NonNegativeReals)

to avoid warnings, we set breakpoints beyond the bounds
we are using a dictionary so that we can have different
breakpoints for each index. But we won't.
model.bpts = {}
def bpts_build(model, j):

model.bpts[j] = []
for i in range(model.PieceCnt + 2):

model.bpts[j].append(float((i * model.Topx) / model.PieceCnt))

The object model.BuildBpts is not refered to again;
(continues on next page)

7.4. BuildAction and BuildCheck 95

Pyomo Documentation, Release 6.5.0

(continued from previous page)

the only goal is to trigger the action at build time
model.BuildBpts = BuildAction(model.J, rule=bpts_build)

def f4(model, j, xp):
we not need j in this example, but it is passed as the index for the constraint
return xp**4

model.ComputePieces = Piecewise(
model.J, model.y, model.x, pw_pts=model.bpts, pw_constr_type='EQ', f_rule=f4

)

def obj_expression(model):
return summation(model.c, model.y)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
return the expression for the constraint for i
return sum(model.a[i, j] * model.x[j] for j in model.J) >= model.b[i]

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)

This example uses the build action to create a model component with breakpoints for a Piecewise Linear Expressions
function. The BuildAction is triggered by the assignment to model.BuildBpts. This object is not referenced again,
the only goal is to cause the execution of bpts_build, which places data in the model.bpts dictionary. Note that if
model.bpts had been a Set, then it could have been created with an initialize argument to the Set declaration.
Since it is a special-purpose dictionary to support the Piecewise Linear Expressions functionality in Pyomo, we use a
BuildAction.

Another application of BuildAction can be intialization of Pyomo model data from Python data structures, or efficient
initialization of Pyomo model data from other Pyomo model data. Consider the Sparse Index Sets example. Rather
than using an initialization for each list of sets NodesIn and NodesOut separately using initialize, it is a little more
efficient and probably a little clearer, to use a build action.

The full model is:

Isinglebuild.py
NodesIn and NodesOut are created by a build action using the Arcs
from pyomo.environ import *

model = AbstractModel()

model.Nodes = Set()
model.Arcs = Set(dimen=2)

model.NodesOut = Set(model.Nodes, within=model.Nodes, initialize=[])
(continues on next page)

96 Chapter 7. Working with Abstract Models

Pyomo Documentation, Release 6.5.0

(continued from previous page)

model.NodesIn = Set(model.Nodes, within=model.Nodes, initialize=[])

def Populate_In_and_Out(model):
loop over the arcs and put the end points in the appropriate places
for (i, j) in model.Arcs:

model.NodesIn[j].add(i)
model.NodesOut[i].add(j)

model.In_n_Out = BuildAction(rule=Populate_In_and_Out)

model.Flow = Var(model.Arcs, domain=NonNegativeReals)
model.FlowCost = Param(model.Arcs)

model.Demand = Param(model.Nodes)
model.Supply = Param(model.Nodes)

def Obj_rule(model):
return summation(model.FlowCost, model.Flow)

model.Obj = Objective(rule=Obj_rule, sense=minimize)

def FlowBalance_rule(model, node):
return (

model.Supply[node]
+ sum(model.Flow[i, node] for i in model.NodesIn[node])
- model.Demand[node]
- sum(model.Flow[node, j] for j in model.NodesOut[node])
== 0

)

model.FlowBalance = Constraint(model.Nodes, rule=FlowBalance_rule)

for this model, the same data file can be used as for Isinglecomm.py in Sparse Index Sets such as the toy data file:

set Nodes := CityA CityB CityC ;

set Arcs :=
CityA CityB
CityA CityC
CityC CityB
;

param : FlowCost :=
CityA CityB 1.4
CityA CityC 2.7
CityC CityB 1.6

(continues on next page)

7.4. BuildAction and BuildCheck 97

Pyomo Documentation, Release 6.5.0

(continued from previous page)

;

param Demand :=
CityA 0
CityB 1
CityC 1
;

param Supply :=
CityA 2
CityB 0
CityC 0
;

Build actions can also be a way to implement data validation, particularly when multiple Sets or Parameters must
be analyzed. However, the the BuildCheck component is prefered for this purpose. It executes its rule just like a
BuildAction but will terminate the construction of the model instance if the rule returns False.

98 Chapter 7. Working with Abstract Models

CHAPTER

EIGHT

MODEL TRANSFORMATIONS

8.1 Model Scaling Transformation

Good scaling of models can greatly improve the numerical properties of a problem and thus increase reliability and
convergence. The core.scale_model transformation allows users to separate scaling of a model from the declaration
of the model variables and constraints which allows for models to be written in more natural forms and to be scaled
and rescaled as required without having to rewrite the model code.

class pyomo.core.plugins.transform.scaling.ScaleModel(**kwds)
Transformation to scale a model.

This plugin performs variable, constraint, and objective scaling on a model based on the scaling factors in the
suffix ‘scaling_parameter’ set for the variables, constraints, and/or objective. This is typically done to scale the
problem for improved numerical properties.

Supported transformation methods:
• apply_to

• create_using

• propagate_solution

Examples

>>> from pyomo.environ import *
>>> # create the model
>>> model = ConcreteModel()
>>> model.x = Var(bounds=(-5, 5), initialize=1.0)
>>> model.y = Var(bounds=(0, 1), initialize=1.0)
>>> model.obj = Objective(expr=1e8*model.x + 1e6*model.y)
>>> model.con = Constraint(expr=model.x + model.y == 1.0)
>>> # create the scaling factors
>>> model.scaling_factor = Suffix(direction=Suffix.EXPORT)
>>> model.scaling_factor[model.obj] = 1e-6 # scale the objective
>>> model.scaling_factor[model.con] = 2.0 # scale the constraint
>>> model.scaling_factor[model.x] = 0.2 # scale the x variable
>>> # transform the model
>>> scaled_model = TransformationFactory('core.scale_model').create_using(model)
>>> # print the value of the objective function to show scaling has occurred
>>> print(value(model.x))
1.0

(continues on next page)

99

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> print(value(scaled_model.scaled_x))
0.2
>>> print(value(scaled_model.scaled_x.lb))
-1.0
>>> print(value(model.obj))
101000000.0
>>> print(value(scaled_model.scaled_obj))
101.0

Todo: Implement an option to change the variables names or not

propagate_solution(scaled_model, original_model)
This method takes the solution in scaled_model and maps it back to the original model.

It will also transform duals and reduced costs if the suffixes ‘dual’ and/or ‘rc’ are present. The
scaled_model argument must be a model that was already scaled using this transformation as it expects
data from the transformation to perform the back mapping.

Parameters
• scaled_model (Pyomo Model) – The model that was previously scaled with this trans-

formation

• original_model (Pyomo Model) – The original unscaled source model

8.1.1 Setting Scaling Factors

Scaling factors for components in a model are declared using Suffixes, as shown in the example above. In order to
define a scaling factor for a component, a Suffix named scaling_factor must first be created to hold the scaling
factor(s). Scaling factor suffixes can be declared at any level of the model hierarchy, but scaling factors declared on the
higher-level models or Blocks take precedence over those declared at lower levels.

Scaling suffixes are dict-like where each key is a Pyomo component and the value is the scaling factor to be applied to
that component.

In the case of indexed components, scaling factors can either be declared for an individual index or for the indexed
component as a whole (with scaling factors for individual indices taking precedence over overall scaling factors).

Note: In the case that a scaling factor is declared for a component on at multiple levels of the hierarchy, the highest
level scaling factor will be applied.

Note: It is also possible (but not encouraged) to define a “default” scaling factor to be applied to any component for
which a specific scaling factor has not been declared by setting a entry in a Suffix with a key of None. In this case,
the default value declared closest to the component to be scaled will be used (i.e., the first default value found when
walking up the model hierarchy).

100 Chapter 8. Model Transformations

Pyomo Documentation, Release 6.5.0

8.1.2 Applying Model Scaling

The core.scale_model transformation provides two approaches for creating a scaled model.

In-Place Scaling

The apply_to(model) method can be used to apply scaling directly to an existing model. When using this method,
all the variables, constraints and objectives within the target model are replaced with new scaled components and the
appropriate scaling factors applied. The model can then be sent to a solver as usual, however the results will be in terms
of the scaled components and must be un-scaled by the user.

Creating a New Scaled Model

Alternatively, the create_using(model) method can be used to create a new, scaled version of the model which can
be solved. In this case, a clone of the original model is generated with the variables, constraints and objectives replaced
by scaled equivalents. Users can then send the scaled model to a solver after which the propagate_solution method
can be used to map the scaled solution back onto the original model for further analysis.

The advantage of this approach is that the original model is maintained separately from the scaled model, which facil-
itates rescaling and other manipulation of the original model after a solution has been found. The disadvantage of this
approach is that cloning the model may result in memory issues when dealing with larger models.

8.1. Model Scaling Transformation 101

Pyomo Documentation, Release 6.5.0

102 Chapter 8. Model Transformations

CHAPTER

NINE

MODELING EXTENSIONS

9.1 Bilevel Programming

pyomo.bilevel provides extensions supporting modeling of multi-level optimization problems.

9.2 Dynamic Optimization with pyomo.DAE

The pyomo.DAE modeling extension [PyomoDAE] allows users to incorporate systems of differential algebraic equa-
tions (DAE)s in a Pyomo model. The modeling components in this extension are able to represent ordinary or partial
differential equations. The differential equations do not have to be written in a particular format and the components
are flexible enough to represent higher-order derivatives or mixed partial derivatives. Pyomo.DAE also includes model
transformations which use simultaneous discretization approaches to transform a DAE model into an algebraic model.
Finally, pyomo.DAE includes utilities for simulating DAE models and initializing dynamic optimization problems.

9.2.1 Modeling Components

Pyomo.DAE introduces three new modeling components to Pyomo:

pyomo.dae.ContinuousSet Represents a bounded continuous domain
pyomo.dae.DerivativeVar Represents derivatives in a model and defines how a Var

is differentiated
pyomo.dae.Integral Represents an integral over a continuous domain

As will be shown later, differential equations can be declared using using these new modeling components along with
the standard Pyomo Var and Constraint components.

103

Pyomo Documentation, Release 6.5.0

ContinuousSet

This component is used to define continuous bounded domains (for example ‘spatial’ or ‘time’ domains). It is
similar to a Pyomo Set component and can be used to index things like variables and constraints. Any num-
ber of ContinuousSets can be used to index a component and components can be indexed by both Sets and
ContinuousSets in arbitrary order.

In the current implementation, models with ContinuousSet components may not be solved until every
ContinuousSet has been discretized. Minimally, a ContinuousSet must be initialized with two numeric values
representing the upper and lower bounds of the continuous domain. A user may also specify additional points in the
domain to be used as finite element points in the discretization.

class pyomo.dae.ContinuousSet(*args, **kwds)
Represents a bounded continuous domain

Minimally, this set must contain two numeric values defining the bounds of a continuous range. Discrete points of
interest may be added to the continuous set. A continuous set is one dimensional and may only contain numerical
values.

Parameters
• initialize (list) – Default discretization points to be included

• bounds (tuple) – The bounding points for the continuous domain. The bounds will be in-
cluded as discrete points in the ContinuousSet and will be used to bound the points added
to the ContinuousSet through the ‘initialize’ argument, a data file, or the add() method

_changed

This keeps track of whether or not the ContinuousSet was changed during discretization. If the user specifies
all of the needed discretization points before the discretization then there is no need to go back through the
model and reconstruct things indexed by the ContinuousSet

Type
boolean

_fe

This is a sorted list of the finite element points in the ContinuousSet. i.e. this list contains all the discrete
points in the ContinuousSet that are not collocation points. Points that are both finite element points and
collocation points will be included in this list.

Type
list

_discretization_info

This is a dictionary which contains information on the discretization transformation which has been applied
to the ContinuousSet.

Type
dict

construct(values=None)
Constructs a ContinuousSet component

find_nearest_index(target, tolerance=None)
Returns the index of the nearest point in the ContinuousSet.

If a tolerance is specified, the index will only be returned if the distance between the target and the closest
point is less than or equal to that tolerance. If there is a tie for closest point, the index on the left is returned.

Parameters

104 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

• target (float) –

• tolerance (float or None) –

Return type
float or None

get_changed()

Returns flag indicating if the ContinuousSet was changed during discretization

Returns “True” if additional points were added to the ContinuousSet while applying a discretization
scheme

Return type
boolean

get_discretization_info()

Returns a dict with information on the discretization scheme that has been applied to the ContinuousSet.

Return type
dict

get_finite_elements()

Returns the finite element points

If the ContinuousSet has been discretizaed using a collocation scheme, this method will return a list
of the finite element discretization points but not the collocation points within each finite element. If the
ContinuousSet has not been discretized or a finite difference discretization was used, this method returns
a list of all the discretization points in the ContinuousSet.

Return type
list of floats

get_lower_element_boundary(point)
Returns the first finite element point that is less than or equal to ‘point’

Parameters
point (float) –

Return type
float

get_upper_element_boundary(point)
Returns the first finite element point that is greater or equal to ‘point’

Parameters
point (float) –

Return type
float

set_changed(newvalue)
Sets the _changed flag to ‘newvalue’

Parameters
newvalue (boolean) –

The following code snippet shows examples of declaring a ContinuousSet component on a concrete Pyomo model:

9.2. Dynamic Optimization with pyomo.DAE 105

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()

Declaration by providing bounds
>>> model.t = ContinuousSet(bounds=(0,5))

Declaration by initializing with desired discretization points
>>> model.x = ContinuousSet(initialize=[0,1,2,5])

Note: A ContinuousSet may not be constructed unless at least two numeric points are provided to bound the
continuous domain.

The following code snippet shows an example of declaring a ContinuousSet component on an abstract Pyomo model
using the example data file.

set t := 0 0.5 2.25 3.75 5;

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = AbstractModel()

The ContinuousSet below will be initialized using the points
in the data file when a model instance is created.
>>> model.t = ContinuousSet()

Note: If a separate data file is used to initialize a ContinuousSet, it is done using the ‘set’ command and not
‘continuousset’

Note: Most valid ways to declare and initialize a Set can be used to declare and initialize a ContinuousSet. See the
documentation for Set for additional options.

Warning: Be careful using a ContinuousSet as an implicit index in an expression, i.e. sum(m.v[i] for
i in m.myContinuousSet). The expression will be generated using the discretization points contained in the
ContinuousSet at the time the expression was constructed and will not be updated if additional points are added
to the set during discretization.

Note: ContinuousSet components are always ordered (sorted) therefore the first() and last() Set methods can
be used to access the lower and upper boundaries of the ContinuousSet respectively

106 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

DerivativeVar

class pyomo.dae.DerivativeVar(*args, **kwargs)
Represents derivatives in a model and defines how a Var is differentiated

The DerivativeVar component is used to declare a derivative of a Var. The constructor accepts a single
positional argument which is the Var that’s being differentiated. A Var may only be differentiated with respect
to a ContinuousSet that it is indexed by. The indexing sets of a DerivativeVar are identical to those of the
Var it is differentiating.

Parameters
• sVar (pyomo.environ.Var) – The variable being differentiated

• wrt (pyomo.dae.ContinuousSet or tuple) – Equivalent to withrespectto keyword argu-
ment. The ContinuousSet that the derivative is being taken with respect to. Higher order
derivatives are represented by including the ContinuousSet multiple times in the tuple sent
to this keyword. i.e. wrt=(m.t, m.t) would be the second order derivative with respect to
m.t

get_continuousset_list()

Return the a list of ContinuousSet components the derivative is being taken with respect to.

Return type
list

get_derivative_expression()

Returns the current discretization expression for this derivative or creates an access function to its Var
the first time this method is called. The expression gets built up as the discretization transformations are
sequentially applied to each ContinuousSet in the model.

get_state_var()

Return the Var that is being differentiated.

Return type
Var

is_fully_discretized()

Check to see if all the ContinuousSets this derivative is taken with respect to have been discretized.

Return type
boolean

set_derivative_expression(expr)
Sets``_expr``, an expression representing the discretization equations linking the DerivativeVar to its
state Var

The code snippet below shows examples of declaring DerivativeVar components on a Pyomo model. In each case,
the variable being differentiated is supplied as the only positional argument and the type of derivative is specified using
the ‘wrt’ (or the more verbose ‘withrespectto’) keyword argument. Any keyword argument that is valid for a Pyomo
Var component may also be specified.

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()
>>> model.s = Set(initialize=['a','b'])

(continues on next page)

9.2. Dynamic Optimization with pyomo.DAE 107

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> model.t = ContinuousSet(bounds=(0,5))
>>> model.l = ContinuousSet(bounds=(-10,10))

>>> model.x = Var(model.t)
>>> model.y = Var(model.s,model.t)
>>> model.z = Var(model.t,model.l)

Declare the first derivative of model.x with respect to model.t
>>> model.dxdt = DerivativeVar(model.x, withrespectto=model.t)

Declare the second derivative of model.y with respect to model.t
Note that this DerivativeVar will be indexed by both model.s and model.t
>>> model.dydt2 = DerivativeVar(model.y, wrt=(model.t,model.t))

Declare the partial derivative of model.z with respect to model.l
Note that this DerivativeVar will be indexed by both model.t and model.l
>>> model.dzdl = DerivativeVar(model.z, wrt=(model.l), initialize=0)

Declare the mixed second order partial derivative of model.z with respect
to model.t and model.l and set bounds
>>> model.dz2 = DerivativeVar(model.z, wrt=(model.t, model.l), bounds=(-10, 10))

Note: The ‘initialize’ keyword argument will initialize the value of a derivative and is not the same as specifying an
initial condition. Initial or boundary conditions should be specified using a Constraint or ConstraintList or by
fixing the value of a Var at a boundary point.

9.2.2 Declaring Differential Equations

A differential equations is declared as a standard Pyomo Constraint and is not required to have any particular form.
The following code snippet shows how one might declare an ordinary or partial differential equation.

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()
>>> model.s = Set(initialize=['a', 'b'])
>>> model.t = ContinuousSet(bounds=(0, 5))
>>> model.l = ContinuousSet(bounds=(-10, 10))

>>> model.x = Var(model.s, model.t)
>>> model.y = Var(model.t, model.l)
>>> model.dxdt = DerivativeVar(model.x, wrt=model.t)
>>> model.dydt = DerivativeVar(model.y, wrt=model.t)
>>> model.dydl2 = DerivativeVar(model.y, wrt=(model.l, model.l))

An ordinary differential equation
>>> def _ode_rule(m, s, t):
... if t == 0:

(continues on next page)

108 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... return Constraint.Skip

... return m.dxdt[s, t] == m.x[s, t]**2
>>> model.ode = Constraint(model.s, model.t, rule=_ode_rule)

A partial differential equation
>>> def _pde_rule(m, t, l):
... if t == 0 or l == m.l.first() or l == m.l.last():
... return Constraint.Skip
... return m.dydt[t, l] == m.dydl2[t, l]
>>> model.pde = Constraint(model.t, model.l, rule=_pde_rule)

By default, a Constraint declared over a ContinuousSet will be applied at every discretization point contained in
the set. Often a modeler does not want to enforce a differential equation at one or both boundaries of a continuous
domain. This may be addressed explicitly in the Constraint declaration using Constraint.Skip as shown above.
Alternatively, the desired constraints can be deactivated just before the model is sent to a solver as shown below.

>>> def _ode_rule(m, s, t):
... return m.dxdt[s, t] == m.x[s, t]**2
>>> model.ode = Constraint(model.s, model.t, rule=_ode_rule)

>>> def _pde_rule(m, t, l):
... return m.dydt[t, l] == m.dydl2[t, l]
>>> model.pde = Constraint(model.t, model.l, rule=_pde_rule)

Declare other model components and apply a discretization transformation
...

Deactivate the differential equations at certain boundary points
>>> for con in model.ode[:, model.t.first()]:
... con.deactivate()

>>> for con in model.pde[0, :]:
... con.deactivate()

>>> for con in model.pde[:, model.l.first()]:
... con.deactivate()

>>> for con in model.pde[:, model.l.last()]:
... con.deactivate()

Solve the model
...

Note: If you intend to use the pyomo.DAE Simulator on your model then you must use constraint deactivation
instead of constraint skipping in the differential equation rule.

9.2. Dynamic Optimization with pyomo.DAE 109

Pyomo Documentation, Release 6.5.0

9.2.3 Declaring Integrals

Warning: The Integral component is still under development and considered a prototype. It currently includes
only basic functionality for simple integrals. We welcome feedback on the interface and functionality but we do
not recommend using it on general models. Instead, integrals should be reformulated as differential equations.

class pyomo.dae.Integral(*args, **kwds)
Represents an integral over a continuous domain

The Integral component can be used to represent an integral taken over the entire domain of a ContinuousSet.
Once every ContinuousSet in a model has been discretized, any integrals in the model will be converted to
algebraic equations using the trapezoid rule. Future development will include more sophisticated numerical
integration methods.

Parameters
• *args – Every indexing set needed to evaluate the integral expression

• wrt (ContinuousSet) – The continuous domain over which the integral is being taken

• rule (function) – Function returning the expression being integrated

get_continuousset()

Return the ContinuousSet the integral is being taken over

Declaring an Integral component is similar to declaring an Expression component. A simple example is shown
below:

>>> model = ConcreteModel()
>>> model.time = ContinuousSet(bounds=(0,10))
>>> model.X = Var(model.time)
>>> model.scale = Param(initialize=1E-3)

>>> def _intX(m,t):
... return m.X[t]
>>> model.intX = Integral(model.time,wrt=model.time,rule=_intX)

>>> def _obj(m):
... return m.scale*m.intX
>>> model.obj = Objective(rule=_obj)

Notice that the positional arguments supplied to the Integral declaration must include all indices needed to evaluate
the integral expression. The integral expression is defined in a function and supplied to the ‘rule’ keyword argument.
Finally, a user must specify a ContinuousSet that the integral is being evaluated over. This is done using the ‘wrt’
keyword argument.

Note: The ContinuousSet specified using the ‘wrt’ keyword argument must be explicitly specified as one of the
indexing sets (meaning it must be supplied as a positional argument). This is to ensure consistency in the ordering and
dimension of the indexing sets

After an Integral has been declared, it can be used just like a Pyomo Expression component and can be included
in constraints or the objective function as shown above.

If an Integral is specified with multiple positional arguments, i.e. multiple indexing sets, the final component will
be indexed by all of those sets except for the ContinuousSet that the integral was taken over. In other words, the

110 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

ContinuousSet specified with the ‘wrt’ keyword argument is removed from the indexing sets of the Integral even
though it must be specified as a positional argument. This should become more clear with the following example
showing a double integral over the ContinuousSet components model.t1 and model.t2. In addition, the expression
is also indexed by the Set model.s. The mathematical representation and implementation in Pyomo are shown below:∑︁

𝑠

∫︁
𝑡2

∫︁
𝑡1

𝑋(𝑡1, 𝑡2, 𝑠) 𝑑𝑡1 𝑑𝑡2

>>> model = ConcreteModel()
>>> model.t1 = ContinuousSet(bounds=(0, 10))
>>> model.t2 = ContinuousSet(bounds=(-1, 1))
>>> model.s = Set(initialize=['A', 'B', 'C'])

>>> model.X = Var(model.t1, model.t2, model.s)

>>> def _intX1(m, t1, t2, s):
... return m.X[t1, t2, s]
>>> model.intX1 = Integral(model.t1, model.t2, model.s, wrt=model.t1,
... rule=_intX1)

>>> def _intX2(m, t2, s):
... return m.intX1[t2, s]
>>> model.intX2 = Integral(model.t2, model.s, wrt=model.t2, rule=_intX2)

>>> def _obj(m):
... return sum(m.intX2[k] for k in m.s)
>>> model.obj = Objective(rule=_obj)

9.2.4 Discretization Transformations

Before a Pyomo model with DerivativeVar or Integral components can be sent to a solver it must first be sent
through a discretization transformation. These transformations approximate any derivatives or integrals in the model
by using a numerical method. The numerical methods currently included in pyomo.DAE discretize the continuous
domains in the problem and introduce equality constraints which approximate the derivatives and integrals at the dis-
cretization points. Two families of discretization schemes have been implemented in pyomo.DAE, Finite Difference
and Collocation. These schemes are described in more detail below.

Note: The schemes described here are for derivatives only. All integrals will be transformed using the trapezoid rule.

The user must write a Python script in order to use these discretizations, they have not been tested on the pyomo
command line. Example scripts are shown below for each of the discretization schemes. The transformations are
applied to Pyomo model objects which can be further manipulated before being sent to a solver. Examples of this are
also shown below.

9.2. Dynamic Optimization with pyomo.DAE 111

Pyomo Documentation, Release 6.5.0

Finite Difference Transformation

This transformation includes implementations of several finite difference methods. For example, the Backward Dif-
ference method (also called Implicit or Backward Euler) has been implemented. The discretization equations for this
method are shown below:

Given :
𝑑𝑥
𝑑𝑡 = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0

discretize 𝑡 and 𝑥 such that
𝑥(𝑡0 + 𝑘ℎ) = 𝑥𝑘

𝑥𝑘+1 = 𝑥𝑘 + ℎ * 𝑓(𝑡𝑘+1, 𝑥𝑘+1)
𝑡𝑘+1 = 𝑡𝑘 + ℎ

where ℎ is the step size between discretization points or the size of each finite element. These equations are generated
automatically as Constraints when the backward difference method is applied to a Pyomo model.

There are several discretization options available to a dae.finite_difference transformation which can be specified
as keyword arguments to the .apply_to() function of the transformation object. These keywords are summarized
below:

Keyword arguments for applying a finite difference transformation:

‘nfe’
The desired number of finite element points to be included in the discretization. The default value is 10.

‘wrt’
Indicates which ContinuousSet the transformation should be applied to. If this keyword argument is not spec-
ified then the same scheme will be applied to every ContinuousSet .

‘scheme’
Indicates which finite difference method to apply. Options are ‘BACKWARD’, ‘CENTRAL’, or ‘FORWARD’.
The default scheme is the backward difference method.

If the existing number of finite element points in a ContinuousSet is less than the desired number, new discretization
points will be added to the set. If a user specifies a number of finite element points which is less than the number of points
already included in the ContinuousSet then the transformation will ignore the specified number and proceed with
the larger set of points. Discretization points will never be removed from a ContinousSet during the discretization.

The following code is a Python script applying the backward difference method. The code also shows how to add a
constraint to a discretized model.

Discretize model using Backward Difference method
>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model,nfe=20,wrt=model.time,scheme='BACKWARD')

Add another constraint to discretized model
>>> def _sum_limit(m):
... return sum(m.x1[i] for i in m.time) <= 50
>>> model.con_sum_limit = Constraint(rule=_sum_limit)

Solve discretized model
>>> solver = SolverFactory('ipopt')
>>> results = solver.solve(model)

112 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Collocation Transformation

This transformation uses orthogonal collocation to discretize the differential equations in the model. Currently, two
types of collocation have been implemented. They both use Lagrange polynomials with either Gauss-Radau roots or
Gauss-Legendre roots. For more information on orthogonal collocation and the discretization equations associated
with this method please see chapter 10 of the book “Nonlinear Programming: Concepts, Algorithms, and Applications
to Chemical Processes” by L.T. Biegler.

The discretization options available to a dae.collocation transformation are the same as those described above for
the finite difference transformation with different available schemes and the addition of the ‘ncp’ option.

Additional keyword arguments for collocation discretizations:

‘scheme’
The desired collocation scheme, either ‘LAGRANGE-RADAU’ or ‘LAGRANGE-LEGENDRE’. The default is
‘LAGRANGE-RADAU’.

‘ncp’
The number of collocation points within each finite element. The default value is 3.

Note: If the user’s version of Python has access to the package Numpy then any number of collocation points may be
specified, otherwise the maximum number is 10.

Note: Any points that exist in a ContinuousSet before discretization will be used as finite element boundaries and
not as collocation points. The locations of the collocation points cannot be specified by the user, they must be generated
by the transformation.

The following code is a Python script applying collocation with Lagrange polynomials and Radau roots. The code also
shows how to add an objective function to a discretized model.

Discretize model using Radau Collocation
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(model,nfe=20,ncp=6,scheme='LAGRANGE-RADAU')

Add objective function after model has been discretized
>>> def obj_rule(m):
... return sum((m.x[i]-m.x_ref)**2 for i in m.time)
>>> model.obj = Objective(rule=obj_rule)

Solve discretized model
>>> solver = SolverFactory('ipopt')
>>> results = solver.solve(model)

9.2. Dynamic Optimization with pyomo.DAE 113

Pyomo Documentation, Release 6.5.0

Restricting Optimal Control Profiles

When solving an optimal control problem a user may want to restrict the number of degrees of freedom for the control
input by forcing, for example, a piecewise constant profile. Pyomo.DAE provides the reduce_collocation_points
function to address this use-case. This function is used in conjunction with the dae.collocation discretization
transformation to reduce the number of free collocation points within a finite element for a particular variable.

class pyomo.dae.plugins.colloc.Collocation_Discretization_Transformation

reduce_collocation_points(instance, var=None, ncp=None, contset=None)
This method will add additional constraints to a model to reduce the number of free collocation points
(degrees of freedom) for a particular variable.

Parameters
• instance (Pyomo model) – The discretized Pyomo model to add constraints to

• var (pyomo.environ.Var) – The Pyomo variable for which the degrees of freedom will
be reduced

• ncp (int) – The new number of free collocation points for var. Must be less that the
number of collocation points used in discretizing the model.

• contset (pyomo.dae.ContinuousSet) – The ContinuousSet that was discretized and
for which the var will have a reduced number of degrees of freedom

An example of using this function is shown below:

>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(model, nfe=10, ncp=6)
>>> model = discretizer.reduce_collocation_points(model,
... var=model.u,
... ncp=1,
... contset=model.time)

In the above example, the reduce_collocation_points function restricts the variable model.u to have only 1 free
collocation point per finite element, thereby enforcing a piecewise constant profile. Fig. 9.1 shows the solution profile
before and after appling the reduce_collocation_points function.

Applying Multiple Discretization Transformations

Discretizations can be applied independently to each ContinuousSet in a model. This allows the user great flexibility
in discretizing their model. For example the same numerical method can be applied with different resolutions:

>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model,wrt=model.t1,nfe=10)
>>> discretizer.apply_to(model,wrt=model.t2,nfe=100)

This also allows the user to combine different methods. For example, applying the forward difference method to one
ContinuousSet and the central finite difference method to another ContinuousSet:

>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model,wrt=model.t1,scheme='FORWARD')
>>> discretizer.apply_to(model,wrt=model.t2,scheme='CENTRAL')

In addition, the user may combine finite difference and collocation discretizations. For example:

114 Chapter 9. Modeling Extensions

https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Fig. 9.1: (left) Profile before applying the reduce_collocation_points function (right) Profile after applying the
function, restricting model.u to have a piecewise constant profile.

9.2. Dynamic Optimization with pyomo.DAE 115

Pyomo Documentation, Release 6.5.0

>>> disc_fe = TransformationFactory('dae.finite_difference')
>>> disc_fe.apply_to(model,wrt=model.t1,nfe=10)
>>> disc_col = TransformationFactory('dae.collocation')
>>> disc_col.apply_to(model,wrt=model.t2,nfe=10,ncp=5)

If the user would like to apply the same discretization to all ContinuousSet components in a model, just specify the
discretization once without the ‘wrt’ keyword argument. This will apply that scheme to all ContinuousSet compo-
nents in the model that haven’t already been discretized.

Custom Discretization Schemes

A transformation framework along with certain utility functions has been created so that advanced users may easily
implement custom discretization schemes other than those listed above. The transformation framework consists of the
following steps:

1. Specify Discretization Options

2. Discretize the ContinuousSet(s)

3. Update Model Components

4. Add Discretization Equations

5. Return Discretized Model

If a user would like to create a custom finite difference scheme then they only have to worry about step (4) in the
framework. The discretization equations for a particular scheme have been isolated from of the rest of the code for
implementing the transformation. The function containing these discretization equations can be found at the top of the
source code file for the transformation. For example, below is the function for the forward difference method:

def _forward_transform(v,s):
"""
Applies the Forward Difference formula of order O(h) for first derivatives
"""

def _fwd_fun(i):
tmp = sorted(s)
idx = tmp.index(i)
return 1/(tmp[idx+1]-tmp[idx])*(v(tmp[idx+1])-v(tmp[idx]))

return _fwd_fun

In this function, ‘v’ represents the continuous variable or function that the method is being applied to. ‘s’ represents
the set of discrete points in the continuous domain. In order to implement a custom finite difference method, a user
would have to copy the above function and just replace the equation next to the first return statement with their method.

After implementing a custom finite difference method using the above function template, the only other change that
must be made is to add the custom method to the ‘all_schemes’ dictionary in the dae.finite_difference class.

In the case of a custom collocation method, changes will have to be made in steps (2) and (4) of the transformation
framework. In addition to implementing the discretization equations, the user would also have to ensure that the desired
collocation points are added to the ContinuousSet being discretized.

116 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

9.2.5 Dynamic Model Simulation

The pyomo.dae Simulator class can be used to simulate systems of ODEs and DAEs. It provides an interface to inte-
grators available in other Python packages.

Note: The pyomo.dae Simulator does not include integrators directly. The user must have at least one of the supported
Python packages installed in order to use this class.

class pyomo.dae.Simulator(m, package='scipy')
Simulator objects allow a user to simulate a dynamic model formulated using pyomo.dae.

Parameters
• m (Pyomo Model) – The Pyomo model to be simulated should be passed as the first argument

• package (string) – The Python simulator package to use. Currently ‘scipy’ and ‘casadi’ are
the only supported packages

get_variable_order(vartype=None)
This function returns the ordered list of differential variable names. The order corresponds to the order
being sent to the integrator function. Knowing the order allows users to provide initial conditions for
the differential equations using a list or map the profiles returned by the simulate function to the Pyomo
variables.

Parameters
vartype (string or None) – Optional argument for specifying the type of variables to return
the order for. The default behavior is to return the order of the differential variables. ‘time-
varying’ will return the order of all the time-dependent algebraic variables identified in the
model. ‘algebraic’ will return the order of algebraic variables used in the most recent call to
the simulate function. ‘input’ will return the order of the time-dependent algebraic variables
that were treated as inputs in the most recent call to the simulate function.

Return type
list

initialize_model()

This function will initialize the model using the profile obtained from simulating the dynamic model.

simulate(numpoints=None, tstep=None, integrator=None, varying_inputs=None, initcon=None,
integrator_options=None)

Simulate the model. Integrator-specific options may be specified as keyword arguments and will be passed
on to the integrator.

Parameters
• numpoints (int) – The number of points for the profiles returned by the simulator. Default

is 100

• tstep (int or float) – The time step to use in the profiles returned by the simulator.
This is not the time step used internally by the integrators. This is an optional parameter
that may be specified in place of ‘numpoints’.

• integrator (string) – The string name of the integrator to use for simulation. The
default is ‘lsoda’ when using Scipy and ‘idas’ when using CasADi

• varying_inputs (pyomo.environ.Suffix) – A Suffix object containing the piece-
wise constant profiles to be used for certain time-varying algebraic variables.

9.2. Dynamic Optimization with pyomo.DAE 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

• initcon (list of floats) – The initial conditions for the the differential variables.
This is an optional argument. If not specified then the simulator will use the current value
of the differential variables at the lower bound of the ContinuousSet for the initial condition.

• integrator_options (dict) – Dictionary containing options that should be passed to
the integrator. See the documentation for a specific integrator for a list of valid options.

Returns
The first return value is a 1D array of time points corresponding to the second return value
which is a 2D array of the profiles for the simulated differential and algebraic variables.

Return type
numpy array, numpy array

Note: Any keyword options supported by the integrator may be specified as keyword options to the simulate function
and will be passed to the integrator.

Supported Simulator Packages

The Simulator currently includes interfaces to SciPy and CasADi. ODE simulation is supported in both packages
however, DAE simulation is only supported by CasADi. A list of available integrators for each package is given below.
Please refer to the SciPy and CasADi documentation directly for the most up-to-date information about these packages
and for more information about the various integrators and options.

SciPy Integrators:
• ‘vode’ : Real-valued Variable-coefficient ODE solver, options for non-stiff and stiff systems

• ‘zvode’ : Complex-values Variable-coefficient ODE solver, options for non-stiff and stiff systems

• ‘lsoda’ : Real-values Variable-coefficient ODE solver, automatic switching of algorithms for non-stiff or
stiff systems

• ‘dopri5’ : Explicit runge-kutta method of order (4)5 ODE solver

• ‘dop853’ : Explicit runge-kutta method of order 8(5,3) ODE solver

CasADi Integrators:
• ‘cvodes’ : CVodes from the Sundials suite, solver for stiff or non-stiff ODE systems

• ‘idas’ : IDAS from the Sundials suite, DAE solver

• ‘collocation’ : Fixed-step implicit runge-kutta method, ODE/DAE solver

• ‘rk’ : Fixed-step explicit runge-kutta method, ODE solver

Using the Simulator

We now show how to use the Simulator to simulate the following system of ODEs:

𝑑𝜃
𝑑𝑡 = 𝜔
𝑑𝜔
𝑑𝑡 = −𝑏 * 𝜔 − 𝑐 * 𝑠𝑖𝑛(𝜃)

We begin by formulating the model using pyomo.DAE

118 Chapter 9. Modeling Extensions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://casadi.sourceforge.net/api/html/db/d3d/classcasadi_1_1Integrator.html

Pyomo Documentation, Release 6.5.0

>>> m = ConcreteModel()

>>> m.t = ContinuousSet(bounds=(0.0, 10.0))

>>> m.b = Param(initialize=0.25)
>>> m.c = Param(initialize=5.0)

>>> m.omega = Var(m.t)
>>> m.theta = Var(m.t)

>>> m.domegadt = DerivativeVar(m.omega, wrt=m.t)
>>> m.dthetadt = DerivativeVar(m.theta, wrt=m.t)

Setting the initial conditions
>>> m.omega[0].fix(0.0)
>>> m.theta[0].fix(3.14 - 0.1)

>>> def _diffeq1(m, t):
... return m.domegadt[t] == -m.b * m.omega[t] - m.c * sin(m.theta[t])
>>> m.diffeq1 = Constraint(m.t, rule=_diffeq1)

>>> def _diffeq2(m, t):
... return m.dthetadt[t] == m.omega[t]
>>> m.diffeq2 = Constraint(m.t, rule=_diffeq2)

Notice that the initial conditions are set by fixing the values of m.omega and m.theta at t=0 instead of being specified as
extra equality constraints. Also notice that the differential equations are specified without using Constraint.Skip to
skip enforcement at t=0. The Simulator cannot simulate any constraints that contain if-statements in their construction
rules.

To simulate the model you must first create a Simulator object. Building this object prepares the Pyomo model for
simulation with a particular Python package and performs several checks on the model to ensure compatibility with the
Simulator. Be sure to read through the list of limitations at the end of this section to understand the types of models
supported by the Simulator.

>>> sim = Simulator(m, package='scipy')

After creating a Simulator object, the model can be simulated by calling the simulate function. Please see the API
documentation for the Simulator for more information about the valid keyword arguments for this function.

>>> tsim, profiles = sim.simulate(numpoints=100, integrator='vode')

The simulate function returns numpy arrays containing time points and the corresponding values for the dynamic
variable profiles.

Simulator Limitations:
• Differential equations must be first-order and separable

• Model can only contain a single ContinuousSet

• Can’t simulate constraints with if-statements in the construction rules

• Need to provide initial conditions for dynamic states by setting the value or using fix()

9.2. Dynamic Optimization with pyomo.DAE 119

Pyomo Documentation, Release 6.5.0

Specifying Time-Varing Inputs

The Simulator supports simulation of a system of ODE’s or DAE’s with time-varying parameters or control inputs.
Time-varying inputs can be specified using a Pyomo Suffix. We currently only support piecewise constant profiles.
For more complex inputs defined by a continuous function of time we recommend adding an algebraic variable and
constraint to your model.

The profile for a time-varying input should be specified using a Python dictionary where the keys correspond to the
switching times and the values correspond to the value of the input at a time point. A Suffix is then used to associate
this dictionary with the appropriate Var or Param and pass the information to the Simulator. The code snippet below
shows an example.

>>> m = ConcreteModel()

>>> m.t = ContinuousSet(bounds=(0.0, 20.0))

Time-varying inputs
>>> m.b = Var(m.t)
>>> m.c = Param(m.t, default=5.0)

>>> m.omega = Var(m.t)
>>> m.theta = Var(m.t)

>>> m.domegadt = DerivativeVar(m.omega, wrt=m.t)
>>> m.dthetadt = DerivativeVar(m.theta, wrt=m.t)

Setting the initial conditions
>>> m.omega[0] = 0.0
>>> m.theta[0] = 3.14 - 0.1

>>> def _diffeq1(m, t):
... return m.domegadt[t] == -m.b[t] * m.omega[t] - \
... m.c[t] * sin(m.theta[t])
>>> m.diffeq1 = Constraint(m.t, rule=_diffeq1)

>>> def _diffeq2(m, t):
... return m.dthetadt[t] == m.omega[t]
>>> m.diffeq2 = Constraint(m.t, rule=_diffeq2)

Specifying the piecewise constant inputs
>>> b_profile = {0: 0.25, 15: 0.025}
>>> c_profile = {0: 5.0, 7: 50}

Declaring a Pyomo Suffix to pass the time-varying inputs to the Simulator
>>> m.var_input = Suffix(direction=Suffix.LOCAL)
>>> m.var_input[m.b] = b_profile
>>> m.var_input[m.c] = c_profile

Simulate the model using scipy
>>> sim = Simulator(m, package='scipy')
>>> tsim, profiles = sim.simulate(numpoints=100,
... integrator='vode',
... varying_inputs=m.var_input)

120 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Note: The Simulator does not support multi-indexed inputs (i.e. if m.b in the above example was indexed by another
set besides m.t)

9.2.6 Dynamic Model Initialization

Providing a good initial guess is an important factor in solving dynamic optimization problems. There are several
model initialization tools under development in pyomo.DAE to help users initialize their models. These tools will be
documented here as they become available.

From Simulation

The Simulator includes a function for initializing discretized dynamic optimization models using the profiles returned
from the simulator. An example using this function is shown below

Simulate the model using scipy
>>> sim = Simulator(m, package='scipy')
>>> tsim, profiles = sim.simulate(numpoints=100, integrator='vode',
... varying_inputs=m.var_input)

Discretize the model using Orthogonal Collocation
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(m, nfe=10, ncp=3)

Initialize the discretized model using the simulator profiles
>>> sim.initialize_model()

Note: A model must be simulated before it can be initialized using this function

9.3 Generalized Disjunctive Programming

The Pyomo.GDP modeling extension1 provides support for Generalized Disjunctive Programming (GDP)2, an exten-
sion of Disjunctive Programming3 from the operations research community to include nonlinear relationships. The

1 Chen, Q., Johnson, E. S., Bernal, D. E., Valentin, R., Kale, S., Bates, J., Siirola, J. D. and Grossmann, I. E. (2021). Pyomo.GDP: an ecosystem
for logic based modeling and optimization development, Optimization and Engineering (pp. 1-36).https://doi.org/10.1007/s11081-021-09601-7

2 Raman, R., & Grossmann, I. E. (1994). Modelling and computational techniques for logic based integer programming. Computers & Chemical
Engineering, 18(7), 563–578. https://doi.org/10.1016/0098-1354(93)E0010-7

3 Balas, E. (1985). Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems. SIAM Journal on Algebraic
Discrete Methods, 6(3), 466–486. https://doi.org/10.1137/0606047

9.3. Generalized Disjunctive Programming 121

https://doi.org/10.1016/0098-1354(93)E0010-7
https://doi.org/10.1137/0606047

Pyomo Documentation, Release 6.5.0

classic form for a GDP is given by:

min 𝑜𝑏𝑗 = 𝑓(𝑥, 𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 ≤ 𝑑

𝑔(𝑥, 𝑧) ≤ 0

⋁︁
𝑖∈𝐷𝑘

⎡⎢⎣ 𝑌𝑖𝑘

𝑀𝑖𝑘𝑥 + 𝑁𝑖𝑘𝑧 ≤ 𝑒𝑖𝑘

𝑟𝑖𝑘(𝑥, 𝑧) ≤ 0

⎤⎥⎦ 𝑘 ∈ 𝐾

Ω(𝑌) = 𝑇𝑟𝑢𝑒

𝑥 ∈ 𝑋 ⊆ R𝑛

𝑌 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}𝑝

𝑧 ∈ 𝑍 ⊆ Z𝑚

Here, we have the minimization of an objective 𝑜𝑏𝑗 subject to global linear constraints 𝐴𝑥 + 𝐵𝑧 ≤ 𝑑 and nonlinear
constraints 𝑔(𝑥, 𝑧) ≤ 0, with conditional linear constraints𝑀𝑖𝑘𝑥+𝑁𝑖𝑘𝑧 ≤ 𝑒𝑖𝑘 and nonlinear constraints 𝑟𝑖𝑘(𝑥, 𝑧) ≤ 0.
These conditional constraints are collected into disjuncts 𝐷𝑘, organized into disjunctions 𝐾. Finally, there are logical
propositions Ω(𝑌) = 𝑇𝑟𝑢𝑒. Decision/state variables can be continuous 𝑥, Boolean 𝑌 , and/or integer 𝑧.

GDP is useful to model discrete decisions that have implications on the system behavior4. For example, in process
design, a disjunction may model the choice between processes A and B. If A is selected, then its associated equations
and inequalities will apply; otherwise, if B is selected, then its respective constraints should be enforced.

Modelers often ask to model if-then-else relationships. These can be expressed as a disjunction as follows:⎡⎢⎣ 𝑌1

constraints
for then

⎤⎥⎦ ∨

⎡⎢⎣ 𝑌2

constraints
for else

⎤⎥⎦
𝑌1 Y 𝑌2

Here, if the Boolean 𝑌1 is True, then the constraints in the first disjunct are enforced; otherwise, the constraints in the
second disjunct are enforced. The following sections describe the key concepts, modeling, and solution approaches
available for Generalized Disjunctive Programming.

4 Grossmann, I. E., & Trespalacios, F. (2013). Systematic modeling of discrete-continuous optimization models through generalized disjunctive
programming. AIChE Journal, 59(9), 3276–3295. https://doi.org/10.1002/aic.14088

122 Chapter 9. Modeling Extensions

https://doi.org/10.1002/aic.14088

Pyomo Documentation, Release 6.5.0

9.3.1 Key Concepts

Generalized Disjunctive Programming (GDP) provides a way to bridge high-level propositional logic and algebraic
constraints. The GDP standard form from the index page is repeated below.

min 𝑜𝑏𝑗 = 𝑓(𝑥, 𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 ≤ 𝑑

𝑔(𝑥, 𝑧) ≤ 0

⋁︁
𝑖∈𝐷𝑘

⎡⎢⎣ 𝑌𝑖𝑘

𝑀𝑖𝑘𝑥 + 𝑁𝑖𝑘𝑧 ≤ 𝑒𝑖𝑘

𝑟𝑖𝑘(𝑥, 𝑧) ≤ 0

⎤⎥⎦ 𝑘 ∈ 𝐾

Ω(𝑌) = 𝑇𝑟𝑢𝑒

𝑥 ∈ 𝑋 ⊆ R𝑛

𝑌 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}𝑝

𝑧 ∈ 𝑍 ⊆ Z𝑚

Original support in Pyomo.GDP focused on the disjuncts and disjunctions, allowing the modelers to group relational
expressions in disjuncts, with disjunctions describing logical-OR relationships between the groupings. As a result,
we implemented the Disjunct and Disjunction objects before BooleanVar and the rest of the logical expression
system. Accordingly, we also describe the disjuncts and disjunctions first below.

Disjuncts

Disjuncts represent groupings of relational expressions (e.g. algebraic constraints) summarized by a Boolean indicator
variable 𝑌 through implication:

𝑌𝑖𝑘 ⇒ 𝑀𝑖𝑘𝑥 + 𝑁𝑖𝑘𝑧 ≤ 𝑒𝑖𝑘

𝑌𝑖𝑘 ⇒ 𝑟𝑖𝑘(𝑥, 𝑧) ≤ 0
∀𝑖 ∈ 𝐷𝑘,∀𝑘 ∈ 𝐾

Logically, this means that if 𝑌𝑖𝑘 = 𝑇𝑟𝑢𝑒, then the constraints 𝑀𝑖𝑘𝑥+𝑁𝑖𝑘𝑧 ≤ 𝑒𝑖𝑘 and 𝑟𝑖𝑘(𝑥, 𝑧) ≤ 0 must be satisfied.
However, if 𝑌𝑖𝑘 = 𝐹𝑎𝑙𝑠𝑒, then the corresponding constraints are ignored. Note that 𝑌𝑖𝑘 = 𝐹𝑎𝑙𝑠𝑒 does not imply that
the corresponding constraints are violated.

Disjunctions

Disjunctions describe a logical OR relationship between two or more Disjuncts. The simplest and most common case
is a 2-term disjunction: ⎡⎢⎣ 𝑌1

exp(𝑥2) − 1 = 𝑥1

𝑥3 = 𝑥4 = 0

⎤⎥⎦⋁︁⎡⎢⎢⎣
𝑌2

exp
(︁ 𝑥4

1.2

)︁
− 1 = 𝑥3

𝑥1 = 𝑥2 = 0

⎤⎥⎥⎦
The disjunction above describes the selection between two units in a process network. 𝑌1 and 𝑌2 are the Boolean
variables corresponding to the selection of process units 1 and 2, respectively. The continuous variables 𝑥1, 𝑥2, 𝑥3, 𝑥4

describe flow in and out of the first and second units, respectively. If a unit is selected, the nonlinear equality in the
corresponding disjunct enforces the input/output relationship in the selected unit. The final equality in each disjunct
forces flows for the absent unit to zero.

9.3. Generalized Disjunctive Programming 123

Pyomo Documentation, Release 6.5.0

Boolean Variables

Boolean variables are decision variables that may take a value of True or False. These are most often encountered
as the indicator variables of disjuncts. However, they can also be independently defined to represent other problem
decisions.

Note: Boolean variables are not intended to participate in algebraic expressions. That is, 3 × True does not make
sense; hence, 𝑥 = 3𝑌1 does not make sense. Instead, you may have the disjunction[︃

𝑌1

𝑥 = 3

]︃⋁︁[︃
¬𝑌1

𝑥 = 0

]︃

Logical Propositions

Logical propositions are constraints describing relationships between the Boolean variables in the model.

These logical propositions can include:

124 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Operator Example 𝑌1 𝑌2 Result
Negation ¬𝑌1

True

False

False

True

Equivalence 𝑌1 ⇔ 𝑌2

True

True

False

False

True

False

True

False

True

False

False

True

Conjunction 𝑌1 ∧ 𝑌2

True

True

False

False

True

False

True

False

True

False

False

False

Disjunction 𝑌1 ∨ 𝑌2

True

True

False

False

True

False

True

False

True

True

True

False

Exclusive OR 𝑌1 Y 𝑌2

True

True

False

False

True

False

True

False

False

True

True

False

Implication 𝑌1 ⇒ 𝑌2

True

True

False

False

True

False

True

False

True

False

True

True

9.3. Generalized Disjunctive Programming 125

Pyomo Documentation, Release 6.5.0

9.3.2 Modeling in Pyomo.GDP

Disjunctions

To demonstrate modeling with disjunctions in Pyomo.GDP, we revisit the small example from the previous page.⎡⎢⎣ 𝑌1

exp(𝑥2) − 1 = 𝑥1

𝑥3 = 𝑥4 = 0

⎤⎥⎦⋁︁⎡⎢⎢⎣
𝑌2

exp
(︁ 𝑥4

1.2

)︁
− 1 = 𝑥3

𝑥1 = 𝑥2 = 0

⎤⎥⎥⎦

Explicit syntax: more descriptive

Pyomo.GDP explicit syntax (see below) provides more clarity in the declaration of each modeling object, and gives
the user explicit control over the Disjunct names. Assuming the ConcreteModel object m and variables have been
defined, lines 1 and 5 declare the Disjunct objects corresponding to selection of unit 1 and 2, respectively. Lines 2
and 6 define the input-output relations for each unit, and lines 3-4 and 7-8 enforce zero flow through the unit that is not
selected. Finally, line 9 declares the logical disjunction between the two disjunctive terms.

1 m.unit1 = Disjunct()
2 m.unit1.inout = Constraint(expr=exp(m.x[2]) - 1 == m.x[1])
3 m.unit1.no_unit2_flow1 = Constraint(expr=m.x[3] == 0)
4 m.unit1.no_unit2_flow2 = Constraint(expr=m.x[4] == 0)
5 m.unit2 = Disjunct()
6 m.unit2.inout = Constraint(expr=exp(m.x[4] / 1.2) - 1 == m.x[3])
7 m.unit2.no_unit1_flow1 = Constraint(expr=m.x[1] == 0)
8 m.unit2.no_unit1_flow2 = Constraint(expr=m.x[2] == 0)
9 m.use_unit1or2 = Disjunction(expr=[m.unit1, m.unit2])

The indicator variables for each disjunct 𝑌1 and 𝑌2 are automatically generated by Pyomo.GDP, accessible via m.
unit1.indicator_var and m.unit2.indicator_var.

Compact syntax: more concise

For more advanced users, a compact syntax is also available below, taking advantage of the ability to declare disjuncts
and constraints implicitly. When the Disjunction object constructor is passed a list of lists, the outer list defines the
disjuncts and the inner list defines the constraint expressions associated with the respective disjunct.

1 m.use1or2 = Disjunction(expr=[
2 # First disjunct
3 [exp(m.x[2])-1 == m.x[1],
4 m.x[3] == 0, m.x[4] == 0],
5 # Second disjunct
6 [exp(m.x[4]/1.2)-1 == m.x[3],
7 m.x[1] == 0, m.x[2] == 0]])

Note: By default, Pyomo.GDP Disjunction objects enforce an implicit “exactly one” relationship among the selec-
tion of the disjuncts (generalization of exclusive-OR). That is, exactly one of the Disjunct indicator variables should
take a True value. This can be seen as an implicit logical proposition, in our example, 𝑌1 Y 𝑌2.

126 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Logical Propositions

Pyomo.GDP also supports the use of logical propositions through the use of the BooleanVar and
LogicalConstraint objects. The BooleanVar object in Pyomo represents Boolean variables, analogous to
Var for numeric variables. BooleanVar can be indexed over a Pyomo Set, as below:

>>> m = ConcreteModel()
>>> m.my_set = RangeSet(4)
>>> m.Y = BooleanVar(m.my_set)
>>> m.Y.display()
Y : Size=4, Index=my_set

Key : Value : Fixed : Stale
1 : None : False : True
2 : None : False : True
3 : None : False : True
4 : None : False : True

Using these Boolean variables, we can define LogicalConstraint objects, analogous to algebraic Constraint ob-
jects.

>>> m.p = LogicalConstraint(expr=m.Y[1].implies(land(m.Y[2], m.Y[3])).lor(m.Y[4]))
>>> m.p.pprint()
p : Size=1, Index=None, Active=True

Key : Body : Active
None : (Y[1] --> Y[2] Y[3]) Y[4] : True

Supported Logical Operators

Pyomo.GDP logical expression system supported operators and their usage are listed in the table below.

Operator Operator Method Function
Conjunction Y[1].land(Y[2]) land(Y[1],Y[2])
Disjunction Y[1].lor(Y[2]) lor(Y[1],Y[2])
Negation ~Y[1] lnot(Y[1])
Exclusive OR Y[1].xor(Y[2]) xor(Y[1], Y[2])
Implication Y[1].implies(Y[2]) implies(Y[1], Y[2])
Equivalence Y[1].equivalent_to(Y[2]) equivalent(Y[1], Y[2])

Note: We omit support for most infix operators, e.g. Y[1] >> Y[2], due to concerns about non-intuitive Python
operator precedence. That is Y[1] | Y[2] >> Y[3] would translate to 𝑌1 ∨ (𝑌2 ⇒ 𝑌3) rather than (𝑌1 ∨ 𝑌2) ⇒ 𝑌3

In addition, the following constraint-programming-inspired operators are provided: exactly, atmost, and atleast.
These predicates enforce, respectively, that exactly, at most, or at least N of their BooleanVar arguments are True.

Usage:

• atleast(3, Y[1], Y[2], Y[3])

• atmost(3, Y)

• exactly(3, Y)

9.3. Generalized Disjunctive Programming 127

Pyomo Documentation, Release 6.5.0

>>> m = ConcreteModel()
>>> m.my_set = RangeSet(4)
>>> m.Y = BooleanVar(m.my_set)
>>> m.p = LogicalConstraint(expr=atleast(3, m.Y))
>>> m.p.pprint()
p : Size=1, Index=None, Active=True

Key : Body : Active
None : atleast(3: [Y[1], Y[2], Y[3], Y[4]]) : True

>>> TransformationFactory('core.logical_to_linear').apply_to(m)
>>> # constraint auto-generated by transformation
>>> m.logic_to_linear.transformed_constraints.pprint()
transformed_constraints : Size=1, Index=logic_to_linear.transformed_constraints_index,␣
→˓Active=True

Key : Lower : Body : Upper␣
→˓: Active

1 : 3.0 : Y_asbinary[1] + Y_asbinary[2] + Y_asbinary[3] + Y_asbinary[4] : +Inf␣
→˓: True

We elaborate on the logical_to_linear transformation on the next page.

Indexed logical constraints

Like Constraint objects for algebraic expressions, LogicalConstraint objects can be indexed. An example of this
usage may be found below for the expression:

𝑌𝑖+1 ⇒ 𝑌𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛− 1}

>>> m = ConcreteModel()
>>> n = 5
>>> m.I = RangeSet(n)
>>> m.Y = BooleanVar(m.I)

>>> @m.LogicalConstraint(m.I)
... def p(m, i):
... return m.Y[i+1].implies(m.Y[i]) if i < n else Constraint.Skip

>>> m.p.pprint()
p : Size=4, Index=I, Active=True

Key : Body : Active
1 : Y[2] --> Y[1] : True
2 : Y[3] --> Y[2] : True
3 : Y[4] --> Y[3] : True
4 : Y[5] --> Y[4] : True

128 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Integration with Disjunctions

Note: Historically, the indicator_var on Disjunct objects was implemented as a binary Var. Beginning in
Pyomo 6.0, that has been changed to the more mathematically correct BooleanVar, with the associated binary variable
available as binary_indicator_var.

The logical expression system is designed to augment the previously introduced Disjunct and Disjunction compo-
nents. Mathematically, the disjunct indicator variable is Boolean, and can be used directly in logical propositions.

Here, we demonstrate this capability with a toy example:

min 𝑥

s.t.

[︃
𝑌1

𝑥 ≥ 2

]︃
∨

[︃
𝑌2

𝑥 ≥ 3

]︃
[︃

𝑌3

𝑥 ≤ 8

]︃
∨

[︃
𝑌4

𝑥 = 2.5

]︃
𝑌1 Y 𝑌2

𝑌3 Y 𝑌4

𝑌1 ⇒ 𝑌4

>>> m = ConcreteModel()
>>> m.s = RangeSet(4)
>>> m.ds = RangeSet(2)
>>> m.d = Disjunct(m.s)
>>> m.djn = Disjunction(m.ds)
>>> m.djn[1] = [m.d[1], m.d[2]]
>>> m.djn[2] = [m.d[3], m.d[4]]
>>> m.x = Var(bounds=(-2, 10))
>>> m.d[1].c = Constraint(expr=m.x >= 2)
>>> m.d[2].c = Constraint(expr=m.x >= 3)
>>> m.d[3].c = Constraint(expr=m.x <= 8)
>>> m.d[4].c = Constraint(expr=m.x == 2.5)
>>> m.o = Objective(expr=m.x)

>>> # Add the logical proposition
>>> m.p = LogicalConstraint(
... expr=m.d[1].indicator_var.implies(m.d[4].indicator_var))
>>> # Note: the implicit XOR enforced by m.djn[1] and m.djn[2] still apply

>>> # Apply the Big-M reformulation: It will convert the logical
>>> # propositions to algebraic expressions.
>>> TransformationFactory('gdp.bigm').apply_to(m)

>>> # Before solve, Boolean vars have no value
>>> Reference(m.d[:].indicator_var).display()
IndexedBooleanVar : Size=4, Index=s, ReferenceTo=d[:].indicator_var

Key : Value : Fixed : Stale
1 : None : False : True
2 : None : False : True

(continues on next page)

9.3. Generalized Disjunctive Programming 129

Pyomo Documentation, Release 6.5.0

(continued from previous page)

3 : None : False : True
4 : None : False : True

>>> # Solve the reformulated model
>>> run_data = SolverFactory('glpk').solve(m)
>>> Reference(m.d[:].indicator_var).display()
IndexedBooleanVar : Size=4, Index=s, ReferenceTo=d[:].indicator_var

Key : Value : Fixed : Stale
1 : True : False : False
2 : False : False : False
3 : False : False : False
4 : True : False : False

Advanced LogicalConstraint Examples

Support for complex nested expressions is a key benefit of the logical expression system. Below are examples of
expressions that we support, and with some, an explanation of their implementation.

Composition of standard operators

𝑌1 ∨ 𝑌2 =⇒ 𝑌3 ∧ ¬𝑌4 ∧ (𝑌5 ∨ 𝑌6)

m.p = LogicalConstraint(expr=lor(m.Y[1], m.Y[2]).implies(
land(m.Y[3], ~m.Y[4], m.Y[5].lor(m.Y[6])))

)

Expressions within CP-type operators

atleast(3, 𝑌1, 𝑌2 ∨ 𝑌3, 𝑌4 ⇒ 𝑌5, 𝑌6)

Here, augmented variables may be automatically added to the model as follows:

atleast(3,𝑌1, 𝑌𝐴, 𝑌𝐵 , 𝑌6)

𝑌𝐴 ⇔ 𝑌2 ∨ 𝑌3

𝑌𝐵 ⇔ (𝑌4 ⇒ 𝑌5)

m.p = LogicalConstraint(
expr=atleast(3, m.Y[1], Or(m.Y[2], m.Y[3]), m.Y[4].implies(m.Y[5]), m.Y[6]))

130 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Nested CP-style operators

atleast(2, 𝑌1, exactly(2, 𝑌2, 𝑌3, 𝑌4), 𝑌5, 𝑌6)

Here, we again need to add augmented variables:

atleast(2, 𝑌1, 𝑌𝐴, 𝑌5, 𝑌6)

𝑌𝐴 ⇔ exactly(2, 𝑌2, 𝑌3, 𝑌4)

However, we also need to further interpret the second statement as a disjunction:

atleast(2, 𝑌1, 𝑌𝐴, 𝑌5, 𝑌6)[︃
𝑌𝐴

exactly(2, 𝑌2, 𝑌3, 𝑌4)

]︃
∨

⎡⎢⎣ ¬𝑌𝐴[︃
𝑌𝐵

atleast(3, 𝑌2, 𝑌3, 𝑌4)

]︃
∨

[︃
𝑌𝐶

atmost(1, 𝑌2, 𝑌3, 𝑌4)

]︃⎤⎥⎦
or equivalently,

atleast(2, 𝑌1, 𝑌𝐴, 𝑌5, 𝑌6)

exactly(1, 𝑌𝐴, 𝑌𝐵 , 𝑌𝐶)[︃
𝑌𝐴

exactly(2, 𝑌2, 𝑌3, 𝑌4)

]︃
∨

[︃
𝑌𝐵

atleast(3, 𝑌2, 𝑌3, 𝑌4)

]︃
∨

[︃
𝑌𝐶

atmost(1, 𝑌2, 𝑌3, 𝑌4)

]︃

m.p = LogicalConstraint(
expr=atleast(2, m.Y[1], exactly(2, m.Y[2], m.Y[3], m.Y[4]), m.Y[5], m.Y[6]))

In the logical_to_linear transformation, we automatically convert these special disjunctions to linear form using
a Big M reformulation.

Additional Examples

The following models all work and are equivalent for [𝑥 = 0] Y [𝑦 = 0]:

Option 1: Rule-based construction

>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> # Two conditions
>>> def _d(disjunct, flag):
... model = disjunct.model()
... if flag:
... # x == 0
... disjunct.c = Constraint(expr=model.x == 0)
... else:

(continues on next page)

9.3. Generalized Disjunctive Programming 131

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... # y == 0

... disjunct.c = Constraint(expr=model.y == 0)
>>> model.d = Disjunct([0,1], rule=_d)

>>> # Define the disjunction
>>> def _c(model):
... return [model.d[0], model.d[1]]
>>> model.c = Disjunction(rule=_c)

Option 2: Explicit disjuncts

>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> model.fix_x = Disjunct()
>>> model.fix_x.c = Constraint(expr=model.x == 0)

>>> model.fix_y = Disjunct()
>>> model.fix_y.c = Constraint(expr=model.y == 0)

>>> model.c = Disjunction(expr=[model.fix_x, model.fix_y])

Option 3: Implicit disjuncts (disjunction rule returns a list of
expressions or a list of lists of expressions)

>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> model.c = Disjunction(expr=[model.x == 0, model.y == 0])

9.3.3 Solving Logic-based Models with Pyomo.GDP

Flexible Solution Suite

Once a model is formulated as a GDP model, a range of solution strategies are available to manipulate and solve it.

The traditional approach is reformulation to a MI(N)LP, but various other techniques are possible, including direct
solution via the GDPopt solver. Below, we describe some of these capabilities.

132 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Reformulations

Logical constraints

Note: Historically users needed to explicitly convert logical propositions to algebraic form prior to invoking the GDP
MI(N)LP reformulations or the GDPopt solver. However, this is mathematically incorrect since the GDP MI(N)LP
reformulations themselves convert logical formulations to algebraic formulations. The current recommended practice
is to pass the entire (mixed logical / algebraic) model to the MI(N)LP reformulations or GDPopt directly.

There are several approaches to convert logical constraints into algebraic form.

Conjunctive Normal Form

The first transformation (core.logical_to_linear) leverages the sympy package to generate the conjunctive normal form
of the logical constraints and then adds the equivalent as a list algebraic constraints. The following transforms logical
propositions on the model to algebraic form:

TransformationFactory('core.logical_to_linear').apply_to(model)

The transformation creates a constraint list with a unique name starting with logic_to_linear, within which the
algebraic equivalents of the logical constraints are placed. If not already associated with a binary variable, each
BooleanVar object will receive a generated binary counterpart. These associated binary variables may be accessed
via the get_associated_binary() method.

m.Y[1].get_associated_binary()

Additional augmented variables and their corresponding constraints may also be created, as described in Advanced
LogicalConstraint Examples.

Following solution of the GDP model, values of the Boolean variables may be updated from their algebraic binary
counterparts using the update_boolean_vars_from_binary() function.

pyomo.core.plugins.transform.logical_to_linear.update_boolean_vars_from_binary(model,
integer_tolerance=1e-
05)

Updates all Boolean variables based on the value of their linked binary variables.

Factorable Programming

The second transformation (contrib.logical_to_disjunctive) leverages ideas from factorable programming to first gen-
erate an equivalent set of “factored” logical constraints form by traversing each logical proposition and replacing each
logical operator with an additional Boolean variable and then adding the “simple” logical constraint that equates the
new Boolean variable with the single logical operator.

The resulting “simple” logical constraints are converted to either MIP or GDP form: if the constraint contains only
Boolean variables, then then MIP representation is emitted. Logical constraints with mixed integer-Boolean arguments
(e.g., atmost, atleast, exactly, etc.) are converted to a disjunctive representation.

As this transformation both avoids the conversion into sympy and only requires a single traversal of each logical con-
straint, contrib.logical_to_disjunctive is significantly faster than core.logical_to_linear at the cost of a larger model.
In practice, the cost of the larger model is negated by the effectiveness of the MIP presolve in most solvers.

9.3. Generalized Disjunctive Programming 133

Pyomo Documentation, Release 6.5.0

Reformulation to MI(N)LP

To use standard commercial solvers, you must convert the disjunctive model to a standard MILP/MINLP model. The
two classical strategies for doing so are the (included) Big-M and Hull reformulations.

Big-M (BM) Reformulation

The Big-M reformulation5 results in a smaller transformed model, avoiding the need to add extra variables; however,
it yields a looser continuous relaxation. By default, the BM transformation will estimate reasonably tight M values
for you if variables are bounded. For nonlinear models where finite expression bounds may be inferred from variable
bounds, the BM transformation may also be able to automatically compute M values for you. For all other models, you
will need to provide the M values through a “BigM” Suffix, or through the bigM argument to the transformation. We
will raise a GDP_Error for missing M values.

To apply the BM reformulation within a python script, use:

TransformationFactory('gdp.bigm').apply_to(model)

From the Pyomo command line, include the --transform pyomo.gdp.bigm option.

Multiple Big-M (MBM) Reformulation

We also implement the multiple-parameter Big-M (MBM) approach described in literature4. By default, the MBM
transformation will solve continuous subproblems in order to calculate M values. This process can be time-consuming,
so the transformation also provides a method to export the M values used as a dictionary and allows for M values to be
provided through the bigM argument.

For example, to apply the transformation and store the M values, use:

mbigm = TransformationFactory('gdp.mbigm')
mbigm.apply_to(model)

These can be stored...
M_values = mbigm.get_all_M_values(model)
...so that in future runs, you can write:
mbigm.apply_to(m, bigM=M_values)

From the Pyomo command line, include the --transform pyomo.gdp.mbigm option.

Hull Reformulation (HR)

The Hull Reformulation requires a lifting into a higher-dimensional space and consequently introduces disaggregated
variables and their corresponding constraints.

Note:
• All variables that appear in disjuncts need upper and lower bounds.

• The hull reformulation is an exact reformulation at the solution points even for nonconvex GDP models, but the
resulting MINLP will also be nonconvex.

5 Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.
4 Trespalacios, F., & Grossmann, I. E. (2015). Improved Big-M reformulation for generalized disjunctive programs. Computers and Chemical

Engineering, 76, 98–103. https://doi.org/10.1016/j.compchemeng.2015.02.013

134 Chapter 9. Modeling Extensions

https://doi.org/10.1016/j.compchemeng.2015.02.013

Pyomo Documentation, Release 6.5.0

To apply the Hull reformulation within a python script, use:

TransformationFactory('gdp.hull').apply_to(model)

From the Pyomo command line, include the --transform pyomo.gdp.hull option.

Hybrid BM/HR Reformulation

An experimental (for now) implementation of the cutting plane approach described in literature6 is provided for linear
GDP models. The transformation augments the BM reformulation by a set of cutting planes generated from the HR
model by solving separation problems. This gives a model that is not as large as the HR, but with a stronger continuous
relaxation than the BM.

This transformation is accessible via:

TransformationFactory('gdp.cuttingplane').apply_to(model)

Direct GDP solvers

Pyomo includes the contributed GDPopt solver, which can directly solve GDP models. Its usage is described within
the contributed packages documentation.

References

9.3.4 Literature References

9.4 MPEC

pyomo.mpec supports modeling complementarity conditions and optimization problems with equilibrium constraints.

9.5 Stochastic Programming in Pyomo

There are two extensions for modeling and solving Stochastic Programs in Pyomo. Both are currently distributed as
independent Python packages. PySP was the original extension (and up through Pyomo 5.7.3 was distributed as part
of Pyomo). You can find the documentation here:

https://pysp.readthedocs.io

In 2020, the PySP developers released the mpi-sppy package, which reimplemented much of the functionality from
PySP in a new scalable framework built on top of MPI and the mpi4py package. Future development of stochastic
programming capabilities is occurring in mpi-sppy. The documentation is available here:

https://mpi-sppy.readthedocs.io
6 Sawaya, N. W., & Grossmann, I. E. (2003). A cutting plane method for solving linear generalized disjunctive programming problems. Computer

Aided Chemical Engineering, 15(C), 1032–1037. https://doi.org/10.1016/S1570-7946(03)80444-3

9.4. MPEC 135

https://pysp.readthedocs.io
https://mpi-sppy.readthedocs.io
https://doi.org/10.1016/S1570-7946(03)80444-3

Pyomo Documentation, Release 6.5.0

9.6 Pyomo Network

Pyomo Network is a package that allows users to easily represent their model as a connected network of units. Units
are blocks that contain ports, which contain variables, that are connected to other ports via arcs. The connection of
two ports to each other via an arc typically represents a set of constraints equating each member of each port to each
other, however there exist other connection rules as well, in addition to support for custom rules. Pyomo Network also
includes a model transformation that will automatically expand the arcs and generate the appropriate constraints to
produce an algebraic model that a solver can handle. Furthermore, the package also introduces a generic sequential
decomposition tool that can leverage the modeling components to decompose a model and compute each unit in the
model in a logically ordered sequence.

9.6.1 Modeling Components

Pyomo Network introduces two new modeling components to Pyomo:

pyomo.network.Port A collection of variables, which may be connected to
other ports

pyomo.network.Arc Component used for connecting the members of two Port
objects

Port

class pyomo.network.Port(*args, **kwds)
A collection of variables, which may be connected to other ports

The idea behind Ports is to create a bundle of variables that can be manipulated together by connecting them to
other ports via Arcs. A preprocess transformation will look for Arcs and expand them into a series of constraints
that involve the original variables contained within the Port. The way these constraints are built can be specified
for each Port member when adding members to the port, but by default the Port members will be equated to
each other. Additionally, other objects such as expressions can be added to Ports as long as they, or their indexed
members, can be manipulated within constraint expressions.

Parameters
• rule (function) – A function that returns a dict of (name: var) pairs to be initially added to

the Port. Instead of var it could also be a tuples of (var, rule). Or it could return an iterable
of either vars or tuples of (var, rule) for implied names.

• initialize – Follows same specifications as rule’s return value, gets initially added to the
Port

• implicit – An iterable of names to be initially added to the Port as implicit vars

• extends (Port) – A Port whose vars will be added to this Port upon construction

static Equality(port, name, index_set)
Arc Expansion procedure to generate simple equality constraints

static Extensive(port, name, index_set, include_splitfrac=None, write_var_sum=True)
Arc Expansion procedure for extensive variable properties

This procedure is the rule to use when variable quantities should be conserved; that is, split for outlets and
combined for inlets.

This will first go through every destination of the port (i.e., arcs whose source is this Port) and create a new
variable on the arc’s expanded block of the same index as the current variable being processed to store the

136 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

amount of the variable that flows over the arc. For ports that have multiple outgoing arcs, this procedure
will create a single splitfrac variable on the arc’s expanded block as well. Then it will generate constraints
for the new variable that relate it to the port member variable using the split fraction, ensuring that all
extensive variables in the Port are split using the same ratio. The generation of the split fraction variable
and constraint can be suppressed by setting the include_splitfrac argument to False.

Once all arc-specific variables are created, this procedure will create the “balancing constraint” that ensures
that the sum of all the new variables equals the original port member variable. This constraint can be
suppressed by setting the write_var_sum argument to False; in which case, a single constraint will be
written that states the sum of the split fractions equals 1.

Finally, this procedure will go through every source for this port and create a new arc variable (unless it
already exists), before generating the balancing constraint that ensures the sum of all the incoming new arc
variables equals the original port variable.

Model simplifications:

If the port has a 1-to-1 connection on either side, it will not create the new variables and instead
write a simple equality constraint for that side.

If the outlet side is not 1-to-1 but there is only one outlet, it will not create a splitfrac variable
or write the split constraint, but it will still write the outsum constraint which will be a simple
equality.

If the port only contains a single Extensive variable, the splitfrac variables and the splitting con-
straints will be skipped since they will be unnecessary. However, they can be still be included by
passing include_splitfrac=True.

Note: If split fractions are skipped, the write_var_sum=False option is not allowed.

class pyomo.network.port._PortData(component=None)
This class defines the data for a single Port

vars

A dictionary mapping added names to variables

Type
dict

__getattr__(name)
Returns self.vars[name] if it exists

add(var, name=None, rule=None, **kwds)
Add var to this Port, casting it to a Pyomo numeric if necessary

Parameters
• var – A variable or some NumericValue like an expression

• name (str) – Name to associate with this member of the Port

• rule (function) – Function implementing the desired expansion procedure for this member.
Port.Equality by default, other options include Port.Extensive. Customs are allowed.

• kwds – Keyword arguments that will be passed to rule

arcs(active=None)
A list of Arcs in which this Port is a member

9.6. Pyomo Network 137

Pyomo Documentation, Release 6.5.0

dests(active=None)
A list of Arcs in which this Port is a source

fix()

Fix all variables in the port at their current values. For expressions, fix every variable in the expression.

free()

Unfix all variables in the port. For expressions, unfix every variable in the expression.

get_split_fraction(arc)
Returns a tuple (val, fix) for the split fraction of this arc that was set via set_split_fraction if it exists, and
otherwise None.

is_binary()

Return True if all variables in the Port are binary

is_continuous()

Return True if all variables in the Port are continuous

is_equality(name)
Return True if the rule for this port member is Port.Equality

is_extensive(name)
Return True if the rule for this port member is Port.Extensive

is_fixed()

Return True if all vars/expressions in the Port are fixed

is_integer()

Return True if all variables in the Port are integer

is_potentially_variable()

Return True as ports may (should!) contain variables

iter_vars(expr_vars=False, fixed=None, names=False)
Iterate through every member of the port, going through the indices of indexed members.

Parameters
• expr_vars (bool) – If True, call identify_variables on expression type members

• fixed (bool) – Only include variables/expressions with this type of fixed

• names (bool) – If True, yield (name, index, var/expr) tuples

polynomial_degree()

Returns the maximum polynomial degree of all port members

remove(name)
Remove this member from the port

rule_for(name)
Return the rule associated with the given port member

set_split_fraction(arc, val, fix=True)
Set the split fraction value to be used for an arc during arc expansion when using Port.Extensive.

sources(active=None)
A list of Arcs in which this Port is a destination

138 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

unfix()

Unfix all variables in the port. For expressions, unfix every variable in the expression.

The following code snippet shows examples of declaring and using a Port component on a concrete Pyomo model:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b']) # can be indexed
>>> m.z = Var()
>>> m.e = 5 * m.z # you can add Pyomo expressions too
>>> m.w = Var()

>>> m.p = Port()
>>> m.p.add(m.x) # implicitly name the port member "x"
>>> m.p.add(m.y, "foo") # name the member "foo"
>>> m.p.add(m.e, rule=Port.Extensive) # specify a rule
>>> m.p.add(m.w, rule=Port.Extensive, write_var_sum=False) # keyword arg

Arc

class pyomo.network.Arc(*args, **kwds)
Component used for connecting the members of two Port objects

Parameters
• source (Port) – A single Port for a directed arc. Aliases to src.

• destination (Port) – A single`Port for a directed arc. Aliases to dest.

• ports – A two-member list or tuple of single Ports for an undirected arc

• directed (bool) – Set True for directed. Use along with rule to be able to return an implied
(source, destination) tuple.

• rule (function) – A function that returns either a dictionary of the arc arguments or a two-
member iterable of ports

class pyomo.network.arc._ArcData(component=None, **kwds)
This class defines the data for a single Arc

source

The source Port when directed, else None. Aliases to src.

Type
Port

destination

The destination Port when directed, else None. Aliases to dest.

Type
Port

ports

A tuple containing both ports. If directed, this is in the order (source, destination).

Type
tuple

9.6. Pyomo Network 139

Pyomo Documentation, Release 6.5.0

directed

True if directed, False if not

Type
bool

expanded_block

A reference to the block on which expanded constraints for this arc were placed

Type
Block

__getattr__(name)
Returns self.expanded_block.name if it exists

set_value(vals)
Set the port attributes on this arc

The following code snippet shows examples of declaring and using an Arc component on a concrete Pyomo model:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b'])
>>> m.u = Var()
>>> m.v = Var(['a', 'b'])
>>> m.w = Var()
>>> m.z = Var(['a', 'b']) # indexes need to match

>>> m.p = Port(initialize=[m.x, m.y])
>>> m.q = Port(initialize={"x": m.u, "y": m.v})
>>> m.r = Port(initialize={"x": m.w, "y": m.z}) # names need to match
>>> m.a = Arc(source=m.p, destination=m.q) # directed
>>> m.b = Arc(ports=(m.p, m.q)) # undirected
>>> m.c = Arc(ports=(m.p, m.q), directed=True) # directed
>>> m.d = Arc(src=m.p, dest=m.q) # aliases work
>>> m.e = Arc(source=m.r, dest=m.p) # ports can have both in and out

9.6.2 Arc Expansion Transformation

The examples above show how to declare and instantiate a Port and an Arc. These two components form the basis of
the higher level representation of a connected network with sets of related variable quantities. Once a network model
has been constructed, Pyomo Network implements a transformation that will expand all (active) arcs on the model and
automatically generate the appropriate constraints. The constraints created for each port member will be indexed by
the same indexing set as the port member itself.

During transformation, a new block is created on the model for each arc (located on the arc’s parent block), which serves
to contain all of the auto generated constraints for that arc. At the end of the transformation, a reference is created on
the arc that points to this new block, available via the arc property arc.expanded_block.

The constraints produced by this transformation depend on the rule assigned for each port member and can be different
between members on the same port. For example, you can have two different members on a port where one member’s
rule is Port.Equality and the other member’s rule is Port.Extensive.

Port.Equality is the default rule for port members. This rule simply generates equality constraints on the expanded
block between the source port’s member and the destination port’s member. Another implemented expansion method

140 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

is Port.Extensive, which essentially represents implied splitting and mixing of certain variable quantities. Users
can refer to the documentation of the static method itself for more details on how this implicit splitting and mixing is
implemented. Additionally, should users desire, the expansion API supports custom rules that can be implemented to
generate whatever is needed for special cases.

The following code demonstrates how to call the transformation to expand the arcs on a model:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b'])
>>> m.u = Var()
>>> m.v = Var(['a', 'b'])

>>> m.p = Port(initialize=[m.x, (m.y, Port.Extensive)]) # rules must match
>>> m.q = Port(initialize={"x": m.u, "y": (m.v, Port.Extensive)})
>>> m.a = Arc(source=m.p, destination=m.q)

>>> TransformationFactory("network.expand_arcs").apply_to(m)

9.6.3 Sequential Decomposition

Pyomo Network implements a generic SequentialDecomposition tool that can be used to compute each unit in a
network model in a logically ordered sequence.

The sequential decomposition procedure is commenced via the run method.

Creating a Graph

To begin this procedure, the Pyomo Network model is first utilized to create a networkx MultiDiGraph by adding
edges to the graph for every arc on the model, where the nodes of the graph are the parent blocks of the source and
destination ports. This is done via the create_graph method, which requires all arcs on the model to be both directed
and already expanded. The MultiDiGraph class of networkx supports both direccted edges as well as having multiple
edges between the same two nodes, so users can feel free to connect as many ports as desired between the same two
units.

Computation Order

The order of computation is then determined by treating the resulting graph as a tree, starting at the roots of the tree, and
making sure by the time each node is reached, all of its predecessors have already been computed. This is implemented
through the calculation_order and tree_order methods. Before this, however, the procedure will first select a
set of tear edges, if necessary, such that every loop in the graph is torn, while minimizing both the number of times any
single loop is torn as well as the total number of tears.

9.6. Pyomo Network 141

Pyomo Documentation, Release 6.5.0

Tear Selection

A set of tear edges can be selected in one of two ways. By default, a Pyomo MIP model is created and optimized
resulting in an optimal set of tear edges. The implementation of this MIP model is based on a set of binary “torn”
variables for every edge in the graph, and constraints on every loop in the graph that dictate that there must be at
least one tear on the loop. Then there are two objectives (represented by a doubly weighted objective). The primary
objective is to minimize the number of times any single loop is torn, and then secondary to that is to minimize the total
number of tears. This process is implemented in the select_tear_mip method, which uses the model returned from
the select_tear_mip_model method.

Alternatively, there is the select_tear_heuristic method. This uses a heuristic procedure that walks back and
forth on the graph to find every optimal tear set, and returns each equally optimal tear set it finds. This method is much
slower than the MIP method on larger models, but it maintains some use in the fact that it returns every possible optimal
tear set.

A custom tear set can be assigned before calling the run method. This is useful so users can know what their tear set
will be and thus what arcs will require guesses for uninitialized values. See the set_tear_set method for details.

Running the Sequential Decomposition Procedure

After all of this computational order preparation, the sequential decomposition procedure will then run through the
graph in the order it has determined. Thus, the function that was passed to the run method will be called on ev-
ery unit in sequence. This function can perform any arbitrary operations the user desires. The only thing that
SequentialDecomposition expects from the function is that after returning from it, every variable on every out-
going port of the unit will be specified (i.e. it will have a set current value). Furthermore, the procedure guarantees to
the user that for every unit, before the function is called, every variable on every incoming port of the unit will be fixed.

In between computing each of these units, port member values are passed across existing arcs involving the unit cur-
rently being computed. This means that after computing a unit, the expanded constraints from each arc coming out of
this unit will be satisfied, and the values on the respective destination ports will be fixed at these new values. While
running the computational order, values are not passed across tear edges, as tear edges represent locations in loops to
stop computations (during iterations). This process continues until all units in the network have been computed. This
concludes the “first pass run” of the network.

Guesses and Fixing Variables

When passing values across arcs while running the computational order, values at the destinations of each of these arcs
will be fixed at the appropriate values. This is important to the fact that the procedure guarantees every inlet variable
will be fixed before calling the function. However, since values are not passed across torn arcs, there is a need for
user-supplied guesses for those values. See the set_guesses_for method for details on how to supply these values.

In addition to passing dictionaries of guesses for certain ports, users can also assign current values to the variables
themselves and the procedure will pick these up and fix the variables in place. Alternatively, users can utilize the
default_guess option to specify a value to use as a default guess for all free variables if they have no guess or current
value. If a free variable has no guess or current value and there is no default guess option, then an error will be raised.

Similarly, if the procedure attempts to pass a value to a destination port member but that port member is already fixed
and its fixed value is different from what is trying to be passed to it (by a tolerance specified by the almost_equal_tol
option), then an error will be raised. Lastly, if there is more than one free variable in a constraint while trying to pass
values across an arc, an error will be raised asking the user to fix more variables by the time values are passed across
said arc.

142 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Tear Convergence

After completing the first pass run of the network, the sequential decomposition procedure will proceed to converge all
tear edges in the network (unless the user specifies not to, or if there are no tears). This process occurs separately for
every strongly connected component (SCC) in the graph, and the SCCs are computed in a logical order such that each
SCC is computed before other SCCs downstream of it (much like tree_order).

There are two implemented methods for converging tear edges: direct substitution and Wegstein acceleration. Both of
these will iteratively run the computation order until every value in every tear arc has converged to within the specified
tolerance. See the SequentialDecomposition parameter documentation for details on what can be controlled about
this procedure.

The following code demonstrates basic usage of the SequentialDecomposition class:

>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.unit1 = Block()
>>> m.unit1.x = Var()
>>> m.unit1.y = Var(['a', 'b'])
>>> m.unit2 = Block()
>>> m.unit2.x = Var()
>>> m.unit2.y = Var(['a', 'b'])
>>> m.unit1.port = Port(initialize=[m.unit1.x, (m.unit1.y, Port.Extensive)])
>>> m.unit2.port = Port(initialize=[m.unit2.x, (m.unit2.y, Port.Extensive)])
>>> m.a = Arc(source=m.unit1.port, destination=m.unit2.port)
>>> TransformationFactory("network.expand_arcs").apply_to(m)

>>> m.unit1.x.fix(10)
>>> m.unit1.y['a'].fix(15)
>>> m.unit1.y['b'].fix(20)

>>> seq = SequentialDecomposition(tol=1.0E-3) # options can go to init
>>> seq.options.select_tear_method = "heuristic" # or set them like so
>>> # seq.set_tear_set([...]) # assign a custom tear set
>>> # seq.set_guesses_for(m.unit.inlet, {...}) # choose guesses
>>> def initialize(b):
... # b.initialize()
... pass
...
>>> seq.run(m, initialize)

class pyomo.network.SequentialDecomposition(**kwds)
A sequential decomposition tool for Pyomo Network models

The following parameters can be set upon construction of this class or via the options attribute.

Parameters
• graph (MultiDiGraph) – A networkx graph representing the model to be solved.

default=None (will compute it)

• tear_set (list) – A list of indexes representing edges to be torn. Can be set with a list of
edge tuples via set_tear_set.

default=None (will compute it)

9.6. Pyomo Network 143

Pyomo Documentation, Release 6.5.0

• select_tear_method (str) – Which method to use to select a tear set, either “mip” or
“heuristic”.

default=”mip”

• run_first_pass (bool) – Boolean indicating whether or not to run through network before
running the tear stream convergence procedure.

default=True

• solve_tears (bool) – Boolean indicating whether or not to run iterations to converge tear
streams.

default=True

• guesses (ComponentMap) – ComponentMap of guesses to use for first pass (see
set_guesses_for method).

default=ComponentMap()

• default_guess (float) – Value to use if a free variable has no guess.

default=None

• almost_equal_tol (float) – Difference below which numbers are considered equal when
checking port value agreement.

default=1.0E-8

• log_info (bool) – Set logger level to INFO during run.

default=False

• tear_method (str) – Method to use for converging tear streams, either “Direct” or “Weg-
stein”.

default=”Direct”

• iterLim (int) – Limit on the number of tear iterations.

default=40

• tol (float) – Tolerance at which to stop tear iterations.

default=1.0E-5

• tol_type (str) – Type of tolerance value, either “abs” (absolute) or “rel” (relative to current
value).

default=”abs”

• report_diffs (bool) – Report the matrix of differences across tear streams for every iter-
ation.

default=False

• accel_min (float) – Min value for Wegstein acceleration factor.

default=-5

• accel_max (float) – Max value for Wegstein acceleration factor.

default=0

• tear_solver (str) – Name of solver to use for select_tear_mip.

default=”cplex”

144 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

• tear_solver_io (str) – Solver IO keyword for the above solver.

default=None

• tear_solver_options (dict) – Keyword options to pass to solve method.

default={}

calculation_order(G, roots=None, nodes=None)
Rely on tree_order to return a calculation order of nodes

Parameters
• roots – List of nodes to consider as tree roots, if None then the actual roots are used

• nodes – Subset of nodes to consider in the tree, if None then all nodes are used

create_graph(model)
Returns a networkx MultiDiGraph of a Pyomo network model

The nodes are units and the edges follow Pyomo Arc objects. Nodes that get added to the graph are deter-
mined by the parent blocks of the source and destination Ports of every Arc in the model. Edges are added
for each Arc using the direction specified by source and destination. All Arcs in the model will be used
whether or not they are active (since this needs to be done after expansion), and they all need to be directed.

indexes_to_arcs(G, lst)
Converts a list of edge indexes to the corresponding Arcs

Parameters
• G – A networkx graph corresponding to lst

• lst – A list of edge indexes to convert to tuples

Returns
A list of arcs

run(model, function)
Compute a Pyomo Network model using sequential decomposition

Parameters
• model – A Pyomo model

• function – A function to be called on each block/node in the network

select_tear_heuristic(G)

This finds optimal sets of tear edges based on two criteria. The primary objective is to minimize the
maximum number of times any cycle is broken. The seconday criteria is to minimize the number of tears.

This function uses a branch and bound type approach.

Returns
• tsets – List of lists of tear sets. All the tear sets returned are equally good. There are often

a very large number of equally good tear sets.

• upperbound_loop – The max number of times any single loop is torn

• upperbound_total – The total number of loops

Improvemnts for the future

I think I can imporve the efficency of this, but it is good enough for now. Here are some ideas for improve-
ment:

9.6. Pyomo Network 145

Pyomo Documentation, Release 6.5.0

1. Reduce the number of redundant solutions. It is possible to find tears sets [1,2] and [2,1]. I
eliminate redundent solutions from the results, but they can occur and it reduces efficency.

2. Look at strongly connected components instead of whole graph. This would cut back on the
size of graph we are looking at. The flowsheets are rarely one strongly conneted component.

3. When you add an edge to a tear set you could reduce the size of the problem in the branch by
only looking at strongly connected components with that edge removed.

4. This returns all equally good optimal tear sets. That may not really be necessary. For very large
flowsheets, there could be an extremely large number of optimial tear edge sets.

select_tear_mip(G, solver, solver_io=None, solver_options={})
This finds optimal sets of tear edges based on two criteria. The primary objective is to minimize the
maximum number of times any cycle is broken. The seconday criteria is to minimize the number of tears.

This function creates a MIP problem in Pyomo with a doubly weighted objective and solves it with the
solver arguments.

select_tear_mip_model(G)

Generate a model for selecting tears from the given graph

Returns
• model

• bin_list – A list of the binary variables representing each edge, indexed by the edge index
of the graph

set_guesses_for(port, guesses)
Set the guesses for the given port

These guesses will be checked for all free variables that are encountered during the first pass run. If a free
variable has no guess, its current value will be used. If its current value is None, the default_guess option
will be used. If that is None, an error will be raised.

All port variables that are downstream of a non-tear edge will already be fixed. If there is a guess for a fixed
variable, it will be silently ignored.

The guesses should be a dict that maps the following:

Port Member Name -> Value

Or, for indexed members, multiple dicts that map:

Port Member Name -> Index -> Value

For extensive members, “Value” must be a list of tuples of the form (arc, value) to guess a value for the
expanded variable of the specified arc. However, if the arc connecting this port is a 1-to-1 arc with its peer,
then there will be no expanded variable for the single arc, so a regular “Value” should be provided.

This dict cannot be used to pass guesses for variables within expression type members. Guesses for those
variables must be assigned to the variable’s current value before calling run.

While this method makes things more convenient, all it does is:

self.options[“guesses”][port] = guesses

set_tear_set(tset)
Set a custom tear set to be used when running the decomposition

The procedure will use this custom tear set instead of finding its own, thus it can save some time. Addi-
tionally, this will be useful for knowing which edges will need guesses.

146 Chapter 9. Modeling Extensions

Pyomo Documentation, Release 6.5.0

Parameters
tset – A list of Arcs representing edges to tear

While this method makes things more convenient, all it does is:

self.options[“tear_set”] = tset

tear_set_arcs(G, method='mip', **kwds)
Call the specified tear selection method and return a list of arcs representing the selected tear edges.

The kwds will be passed to the method.

tree_order(adj, adjR, roots=None)
This function determines the ordering of nodes in a directed tree. This is a generic function that can operate
on any given tree represented by the adjaceny and reverse adjacency lists. If the adjacency list does not
represent a tree the results are not valid.

In the returned order, it is sometimes possible for more than one node to be caclulated at once. So a list
of lists is returned by this function. These represent a bredth first search order of the tree. Following the
order, all nodes that lead to a particular node will be visited before it.

Parameters
• adj – An adjeceny list for a directed tree. This uses generic integer node indexes, not

node names from the graph itself. This allows this to be used on sub-graphs and graps of
components more easily.

• adjR – The reverse adjacency list coresponing to adj

• roots – List of node indexes to start from. These do not need to be the root nodes of the
tree, in some cases like when a node changes the changes may only affect nodes reachable
in the tree from the changed node, in the case that roots are supplied not all the nodes in
the tree may appear in the ordering. If no roots are supplied, the roots of the tree are used.

9.6. Pyomo Network 147

Pyomo Documentation, Release 6.5.0

148 Chapter 9. Modeling Extensions

CHAPTER

TEN

PYOMO TUTORIAL EXAMPLES

Additional Pyomo tutorials and examples can be found at the following links:

Prof. Jeffrey Kantor’s Pyomo Cookbook

Pyomo Gallery

149

https://jckantor.github.io/ND-Pyomo-Cookbook/
https://github.com/Pyomo/PyomoGallery

Pyomo Documentation, Release 6.5.0

150 Chapter 10. Pyomo Tutorial Examples

CHAPTER

ELEVEN

DEBUGGING PYOMO MODELS

11.1 Interrogating Pyomo Models

Show solver output by adding the tee=True option when calling the solve function

>>> SolverFactory('glpk').solve(model, tee=True)

You can use the pprint function to display the model or individual model components

>>> model.pprint()
>>> model.x.pprint()

11.2 FAQ

1. Solver not found

Solvers are not distributed with Pyomo and must be installed separately by the user. In general, the solver executable
must be accessible using a terminal command. For example, ipopt can only be used as a solver if the command

$ ipopt

invokes the solver. For example

$ ipopt -?
usage: ipopt [options] stub [-AMPL] [<assignment> ...]

Options:
-- {end of options}
-= {show name= possibilities}
-? {show usage}
-bf {read boundsfile f}
-e {suppress echoing of assignments}
-of {write .sol file to file f}
-s {write .sol file (without -AMPL)}
-v {just show version}

151

Pyomo Documentation, Release 6.5.0

11.3 Getting Help

See the Pyomo Forum for online discussions of Pyomo or to ask a question:

• http://groups.google.com/group/pyomo-forum/

Ask a question on StackOverflow using the #pyomo tag:

• https://stackoverflow.com/questions/ask?tags=pyomo

152 Chapter 11. Debugging Pyomo Models

http://groups.google.com/group/pyomo-forum/
https://stackoverflow.com/questions/ask?tags=pyomo

CHAPTER

TWELVE

ADVANCED TOPICS

12.1 Persistent Solvers

The purpose of the persistent solver interfaces is to efficiently notify the solver of incremental changes to a Pyomo
model. The persistent solver interfaces create and store model instances from the Python API for the corresponding
solver. For example, the GurobiPersistent class maintaints a pointer to a gurobipy Model object. Thus, we can
make small changes to the model and notify the solver rather than recreating the entire model using the solver Python
API (or rewriting an entire model file - e.g., an lp file) every time the model is solved.

Warning: Users are responsible for notifying persistent solver interfaces when changes to a model are made!

12.1.1 Using Persistent Solvers

The first step in using a persistent solver is to create a Pyomo model as usual.

>>> import pyomo.environ as pe
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)

You can create an instance of a persistent solver through the SolverFactory.

>>> opt = pe.SolverFactory('gurobi_persistent')

This returns an instance of GurobiPersistent. Now we need to tell the solver about our model.

>>> opt.set_instance(m)

This will create a gurobipy Model object and include the appropriate variables and constraints. We can now solve the
model.

>>> results = opt.solve()

We can also add or remove variables, constraints, blocks, and objectives. For example,

>>> m.c2 = pe.Constraint(expr=m.y >= m.x)
>>> opt.add_constraint(m.c2)

153

Pyomo Documentation, Release 6.5.0

This tells the solver to add one new constraint but otherwise leave the model unchanged. We can now resolve the model.

>>> results = opt.solve()

To remove a component, simply call the corresponding remove method.

>>> opt.remove_constraint(m.c2)
>>> del m.c2
>>> results = opt.solve()

If a pyomo component is replaced with another component with the same name, the first component must be removed
from the solver. Otherwise, the solver will have multiple components. For example, the following code will run without
error, but the solver will have an extra constraint. The solver will have both y >= -2*x + 5 and y <= x, which is not
what was intended!

>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent')
>>> opt.set_instance(m)
>>> # WRONG:
>>> del m.c
>>> m.c = pe.Constraint(expr=m.y <= m.x)
>>> opt.add_constraint(m.c)

The correct way to do this is:

>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent')
>>> opt.set_instance(m)
>>> # Correct:
>>> opt.remove_constraint(m.c)
>>> del m.c
>>> m.c = pe.Constraint(expr=m.y <= m.x)
>>> opt.add_constraint(m.c)

Warning: Components removed from a pyomo model must be removed from the solver instance by the user.

Additionally, unexpected behavior may result if a component is modified before being removed.

>>> m = pe.ConcreteModel()
>>> m.b = pe.Block()
>>> m.b.x = pe.Var()
>>> m.b.y = pe.Var()
>>> m.b.c = pe.Constraint(expr=m.b.y >= -2*m.b.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent')
>>> opt.set_instance(m)
>>> m.b.c2 = pe.Constraint(expr=m.b.y <= m.b.x)

(continues on next page)

154 Chapter 12. Advanced Topics

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> # ERROR: The constraint referenced by m.b.c2 does not
>>> # exist in the solver model.
>>> opt.remove_block(m.b)

In most cases, the only way to modify a component is to remove it from the solver instance, modify it with Pyomo,
and then add it back to the solver instance. The only exception is with variables. Variables may be modified and then
updated with with solver:

>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent')
>>> opt.set_instance(m)
>>> m.x.setlb(1.0)
>>> opt.update_var(m.x)

12.1.2 Working with Indexed Variables and Constraints

The examples above all used simple variables and constraints; in order to use indexed variables and/or constraints, the
code must be slightly adapted:

>>> for v in indexed_var.values():
... opt.add_var(v)
>>> for v in indexed_con.values():
... opt.add_constraint(v)

This must be done when removing variables/constraints, too. Not doing this would result in AttributeError exceptions,
for example:

>>> opt.add_var(indexed_var)
>>> # ERROR: AttributeError: 'IndexedVar' object has no attribute 'is_binary'
>>> opt.add_constraint(indexed_con)
>>> # ERROR: AttributeError: 'IndexedConstraint' object has no attribute 'body'

The method “is_indexed” can be used to automate the process, for example:

>>> def add_variable(opt, variable):
... if variable.is_indexed():
... for v in variable.values():
... opt.add_var(v)
... else:
... opt.add_var(v)

12.1. Persistent Solvers 155

Pyomo Documentation, Release 6.5.0

12.1.3 Persistent Solver Performance

In order to get the best performance out of the persistent solvers, use the “save_results” flag:

>>> import pyomo.environ as pe
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent')
>>> opt.set_instance(m)
>>> results = opt.solve(save_results=False)

Note that if the “save_results” flag is set to False, then the following is not supported.

>>> results = opt.solve(save_results=False, load_solutions=False)
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... m.solutions.load_from(results)

However, the following will work:

>>> results = opt.solve(save_results=False, load_solutions=False)
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... opt.load_vars()

Additionally, a subset of variable values may be loaded back into the model:

>>> results = opt.solve(save_results=False, load_solutions=False)
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... opt.load_vars(m.x)

12.2 Units Handling in Pyomo

Pyomo Units Container Module

This module provides support for including units within Pyomo expressions. This module can be used to define units
on a model, and to check the consistency of units within the underlying constraints and expressions in the model.
The module also supports conversion of units within expressions using the convert method to support construction of
constraints that contain embedded unit conversions.

To use this package within your Pyomo model, you first need an instance of a PyomoUnitsContainer. You can use the
module level instance already defined as ‘units’. This object ‘contains’ the units - that is, you can access units on this
module using common notation.

>>> from pyomo.environ import units as u
>>> print(3.0*u.kg)
3.0*kg

Units can be assigned to Var, Param, and ExternalFunction components, and can be used directly in expressions (e.g.,
defining constraints). You can also verify that the units are consistent on a model, or on individual components like the
objective function, constraint, or expression using assert_units_consistent (from pyomo.util.check_units). There are
other methods there that may be helpful for verifying correct units on a model.

156 Chapter 12. Advanced Topics

Pyomo Documentation, Release 6.5.0

>>> from pyomo.environ import ConcreteModel, Var, Objective
>>> from pyomo.environ import units as u
>>> from pyomo.util.check_units import assert_units_consistent, assert_units_
→˓equivalent, check_units_equivalent
>>> model = ConcreteModel()
>>> model.acc = Var(initialize=5.0, units=u.m/u.s**2)
>>> model.obj = Objective(expr=(model.acc - 9.81*u.m/u.s**2)**2)
>>> assert_units_consistent(model.obj) # raise exc if units invalid on obj
>>> assert_units_consistent(model) # raise exc if units invalid anywhere on␣
→˓the model
>>> assert_units_equivalent(model.obj.expr, u.m**2/u.s**4) # raise exc if␣
→˓units not equivalent
>>> print(u.get_units(model.obj.expr)) # print the units on the objective
m**2/s**4
>>> print(check_units_equivalent(model.acc, u.m/u.s**2))
True

The implementation is currently based on the pint package and supports all the units that are supported by pint. The
list of units that are supported by pint can be found at the following url: https://github.com/hgrecco/pint/blob/master/
pint/default_en.txt.

If you need a unit that is not in the standard set of defined units, you can create your own units by adding to the unit def-
initions within pint. See PyomoUnitsContainer.load_definitions_from_file() or PyomoUnitsContainer.
load_definitions_from_strings() for more information.

Note: In this implementation of units, “offset” units for temperature are not supported within expressions (i.e. the
non-absolute temperature units including degrees C and degrees F). This is because there are many non-obvious com-
binations that are not allowable. This concern becomes clear if you first convert the non-absolute temperature units to
absolute and then perform the operation. For example, if you write 30 degC + 30 degC == 60 degC, but convert each
entry to Kelvin, the expression is not true (i.e., 303.15 K + 303.15 K is not equal to 333.15 K). Therefore, there are
several operations that are not allowable with non-absolute units, including addition, multiplication, and division.

This module does support conversion of offset units to absolute units numerically, using convert_value_K_to_C, con-
vert_value_C_to_K, convert_value_R_to_F, convert_value_F_to_R. These are useful for converting input data to ab-
solute units, and for converting data to convenient units for reporting.

Please see the pint documentation here for more discussion. While pint implements “delta” units (e.g., delta_degC)
to support correct unit conversions, it can be difficult to identify and guarantee valid operations in a general algebraic
modeling environment. While future work may support units with relative scale, the current implementation requires
use of absolute temperature units (i.e. K and R) within expressions and a direct conversion of numeric values using
specific functions for converting input data and reporting.

class pyomo.core.base.units_container.PyomoUnitsContainer(pint_registry=NOTSET)
Bases: object

Class that is used to create and contain units in Pyomo.

This is the class that is used to create, contain, and interact with units in Pyomo. The module (pyomo.core.
base.units_container) also contains a module level units container units that is an instance of a Py-
omoUnitsContainer. This module instance should typically be used instead of creating your own instance of
a PyomoUnitsContainer. For an overview of the usage of this class, see the module documentation (pyomo.
core.base.units_container)

This class is based on the “pint” module. Documentation for available units can be found at the following url:
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

12.2. Units Handling in Pyomo 157

http://pint.readthedocs.io
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt
https://pint.readthedocs.io/en/0.9/nonmult.html
https://docs.python.org/3/library/functions.html#object
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

Pyomo Documentation, Release 6.5.0

Note: Pre-defined units can be accessed through attributes on the PyomoUnitsContainer class; however, these
attributes are created dynamically through the __getattr__ method, and are not present on the class until they are
requested.

convert(src, to_units=None)
This method returns an expression that contains the explicit conversion from one unit to another.

Parameters
• src (Pyomo expression) – The source value that will be converted. This could be a

Pyomo Var, Pyomo Param, or a more complex expression.

• to_units (Pyomo units expression) – The desired target units for the new expression

Returns
ret

Return type
Pyomo expression

convert_temp_C_to_K(value_in_C)
Convert a value in degrees Celcius to Kelvin Note that this method converts a numerical value only. If you
need temperature conversions in expressions, please work in absolute temperatures only.

convert_temp_F_to_R(value_in_F)
Convert a value in degrees Fahrenheit to Rankine. Note that this method converts a numerical value only.
If you need temperature conversions in expressions, please work in absolute temperatures only.

convert_temp_K_to_C(value_in_K)

Convert a value in Kelvin to degrees Celcius. Note that this method converts a numerical value only. If you
need temperature conversions in expressions, please work in absolute temperatures only.

convert_temp_R_to_F(value_in_R)
Convert a value in Rankine to degrees Fahrenheit. Note that this method converts a numerical value only.
If you need temperature conversions in expressions, please work in absolute temperatures only.

convert_value(num_value, from_units=None, to_units=None)
This method performs explicit conversion of a numerical value from one unit to another, and returns the
new value.

The argument “num_value” must be a native numeric type (e.g. float). Note that this method returns a
numerical value only, and not an expression with units.

Parameters
• num_value (float or other native numeric type) – The value that will be con-

verted

• from_units (Pyomo units expression) – The units to convert from

• to_units (Pyomo units expression) – The units to convert to

Returns
float

Return type
The converted value

158 Chapter 12. Advanced Topics

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

get_units(expr)
Return the Pyomo units corresponding to this expression (also performs validation and will raise an excep-
tion if units are not consistent).

Parameters
expr (Pyomo expression) – The expression containing the desired units

Returns
Returns the units corresponding to the expression

Return type
Pyomo unit (expression)

Raises
pyomo.core.base.units_container.UnitsError –

load_definitions_from_file(definition_file)
Load new units definitions from a file

This method loads additional units definitions from a user specified definition file. An example of a defini-
tions file can be found at: https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

If we have a file called my_additional_units.txt with the following lines:

USD = [currency]

Then we can add this to the container with:

>>> u.load_definitions_from_file('my_additional_units.txt')
>>> print(u.USD)
USD

load_definitions_from_strings(definition_string_list)
Load new units definitions from a string

This method loads additional units definitions from a list of strings (one for each line). An example of the
definitions strings can be found at: https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

For example, to add the currency dimension and US dollars as a unit, use

>>> u.load_definitions_from_strings(['USD = [currency]'])
>>> print(u.USD)
USD

class pyomo.core.base.units_container.UnitsError(msg)
An exception class for all general errors/warnings associated with units

class pyomo.core.base.units_container.InconsistentUnitsError(exp1, exp2, msg)
An exception indicating that inconsistent units are present on an expression.

E.g., x == y, where x is in units of kg and y is in units of meter

12.2. Units Handling in Pyomo 159

https://github.com/hgrecco/pint/blob/master/pint/default_en.txt
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

Pyomo Documentation, Release 6.5.0

12.3 LinearExpression

Significant speed improvements can be obtained using the LinearExpression object when there are long, dense,
linear expressions. The arguments are

constant, linear_coeffs, linear_vars

where the second and third arguments are lists that must be of the same length. Here is a simple example that illustrates
the syntax. This example creates two constraints that are the same:

>>> import pyomo.environ as pyo
>>> from pyomo.core.expr.numeric_expr import LinearExpression
>>> model = pyo.ConcreteModel()
>>> model.nVars = pyo.Param(initialize=4)
>>> model.N = pyo.RangeSet(model.nVars)
>>> model.x = pyo.Var(model.N, within=pyo.Binary)
>>>
>>> model.coefs = [1, 1, 3, 4]
>>>
>>> model.linexp = LinearExpression(constant=0,
... linear_coefs=model.coefs,
... linear_vars=[model.x[i] for i in model.N])
>>> def caprule(m):
... return m.linexp <= 6
>>> model.capme = pyo.Constraint(rule=caprule)
>>>
>>> def caprule2(m):
... return sum(model.coefs[i-1]*model.x[i] for i in model.N) <= 6
>>> model.capme2 = pyo.Constraint(rule=caprule2)

Warning: The lists that are passed to LinearModel are not copied, so caution must be excercised if they are
modified after the component is constructed.

12.4 “Flattening” a Pyomo model

pyomo.dae.flatten A module for "flattening" the components in a block-
hierarchical model with respect to common indexing sets

12.4.1 Motivation

The pyomo.dae.flatten module was originally developed to assist with dynamic optimization. A very common
operation in dynamic or multi-period optimization is to initialize all time-indexed variables to their values at a specific
time point. However, for variables indexed by time and arbitrary other indexing sets, this is difficult to do in a way that
does does not depend on the variable we are initializing. Things get worse when we consider that a time index can exist
on a parent block rather than the component itself.

By “reshaping” time-indexed variables in a model into references indexed only by time, the
flatten_dae_components function allows us to perform operations that depend on knowledge of time indices
without knowing anything about the variables that we are operating on.

160 Chapter 12. Advanced Topics

Pyomo Documentation, Release 6.5.0

This “flattened representation” of a model turns out to be useful for dynamic optimization in a variety of other con-
texts. Examples include constructing a tracking objective function and plotting results. This representation is also
useful in cases where we want to preserve indexing along more than one set, as in PDE-constrained optimization.
The flatten_components_along_sets function allows partitioning components while preserving multiple index-
ing sets. In such a case, time and space-indexed data for a given variable is useful for purposes such as initialization,
visualization, and stability analysis.

12.4.2 API reference

pyomo.dae.flatten.
slice_component_along_sets(...)

This function generates all possible slices of the provided
component along the provided sets.

pyomo.dae.flatten.
flatten_components_along_sets(m, ...)

This function iterates over components (recursively)
contained in a block and partitions their data objects into
components indexed only by the specified sets.

pyomo.dae.flatten.
flatten_dae_components(...)

Partitions components into ComponentData and Com-
ponents indexed only by the provided set.

pyomo.dae.flatten.slice_component_along_sets(component, sets, context_slice=None, normalize=None)
This function generates all possible slices of the provided component along the provided sets. That is, it will
iterate over the component’s other indexing sets and, for each index, yield a slice along the sets specified in the
call signature.

Parameters
• component (Component) – The component whose slices will be yielded

• sets (ComponentSet) – ComponentSet of Pyomo sets that will be sliced along

• context_slice (IndexedComponent_slice) – If provided, instead of creating a new
slice, we will extend this one with appropriate getattr and getitem calls.

• normalize (Bool) – If False, the returned index (from the product of “other sets”) is not
normalized, regardless of the value of normalize_index.flatten. This is necessary to use this
index with _fill_indices.

Yields
tuple – The first entry is the index in the product of “other sets” corresponding to the slice, and
the second entry is the slice at that index.

pyomo.dae.flatten.flatten_components_along_sets(m, sets, ctype, indices=None, active=None)
This function iterates over components (recursively) contained in a block and partitions their data objects into
components indexed only by the specified sets.

Parameters
• m (_BlockData) – Block whose components (and their sub-components) will be partitioned

• sets (Tuple of Pyomo Sets) – Sets to be sliced. Returned components will be indexed
by some combination of these sets, if at all.

• ctype (Subclass of Component) – Type of component to identify and partition

• indices (Iterable or ComponentMap) – Indices of sets to use when descending into
subblocks. If an iterable is provided, the order corresponds to the order in sets. If a
ComponentMap is provided, the keys must be in sets.

12.4. “Flattening” a Pyomo model 161

Pyomo Documentation, Release 6.5.0

• active (Bool or None) – If not None, this is a boolean flag used to filter component
objects by their active status. A reference-to-slice is returned if any data object defined by
the slice matches this flag.

Returns
The first entry is a list of tuples of Pyomo Sets. The second is a list of lists of Components, indexed
by the corresponding sets in the first list. If the components are unindexed, ComponentData are
returned and the tuple of sets contains only UnindexedComponent_set. If the components are
indexed, they are references-to-slices.

Return type
List of tuples of Sets, list of lists of Components

pyomo.dae.flatten.flatten_dae_components(model, time, ctype, indices=None, active=None)
Partitions components into ComponentData and Components indexed only by the provided set.

Parameters
• model (_BlockData) – Block whose components are partitioned

• time (Set) – Indexing by this set (and only this set) will be preserved in the returned com-
ponents.

• ctype (Subclass of Component) – Type of component to identify, partition, and return

• indices (Tuple or ComponentMap) – Contains the index of the specified set to be used
when descending into blocks

• active (Bool or None) – If provided, used as a filter to only return components with the
specified active flag. A reference-to-slice is returned if any data object defined by the slice
matches this flag.

Returns
The first list contains ComponentData for all components not indexed by the provided set. The
second contains references-to -slices for all components indexed by the provided set.

Return type
List of ComponentData, list of Component

12.4.3 What does it mean to flatten a model?

When accessing components in a block-structured model, we use component_objects or
component_data_objects to access all objects of a specific Component or ComponentData type. The gen-
erated objects may be thought of as a “flattened” representation of the model, as they may be accessed without any
knowledge of the model’s block structure. These methods are very useful, but it is still challenging to use them to
access specific components. Specifically, we often want to access “all components indexed by some set,” or “all
component data at a particular index of this set.” In addition, we often want to generate the components in a block
that is indexed by our particular set, as these components may be thought of as “implicitly indexed” by this set. The
pyomo.dae.flatten module aims to address this use case by providing utilities to generate all components indexed,
explicitly or implicitly, by user-provided sets.

When we say “flatten a model,” we mean “generate all components in the model, preserving all user-specified
indexing sets.”

162 Chapter 12. Advanced Topics

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

12.4.4 Data structures

The components returned are either ComponentData objects, for components not indexed by any of the provided sets,
or references-to-slices, for components indexed, explicitly or implicitly, by the provided sets. Slices are necessary as
they can encode “implicit indexing” – where a component is contained in an indexed block. It is natural to return
references to these slices, so they may be accessed and manipulated like any other component.

12.4. “Flattening” a Pyomo model 163

Pyomo Documentation, Release 6.5.0

164 Chapter 12. Advanced Topics

CHAPTER

THIRTEEN

COMMON WARNINGS/ERRORS

13.1 Warnings

13.1.1 W1001: Setting Var value not in domain

When setting Var values (by either calling Var.set_value() or setting the value attribute), Pyomo will validate
the incoming value by checking that the value is in the Var.domain. Any values not in the domain will generate this
warning:

>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var(domain=pyo.Integers)
>>> m.x = 0.5
WARNING (W1001): Setting Var 'x' to a value `0.5` (float) not in domain

Integers.
See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001

>>> print(m.x.value)
0.5

Users can bypass all domain validation by setting the value using:

>>> m.x.set_value(0.75, skip_validation=True)
>>> print(m.x.value)
0.75

13.1.2 W1002: Setting Var value outside the bounds

When setting Var values (by either calling set_value() or setting the value attribute), Pyomo will validate the
incoming value by checking that the value is within the range specified by Var.bounds. Any values outside the
bounds will generate this warning:

>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var(domain=pyo.Integers, bounds=(1, 5))
>>> m.x = 0
WARNING (W1002): Setting Var 'x' to a numeric value `0` outside the bounds

(1, 5).
See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002

>>> print(m.x.value)
0

Users can bypass all domain validation by setting the value using:

165

Pyomo Documentation, Release 6.5.0

>>> m.x.set_value(10, skip_validation=True)
>>> print(m.x.value)
10

13.1.3 W1003: Unexpected RecursionError walking an expression tree

Pyomo leverages a recursive walker (the StreamBasedExpressionVisitor) to traverse (walk) expression trees. For
most expressions, this recursive walker is the most efficient. However, Python has a relatively shallow recursion limit
(generally, 1000 frames). The recursive walker is designed to monitor the stack depth and cleanly switch to a nonre-
cursive walker before hitting the stack limit. However, there are two (rare) cases where the Python stack limit can still
generate a RecursionError exception:

1. Starting the walker with fewer than pyomo.core.expr.visitor.RECURSION_LIMIT available frames.

2. Callbacks that require more than 2 * pyomo.core.expr.visitor.RECURSION_LIMIT frames.

The (default) recursive walker will catch the exception and restart the walker from the beginning in non-recursive mode,
issuing this warning. The caution is that any partial work done by the walker before the exception was raised will be
lost, potentially leaving the walker in an inconsistent state. Users can avoid this by

• avoiding recursive callbacks

• restructuring the system design to avoid triggering the walker with few available stack frames

• directly calling the walk_expression_nonrecursive() walker method

>>> import sys
>>> import pyomo.core.expr.visitor as visitor
>>> from pyomo.core.tests.unit.test_visitor import fill_stack
>>> expression_depth = visitor.StreamBasedExpressionVisitor(
... exitNode=lambda node, data: max(data) + 1 if data else 1)
>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var()
>>> @m.Expression(range(35))
... def e(m, i):
... return m.e[i-1] if i else m.x
>>> expression_depth.walk_expression(m.e[34])
36
>>> fill_stack(sys.getrecursionlimit() - visitor.get_stack_depth() - 30,
... expression_depth.walk_expression,
... m.e[34])
WARNING (W1003): Unexpected RecursionError walking an expression tree.

See also https://pyomo.readthedocs.io/en/stable/errors.html#w1003
36
>>> fill_stack(sys.getrecursionlimit() - visitor.get_stack_depth() - 30,
... expression_depth.walk_expression_nonrecursive,
... m.e[34])
36

166 Chapter 13. Common Warnings/Errors

https://docs.python.org/3/library/exceptions.html#RecursionError

Pyomo Documentation, Release 6.5.0

13.2 Errors

13.2.1 E2001: Variable domains must be an instance of a Pyomo Set

Variable domains are always Pyomo Set or RangeSet objects. This includes global sets like Reals, Integers,
Binary, NonNegativeReals, etc., as well as model-specific Set instances. The Var.domain setter will attempt to
convert assigned values to a Pyomo Set, with any failures leading to this warning (and an exception from the converter):

>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var()
>>> m.x.domain = 5
Traceback (most recent call last):
...

TypeError: Cannot create a Set from data that does not support __contains__...
ERROR (E2001): 5 is not a valid domain. Variable domains must be an instance

of a Pyomo Set or convertable to a Pyomo Set.
See also https://pyomo.readthedocs.io/en/stable/errors.html#e2001

13.2. Errors 167

Pyomo Documentation, Release 6.5.0

168 Chapter 13. Common Warnings/Errors

CHAPTER

FOURTEEN

DEVELOPER REFERENCE

This section provides documentation about fundamental capabilities in Pyomo. This documentation serves as a refer-
ence for both (1) Pyomo developers and (2) advanced users who are developing Python scripts using Pyomo.

14.1 The Pyomo Configuration System

The Pyomo config system provides a set of three classes (ConfigDict, ConfigList, and ConfigValue) for managing
and documenting structured configuration information and user input. The system is based around the ConfigValue
class, which provides storage for a single configuration entry. ConfigValue objects can be grouped using two containers
(ConfigDict and ConfigList), which provide functionality analogous to Python’s dict and list classes, respectively.

At its simplest, the Config system allows for developers to specify a dictionary of documented configuration entries,
allow users to provide values for those entries, and retrieve the current values:

>>> from pyomo.common.config import (
... ConfigDict, ConfigList, ConfigValue, In,
...)
>>> config = ConfigDict()
>>> config.declare('filename', ConfigValue(
... default=None,
... domain=str,
... description="Input file name",
...))
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare("bound tolerance", ConfigValue(
... default=1E-5,
... domain=float,
... description="Bound tolerance",
... doc="Relative tolerance for bound feasibility checks"
...))
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare("iteration limit", ConfigValue(
... default=30,
... domain=int,
... description="Iteration limit",
... doc="Number of maximum iterations in the decomposition methods"
...))
<pyomo.common.config.ConfigValue object at ...>
>>> config['filename'] = 'tmp.txt'
>>> print(config['filename'])

(continues on next page)

169

Pyomo Documentation, Release 6.5.0

(continued from previous page)

tmp.txt
>>> print(config['iteration limit'])
30

For convenience, ConfigDict objects support read/write access via attributes (with spaces in the declaration names
replaced by underscores):

>>> print(config.filename)
tmp.txt
>>> print(config.iteration_limit)
30
>>> config.iteration_limit = 20
>>> print(config.iteration_limit)
20

14.1.1 Domain validation

All Config objects support a domain keyword that accepts a callable object (type, function, or callable instance). The
domain callable should take data and map it onto the desired domain, optionally performing domain validation (see
ConfigValue, ConfigDict, and ConfigList for more information). This allows client code to accept a very flexible
set of inputs without “cluttering” the code with input validation:

>>> config.iteration_limit = 35.5
>>> print(config.iteration_limit)
35
>>> print(type(config.iteration_limit).__name__)
int

In addition to common types (like int, float, bool, and str), the config system profides a number of custom domain
validators for common use cases:

170 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

Bool(val) Domain validator for bool-like objects.
Integer(val) Domain validation function admitting integers
PositiveInt(val) Domain validation function admitting strictly positive

integers
NegativeInt(val) Domain validation function admitting strictly negative

integers
NonNegativeInt(val) Domain validation function admitting integers >= 0
NonPositiveInt(val) Domain validation function admitting integers <= 0
PositiveFloat(val) Domain validation function admitting strictly positive

numbers
NegativeFloat(val) Domain validation function admitting strictly negative

numbers
NonPositiveFloat(val) Domain validation function admitting numbers less than

or equal to 0
NonNegativeFloat(val) Domain validation function admitting numbers greater

than or equal to 0
In(domain[, cast]) Domain validation class admitting a Container of possi-

ble values
InEnum(domain) Domain validation class admitting an enum value/name.
ListOf(itemtype[, domain, string_lexer]) Domain validator for lists of a specified type
Module([basePath, expandPath]) Domain validator for modules.
Path ([basePath, expandPath]) Domain validator for path-like options.
PathList([basePath, expandPath]) Domain validator for a list of path-like objects.

14.1.2 Configuring class hierarchies

A feature of the Config system is that the core classes all implement __call__, and can themselves be used as domain
values. Beyond providing domain verification for complex hierarchical structures, this feature allows ConfigDicts to
cleanly support the configuration of derived objects. Consider the following example:

>>> class Base(object):
... CONFIG = ConfigDict()
... CONFIG.declare('filename', ConfigValue(
... default='input.txt',
... domain=str,
...))
... def __init__(self, **kwds):
... c = self.CONFIG(kwds)
... c.display()
...
>>> class Derived(Base):
... CONFIG = Base.CONFIG()
... CONFIG.declare('pattern', ConfigValue(
... default=None,
... domain=str,
...))
...
>>> tmp = Base(filename='foo.txt')
filename: foo.txt
>>> tmp = Derived(pattern='.*warning')
filename: input.txt

(continues on next page)

14.1. The Pyomo Configuration System 171

Pyomo Documentation, Release 6.5.0

(continued from previous page)

pattern: .*warning

Here, the base class Base declares a class-level attribute CONFIG as a ConfigDict containing a single entry
(filename). The derived class (Derived) then starts by making a copy of the base class’ CONFIG, and then defines an
additional entry (pattern). Instances of the base class will still create c instances that only have the single filename
entry, whereas instances of the derived class will have c instances with two entries: the pattern entry declared by the
derived class, and the filename entry “inherited” from the base class.

An extension of this design pattern provides a clean approach for handling “ephemeral” instance options. Consider
an interface to an external “solver”. Our class implements a solve() method that takes a problem and sends it to the
solver along with some solver configuration options. We would like to be able to set those options “persistently” on
instances of the interface class, but still override them “temporarily” for individual calls to solve(). We implement
this by creating copies of the class’s configuration for both specific instances and for use by each solve() call:

>>> class Solver(object):
... CONFIG = ConfigDict()
... CONFIG.declare('iterlim', ConfigValue(
... default=10,
... domain=int,
...))
... def __init__(self, **kwds):
... self.config = self.CONFIG(kwds)
... def solve(self, model, **options):
... config = self.config(options)
... # Solve the model with the specified iterlim
... config.display()
...
>>> solver = Solver()
>>> solver.solve(None)
iterlim: 10
>>> solver.config.iterlim = 20
>>> solver.solve(None)
iterlim: 20
>>> solver.solve(None, iterlim=50)
iterlim: 50
>>> solver.solve(None)
iterlim: 20

14.1.3 Interacting with argparse

In addition to basic storage and retrieval, the Config system provides hooks to the argparse command-line argument
parsing system. Individual Config entries can be declared as argparse arguments using the declare_as_argument()
method. To make declaration simpler, the declare() method returns the declared Config object so that the argument
declaration can be done inline:

>>> import argparse
>>> config = ConfigDict()
>>> config.declare('iterlim', ConfigValue(
... domain=int,
... default=100,
... description="iteration limit",

(continues on next page)

172 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

(continued from previous page)

...)).declare_as_argument()
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare('lbfgs', ConfigValue(
... domain=bool,
... description="use limited memory BFGS update",
...)).declare_as_argument()
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare('linesearch', ConfigValue(
... domain=bool,
... default=True,
... description="use line search",
...)).declare_as_argument()
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare('relative tolerance', ConfigValue(
... domain=float,
... description="relative convergence tolerance",
...)).declare_as_argument('--reltol', '-r', group='Tolerances')
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare('absolute tolerance', ConfigValue(
... domain=float,
... description="absolute convergence tolerance",
...)).declare_as_argument('--abstol', '-a', group='Tolerances')
<pyomo.common.config.ConfigValue object at ...>

The ConfigDict can then be used to initialize (or augment) an argparse ArgumentParser object:

>>> parser = argparse.ArgumentParser("tester")
>>> config.initialize_argparse(parser)

Key information from the ConfigDict is automatically transferred over to the ArgumentParser object:

>>> print(parser.format_help())
usage: tester [-h] [--iterlim INT] [--lbfgs] [--disable-linesearch]

[--reltol FLOAT] [--abstol FLOAT]
...
-h, --help show this help message and exit
--iterlim INT iteration limit
--lbfgs use limited memory BFGS update
--disable-linesearch [DON'T] use line search

Tolerances:
--reltol FLOAT, -r FLOAT

relative convergence tolerance
--abstol FLOAT, -a FLOAT

absolute convergence tolerance

Parsed arguments can then be imported back into the ConfigDict:

>>> args=parser.parse_args(['--lbfgs', '--reltol', '0.1', '-a', '0.2'])
>>> args = config.import_argparse(args)
>>> config.display()
iterlim: 100
lbfgs: true

(continues on next page)

14.1. The Pyomo Configuration System 173

Pyomo Documentation, Release 6.5.0

(continued from previous page)

linesearch: true
relative tolerance: 0.1
absolute tolerance: 0.2

14.1.4 Accessing user-specified values

It is frequently useful to know which values a user explicitly set, and which values a user explicitly set but have never
been retrieved. The configuration system provides two generator methods to return the items that a user explicitly set
(user_values()) and the items that were set but never retrieved (unused_user_values()):

>>> print([val.name() for val in config.user_values()])
['lbfgs', 'relative tolerance', 'absolute tolerance']
>>> print(config.relative_tolerance)
0.1
>>> print([val.name() for val in config.unused_user_values()])
['lbfgs', 'absolute tolerance']

14.1.5 Generating output & documentation

Configuration objects support three methods for generating output and documentation: display(),
generate_yaml_template(), and generate_documentation(). The simplest is display(), which
prints out the current values of the configuration object (and if it is a container type, all of it’s children).
generate_yaml_template() is simular to display(), but also includes the description fields as formatted
comments.

>>> solver_config = config
>>> config = ConfigDict()
>>> config.declare('output', ConfigValue(
... default='results.yml',
... domain=str,
... description='output results filename'
...))
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare('verbose', ConfigValue(
... default=0,
... domain=int,
... description='output verbosity',
... doc='This sets the system verbosity. The default (0) only logs '
... 'warnings and errors. Larger integer values will produce '
... 'additional log messages.',
...))
<pyomo.common.config.ConfigValue object at ...>
>>> config.declare('solvers', ConfigList(
... domain=solver_config,
... description='list of solvers to apply',
...))
<pyomo.common.config.ConfigList object at ...>
>>> config.display()
output: results.yml
verbose: 0

(continues on next page)

174 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

(continued from previous page)

solvers: []
>>> print(config.generate_yaml_template())
output: results.yml # output results filename
verbose: 0 # output verbosity
solvers: [] # list of solvers to apply

It is important to note that both methods document the current state of the configuration object. So, in the example
above, since the solvers list is empty, you will not get any information on the elements in the list. Of course, if you add
a value to the list, then the data will be output:

>>> tmp = config()
>>> tmp.solvers.append({})
>>> tmp.display()
output: results.yml
verbose: 0
solvers:
-
iterlim: 100
lbfgs: true
linesearch: true
relative tolerance: 0.1
absolute tolerance: 0.2

>>> print(tmp.generate_yaml_template())
output: results.yml # output results filename
verbose: 0 # output verbosity
solvers: # list of solvers to apply
-
iterlim: 100 # iteration limit
lbfgs: true # use limited memory BFGS update
linesearch: true # use line search
relative tolerance: 0.1 # relative convergence tolerance
absolute tolerance: 0.2 # absolute convergence tolerance

The third method (generate_documentation()) behaves differently. This method is designed to generate reference
documentation. For each configuration item, the doc field is output. If the item has no doc, then the description field
is used.

List containers have their domain documented and not their current values. The documentation can be configured
through optional arguments. The defaults generate LaTeX documentation:

>>> print(config.generate_documentation())
\begin{description}[topsep=0pt,parsep=0.5em,itemsep=-0.4em]
\item[{output}]\hfill
\\output results filename

\item[{verbose}]\hfill
\\This sets the system verbosity. The default (0) only logs warnings and
errors. Larger integer values will produce additional log messages.

\item[{solvers}]\hfill
\\list of solvers to apply

\begin{description}[topsep=0pt,parsep=0.5em,itemsep=-0.4em]
\item[{iterlim}]\hfill
\\iteration limit

\item[{lbfgs}]\hfill
(continues on next page)

14.1. The Pyomo Configuration System 175

Pyomo Documentation, Release 6.5.0

(continued from previous page)

\\use limited memory BFGS update
\item[{linesearch}]\hfill
\\use line search

\item[{relative tolerance}]\hfill
\\relative convergence tolerance

\item[{absolute tolerance}]\hfill
\\absolute convergence tolerance

\end{description}
\end{description}

14.2 Deprecation and Removal of Functionality

During the course of development, there may be cases where it becomes necessary to deprecate or remove functionality
from the standard Pyomo offering.

14.2.1 Deprecation

We offer a set of tools to help with deprecation in pyomo.common.deprecation.

By policy, when deprecating or moving an existing capability, one of the following functions should be imported. In use,
the version option should be set to current development version. This can be found by running pyomo --version
on your local fork/branch.

class pyomo.common.deprecation.deprecated(msg=None, logger=None, version=None, remove_in=None)
Decorator to indicate that a function, method, or class is deprecated.

This decorator will cause a warning to be logged when the wrapped function or method is called, or when the
deprecated class is constructed. This decorator also updates the target object’s docstring to indicate that it is
deprecated.

Parameters
• msg (str) – a custom deprecation message (default: “This {function|class} has been depre-

cated and may be removed in a future release.”)

• logger (str) – the logger to use for emitting the warning (default: the calling pyomo pack-
age, or “pyomo”)

• version (str) – [required] the version in which the decorated object was deprecated. Gen-
eral practice is to set version to the current development version (from pyomo –version)
during development and update it to the actual release as part of the release process.

• remove_in (str) – the version in which the decorated object will be removed from the code.

176 Chapter 14. Developer Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Example

>>> from pyomo.common.deprecation import deprecated
>>> @deprecated(version='1.2.3')
... def sample_function(x):
... return 2*x
>>> sample_function(5)
WARNING: DEPRECATED: This function (sample_function) has been deprecated and

may be removed in a future release. (deprecated in 1.2.3) ...
10

class pyomo.common.deprecation.deprecation_warning(msg, logger=None, version=None,
remove_in=None, calling_frame=None)

Standardized formatter for deprecation warnings

This is a standardized routine for formatting deprecation warnings so that things look consistent and “nice”.

Parameters
• msg (str) – the deprecation message to format

• logger (str) – the logger to use for emitting the warning (default: the calling pyomo pack-
age, or “pyomo”)

• version (str) – [required] the version in which the decorated object was deprecated. Gen-
eral practice is to set version to the current development version (from pyomo –version)
during development and update it to the actual release as part of the release process.

• remove_in (str) – the version in which the decorated object will be removed from the code.

• calling_frame (frame) – the original frame context that triggered the deprecation warn-
ing.

Example

>>> from pyomo.common.deprecation import deprecation_warning
>>> deprecation_warning('This functionality is deprecated.', version='1.2.3')
WARNING: DEPRECATED: This functionality is deprecated. (deprecated in 1.2.3) ...

class pyomo.common.deprecation.relocated_module(new_name, msg=None, logger=None, version=None,
remove_in=None)

Provide a deprecation path for moved / renamed modules

Upon import, the old module (that called relocated_module()) will be replaced in sys.modules by an alias that
points directly to the new module. As a result, the old module should have only two lines of executable Python
code (the import of relocated_module and the call to it).

Parameters
• new_name (str) – The new (fully-qualified) module name

• msg (str) – A custom deprecation message.

• logger (str) – The logger to use for emitting the warning (default: the calling pyomo
package, or “pyomo”)

• version (str [required]) – The version in which the module was renamed or moved.
General practice is to set version to the current development version (from pyomo –version)
during development and update it to the actual release as part of the release process.

14.2. Deprecation and Removal of Functionality 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

• remove_in (str) – The version in which the module will be removed from the code.

Example

>>> from pyomo.common.deprecation import relocated_module
>>> relocated_module('pyomo.common.deprecation', version='1.2.3')
WARNING: DEPRECATED: The '...' module has been moved to

'pyomo.common.deprecation'. Please update your import.
(deprecated in 1.2.3) ...

class pyomo.common.deprecation.relocated_module_attribute(local, target, version, remove_in=None,
msg=None, f_globals=None)

Provide a deprecation path for moved / renamed module attributes

This function declares that a local module attribute has been moved to another location. For Python 3.7+, it
leverages a module.__getattr__ method to manage the deferred import of the object from the new location (on
request), as well as emitting the deprecation warning.

It contains backports of the __getattr__ functionality for earlier versions of Python (although the implementation
for 3.5+ is more efficient that the implementation for 2.7+)

Parameters
• local (str) – The original (local) name of the relocated attribute

• target (str) – The new absolute import name of the relocated attribute

• version (str) – The Pyomo version when this move was released (passed to depreca-
tion_warning)

• remove_in (str) – The Pyomo version when this deprecation path will be removed (passed
to deprecation_warning)

• msg (str) – If not None, then this specifies a custom deprecation message to be emitted
when the attribute is accessed from its original location.

class pyomo.common.deprecation.RenamedClass(name, bases, classdict, *args, **kwargs)
Metaclass to provide a deprecation path for renamed classes

This metaclass provides a mechanism for renaming old classes while still preserving isinstance / issubclass rela-
tionships.

Examples

>>> from pyomo.common.deprecation import RenamedClass
>>> class NewClass(object):
... pass
>>> class OldClass(metaclass=RenamedClass):
... __renamed__new_class__ = NewClass
... __renamed__version__ = '6.0'

Deriving from the old class generates a warning:

>>> class DerivedOldClass(OldClass):
... pass
WARNING: DEPRECATED: Declaring class 'DerivedOldClass' derived from

(continues on next page)

178 Chapter 14. Developer Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

(continued from previous page)

'OldClass'. The class 'OldClass' has been renamed to 'NewClass'.
(deprecated in 6.0) ...

As does instantiating the old class:

>>> old = OldClass()
WARNING: DEPRECATED: Instantiating class 'OldClass'. The class

'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ...

Finally, isinstance and issubclass still work, for example:

>>> isinstance(old, NewClass)
True
>>> class NewSubclass(NewClass):
... pass
>>> new = NewSubclass()
>>> isinstance(new, OldClass)
WARNING: DEPRECATED: Checking type relative to 'OldClass'. The class

'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ...
True

14.2.2 Removal

By policy, functionality should be deprecated with reasonable warning, pending extenuating circumstances. The func-
tionality should be deprecated, following the information above.

If the functionality is documented in the most recent edition of [Pyomo - Optimization Modeling in Python], it may
not be removed until the next major version release.

For other functionality, it is preferred that ample time is given before removing the functionality. At minimum, signif-
icant functionality removal will result in a minor version bump.

14.3 Pyomo Expressions

Warning: This documentation does not explicitly reference objects in pyomo.core.kernel. While the Pyomo5
expression system works with pyomo.core.kernel objects, the documentation of these documents was not sufficient
to appropriately descibe the use of kernel objects in expressions.

Pyomo supports the declaration of symbolic expressions that represent objectives, constraints and other optimization
modeling components. Pyomo expressions are represented in an expression tree, where the leaves are operands, such as
constants or variables, and the internal nodes contain operators. Pyomo relies on so-called magic methods to automate
the construction of symbolic expressions. For example, consider an expression e declared as follows:

M = ConcreteModel()
M.v = Var()

e = M.v * 2

14.3. Pyomo Expressions 179

https://doi.org/10.1007/978-3-030-68928-5

Pyomo Documentation, Release 6.5.0

Python determines that the magic method __mul__ is called on the M.v object, with the argument 2. This method
returns a Pyomo expression object ProductExpression that has arguments M.v and 2. This represents the following
symbolic expression tree:

*

v 2

Note: End-users will not likely need to know details related to how symbolic expressions are generated and managed
in Pyomo. Thus, most of the following documentation of expressions in Pyomo is most useful for Pyomo developers.
However, the discussion of runtime performance in the first section will help end-users write large-scale models.

14.3.1 Building Expressions Faster

Expression Generation

Pyomo expressions can be constructed using native binary operators in Python. For example, a sum can be created in
a simple loop:

M = ConcreteModel()
M.x = Var(range(5))

s = 0
for i in range(5):

s = s + M.x[i]

Additionally, Pyomo expressions can be constructed using functions that iteratively apply Python binary operators. For
example, the Python sum() function can be used to replace the previous loop:

s = sum(M.x[i] for i in range(5))

The sum() function is both more compact and more efficient. Using sum() avoids the creation of temporary variables,
and the summation logic is executed in the Python interpreter while the loop is interpreted.

180 Chapter 14. Developer Reference

https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#sum

Pyomo Documentation, Release 6.5.0

Linear, Quadratic and General Nonlinear Expressions

Pyomo can express a very wide range of algebraic expressions, and there are three general classes of expressions that
are recognized by Pyomo:

• linear polynomials
• quadratic polynomials
• nonlinear expressions, including higher-order polynomials and expressions with intrinsic functions

These classes of expressions are leveraged to efficiently generate compact representations of expressions, and to trans-
form expression trees into standard forms used to interface with solvers. Note that There not all quadratic polynomials
are recognized by Pyomo; in other words, some quadratic expressions are treated as nonlinear expressions.

For example, consider the following quadratic polynomial:

s = sum(M.x[i] for i in range(5)) ** 2

This quadratic polynomial is treated as a nonlinear expression unless the expression is explicilty processed to identify
quadratic terms. This lazy identification of of quadratic terms allows Pyomo to tailor the search for quadratic terms
only when they are explicitly needed.

Pyomo Utility Functions

Pyomo includes several similar functions that can be used to create expressions:

prod
A function to compute a product of Pyomo expressions.

quicksum
A function to efficiently compute a sum of Pyomo expressions.

sum_product
A function that computes a generalized dot product.

prod

The prod function is analogous to the builtin sum() function. Its main argument is a variable length argument list,
args, which represents expressions that are multiplied together. For example:

M = ConcreteModel()
M.x = Var(range(5))
M.z = Var()

The product M.x[0] * M.x[1] * ... * M.x[4]
e1 = prod(M.x[i] for i in M.x)

The product M.x[0]*M.z
e2 = prod([M.x[0], M.z])

The product M.z*(M.x[0] + ... + M.x[4])
e3 = prod([sum(M.x[i] for i in M.x), M.z])

14.3. Pyomo Expressions 181

https://docs.python.org/3/library/functions.html#sum

Pyomo Documentation, Release 6.5.0

quicksum

The behavior of the quicksum function is similar to the builtin sum() function, but this function often generates a more
compact Pyomo expression. Its main argument is a variable length argument list, args, which represents expressions
that are summed together. For example:

M = ConcreteModel()
M.x = Var(range(5))

Summation using the Python sum() function
e1 = sum(M.x[i] ** 2 for i in M.x)

Summation using the Pyomo quicksum function
e2 = quicksum(M.x[i] ** 2 for i in M.x)

The summation is customized based on the start and linear arguments. The start defines the initial value for
summation, which defaults to zero. If start is a numeric value, then the linear argument determines how the sum
is processed:

• If linear is False, then the terms in args are assumed to be nonlinear.

• If linear is True, then the terms in args are assumed to be linear.

• If linear is None, the first term in args is analyze to determine whether the terms are linear or nonlinear.

This argument allows the quicksum function to customize the expression representation used, and specifically a more
compact representation is used for linear polynomials. The quicksum function can be slower than the builtin sum()
function, but this compact representation can generate problem representations more quickly.

Consider the following example:

M = ConcreteModel()
M.A = RangeSet(100000)
M.p = Param(M.A, mutable=True, initialize=1)
M.x = Var(M.A)

start = time.time()
e = sum((M.x[i] - 1) ** M.p[i] for i in M.A)
print("sum: %f" % (time.time() - start))

start = time.time()
generate_standard_repn(e)
print("repn: %f" % (time.time() - start))

start = time.time()
e = quicksum((M.x[i] - 1) ** M.p[i] for i in M.A)
print("quicksum: %f" % (time.time() - start))

start = time.time()
generate_standard_repn(e)
print("repn: %f" % (time.time() - start))

The sum consists of linear terms because the exponents are one. The following output illustrates that quicksum can
identify this linear structure to generate expressions more quickly:

182 Chapter 14. Developer Reference

https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#sum

Pyomo Documentation, Release 6.5.0

sum: 1.447861
repn: 0.870225
quicksum: 1.388344
repn: 0.864316

If start is not a numeric value, then the quicksum sets the initial value to start and executes a simple loop to sum
the terms. This allows the sum to be stored in an object that is passed into the function (e.g. the linear context manager
linear_expression).

Warning: By default, linear is None. While this allows for efficient expression generation in normal cases, there
are circumstances where the inspection of the first term in args is misleading. Consider the following example:

M = ConcreteModel()
M.x = Var(range(5))

e = quicksum(M.x[i] ** 2 if i > 0 else M.x[i] for i in range(5))

The first term created by the generator is linear, but the subsequent terms are nonlinear. Pyomo gracefully transitions
to a nonlinear sum, but in this case quicksum is doing additional work that is not useful.

sum_product

The sum_product function supports a generalized dot product. The args argument contains one or more components
that are used to create terms in the summation. If the args argument contains a single components, then its sequence
of terms are summed together; the sum is equivalent to calling quicksum . If two or more components are provided,
then the result is the summation of their terms multiplied together. For example:

M = ConcreteModel()
M.z = RangeSet(5)
M.x = Var(range(10))
M.y = Var(range(10))

Sum the elements of x
e1 = sum_product(M.x)

Sum the product of elements in x and y
e2 = sum_product(M.x, M.y)

Sum the product of elements in x and y, over the index set z
e3 = sum_product(M.x, M.y, index=M.z)

The denom argument specifies components whose terms are in the denominator. For example:

Sum the product of x_i/y_i
e1 = sum_product(M.x, denom=M.y)

Sum the product of 1/(x_i*y_i)
e2 = sum_product(denom=(M.x, M.y))

The terms summed by this function are explicitly specified, so sum_product can identify whether the resulting expres-
sion is linear, quadratic or nonlinear. Consequently, this function is typically faster than simple loops, and it generates
compact representations of expressions..

14.3. Pyomo Expressions 183

Pyomo Documentation, Release 6.5.0

Finally, note that the dot_product function is an alias for sum_product.

14.3.2 Design Overview

Historical Comparison

This document describes the “Pyomo5” expressions, which were introduced in Pyomo 5.6. The main differences
between “Pyomo5” expressions and the previous expression system, called “Coopr3”, are:

• Pyomo5 supports both CPython and PyPy implementations of Python, while Coopr3 only supports CPython.

The key difference in these implementations is that Coopr3 relies on CPython reference counting, which is not
part of the Python language standard. Hence, this implementation is not guaranteed to run on other implemen-
tations of Python.

Pyomo5 does not rely on reference counting, and it has been tested with PyPy. In the future, this should allow
Pyomo to support other Python implementations (e.g. Jython).

• Pyomo5 expression objects are immutable, while Coopr3 expression objects are mutable.

This difference relates to how expression objects are managed in Pyomo. Once created, Pyomo5 expression
objects cannot be changed. Further, the user is guaranteed that no “side effects” occur when expressions change
at a later point in time. By contrast, Coopr3 allows expressions to change in-place, and thus “side effects” make
occur when expressions are changed at a later point in time. (See discussion of entanglement below.)

• Pyomo5 provides more consistent runtime performance than Coopr3.

While this documentation does not provide a detailed comparison of runtime performance between Coopr3 and
Pyomo5, the following performance considerations also motivated the creation of Pyomo5:

– There were surprising performance inconsistencies in Coopr3. For example, the following two loops had
dramatically different runtime:

M = ConcreteModel()
M.x = Var(range(100))

This loop is fast.
e = 0
for i in range(100):

e = e + M.x[i]

This loop is slow.
e = 0
for i in range(100):

e = M.x[i] + e

– Coopr3 eliminates side effects by automatically cloning sub-expressions. Unfortunately, this can easily
lead to unexpected cloning in models, which can dramatically slow down Pyomo model generation. For
example:

M = ConcreteModel()
M.p = Param(initialize=3)
M.q = 1 / M.p

(continues on next page)

184 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

(continued from previous page)

M.x = Var(range(100))

The value M.q is cloned every time it is used.
e = 0
for i in range(100):

e = e + M.x[i] * M.q

– Coopr3 leverages recursion in many operations, including expression cloning. Even simple non-linear
expressions can result in deep expression trees where these recursive operations fail because Python runs
out of stack space.

– The immutable representation used in Pyomo5 requires more memory allocations than Coopr3 in simple
loops. Hence, a pure-Python execution of Pyomo5 can be 10% slower than Coopr3 for model construction.
But when Cython is used to optimize the execution of Pyomo5 expression generation, the runtimes for
Pyomo5 and Coopr3 are about the same. (In principle, Cython would improve the runtime of Coopr3 as
well, but the limitations noted above motivated a new expression system in any case.)

Expression Entanglement and Mutability

Pyomo fundamentally relies on the use of magic methods in Python to generate expression trees, which means that
Pyomo has very limited control for how expressions are managed in Python. For example:

• Python variables can point to the same expression tree

M = ConcreteModel()
M.v = Var()

e = f = 2 * M.v

This is illustrated as follows:

14.3. Pyomo Expressions 185

Pyomo Documentation, Release 6.5.0

e

*

f

2 v

• A variable can point to a sub-tree that another variable points to

M = ConcreteModel()
M.v = Var()

e = 2 * M.v
f = e + 3

This is illustrated as follows:

186 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

e

*

f

+

2 v

3

• Two expression trees can point to the same sub-tree

M = ConcreteModel()
M.v = Var()

e = 2 * M.v
f = e + 3
g = e + 4

This is illustrated as follows:

14.3. Pyomo Expressions 187

Pyomo Documentation, Release 6.5.0

e

*

f

+

g

+

4

2 v

3

In each of these examples, it is almost impossible for a Pyomo user or developer to detect whether expressions are being
shared. In CPython, the reference counting logic can support this to a limited degree. But no equivalent mechanisms
are available in PyPy and other Python implementations.

Entangled Sub-Expressions

We say that expressions are entangled if they share one or more sub-expressions. The first example above does not
represent entanglement, but rather the fact that multiple Python variables can point to the same expression tree. In the
second and third examples, the expressions are entangled because the subtree represented by e is shared. However, if
a leave node like M.v is shared between expressions, we do not consider those expressions entangled.

Expression entanglement is problematic because shared expressions complicate the expected behavior when sub-
expressions are changed. Consider the following example:

M = ConcreteModel()
M.v = Var()
M.w = Var()

e = 2 * M.v
f = e + 3

e += M.w

What is the value of e after M.w is added to it? What is the value of f? The answers to these questions are not

188 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

immediately obvious, and the fact that Coopr3 uses mutable expression objects makes them even less clear. However,
Pyomo5 and Coopr3 enforce the following semantics:

A change to an expression e that is a sub-expression of f does not change the expression tree for f.

This property ensures a change to an expression does not create side effects that change the values of other, previously
defined expressions.

For instance, the previous example results in the following (in Pyomo5):

e

+

f

+

*w

2 v

3

With Pyomo5 expressions, each sub-expression is immutable. Thus, the summation operation generates a new ex-
pression e without changing existing expression objects referenced in the expression tree for f. By contrast, Coopr3
imposes the same property by cloning the expression e before added M.w, resulting in the following:

14.3. Pyomo Expressions 189

Pyomo Documentation, Release 6.5.0

e

+

f

+

*

2v

3*

2

w

This example also illustrates that leaves may be shared between expressions.

Mutable Expression Components

There is one important exception to the entanglement property described above. The Expression component is treated
as a mutable expression when shared between expressions. For example:

M = ConcreteModel()
M.v = Var()
M.w = Var()

M.e = Expression(expr=2 * M.v)
f = M.e + 3

M.e += M.w

Here, the expression M.e is a so-called named expression that the user has declared. Named expressions are explicitly
intended for re-use within models, and they provide a convenient mechanism for changing sub-expressions in complex
applications. In this example, the expression tree is as follows before M.w is added:

190 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

f

+

*

2 v

M.e 3

And the expression tree is as follows after M.w is added.

14.3. Pyomo Expressions 191

Pyomo Documentation, Release 6.5.0

f

+

+

* w

2 v

M.e 3

When considering named expressions, Pyomo5 and Coopr3 enforce the following semantics:

A change to a named expression e that is a sub-expression of f changes the expression tree for f, because f
continues to point to e after it is changed.

192 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

14.3.3 Design Details

Warning: Pyomo expression trees are not composed of Python objects from a single class hierarchy. Consequently,
Pyomo relies on duck typing to ensure that valid expression trees are created.

Most Pyomo expression trees have the following form

1. Interior nodes are objects that inherit from the ExpressionBase class. These objects typically have one or
more child nodes. Linear expression nodes do not have child nodes, but they are treated as interior nodes in the
expression tree because they references other leaf nodes.

2. Leaf nodes are numeric values, parameter components and variable components, which represent the inputs to
the expresion.

Expression Classes

Expression classes typically represent unary and binary operations. The following table describes the standard operators
in Python and their associated Pyomo expression class:

Operation Python Syntax Pyomo Class
sum x + y SumExpression
product x * y ProductExpression
negation - x NegationExpression
division x / y DivisionExpression
power x ** y PowExpression
inequality x <= y InequalityExpression
equality x == y EqualityExpression

Additionally, there are a variety of other Pyomo expression classes that capture more general logical relationships,
which are summarized in the following table:

Operation Example Pyomo Class
exernal function myfunc(x,y,z) ExternalFunctionExpression
logical if-then-else Expr_if(IF=x, THEN=y, ELSE=z) Expr_ifExpression
intrinsic function sin(x) UnaryFunctionExpression
absolute function abs(x) AbsExpression

Expression objects are immutable. Specifically, the list of arguments to an expression object (a.k.a. the list of child
nodes in the tree) cannot be changed after an expression class is constructed. To enforce this property, expression
objects have a standard API for accessing expression arguments:

• args - a class property that returns a generator that yields the expression arguments

• arg(i) - a function that returns the i-th argument

• nargs() - a function that returns the number of expression arguments

Warning: Developers should never use the _args_ property directly! The semantics for the use of this data has
changed since earlier versions of Pyomo. For example, in some expression classes the the value nargs() may not
equal len(_args_)!

14.3. Pyomo Expressions 193

Pyomo Documentation, Release 6.5.0

Expression trees can be categorized in four different ways:

• constant expressions - expressions that do not contain numeric constants and immutable parameters.

• mutable expressions - expressions that contain mutable parameters but no variables.

• potentially variable expressions - expressions that contain variables, which may be fixed.

• fixed expressions - expressions that contain variables, all of which are fixed.

These three categories are illustrated with the following example:

m = ConcreteModel()
m.p = Param(default=10, mutable=False)
m.q = Param(default=10, mutable=True)
m.x = Var()
m.y = Var(initialize=1)
m.y.fixed = True

The following table describes four different simple expressions that consist of a single model component, and it shows
how they are categorized:

Category m.p m.q m.x m.y
constant True False False False
not potentially variable True True False False
potentially_variable False False True True
fixed True True False True

Expressions classes contain methods to test whether an expression tree is in each of these categories. Additionally,
Pyomo includes custom expression classes for expression trees that are not potentially variable. These custom classes
will not normally be used by developers, but they provide an optimization of the checks for potentially variability.

Special Expression Classes

The following classes are exceptions to the design principles describe above.

Named Expressions

Named expressions allow for changes to an expression after it has been constructed. For example, consider the expres-
sion f defined with the Expression component:

M = ConcreteModel()
M.v = Var()
M.w = Var()

M.e = Expression(expr=2 * M.v)
f = M.e + 3 # f == 2*v + 3
M.e += M.w # f == 2*v + 3 + w

Although f is an immutable expression, whose definition is fixed, a sub-expressions is the named expression M.e.
Named expressions have a mutable value. In other words, the expression that they point to can change. Thus, a change
to the value of M.e changes the expression tree for any expression that includes the named expression.

194 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

Note: The named expression classes are not implemented as sub-classes of NumericExpression. This reflects
design constraints related to the fact that these are modeling components that belong to class hierarchies other than the
expression class hierarchy, and Pyomo’s design prohibits the use of multiple inheritance for these classes.

Linear Expressions

Pyomo includes a special expression class for linear expressions. The class LinearExpression provides a compact
description of linear polynomials. Specifically, it includes a constant value constant and two lists for coefficients and
variables: linear_coefs and linear_vars.

This expression object does not have arguments, and thus it is treated as a leaf node by Pyomo visitor classes. Further,
the expression API functions described above do not work with this class. Thus, developers need to treat this class
differently when walking an expression tree (e.g. when developing a problem transformation).

Sum Expressions

Pyomo does not have a binary sum expression class. Instead, it has an n-ary summation class, SumExpression. This
expression class treats sums as n-ary sums for efficiency reasons; many large optimization models contain large sums.
But note tht this class maintains the immutability property described above. This class shares an underlying list of
arguments with other SumExpression objects. A particular object owns the first n arguments in the shared list, but
different objects may have different values of n.

This class acts like a normal immutable expression class, and the API described above works normally. But direct
access to the shared list could have unexpected results.

Mutable Expressions

Finally, Pyomo includes several mutable expression classes that are private. These are not intended to be used by users,
but they might be useful for developers in contexts where the developer can appropriately control how the classes are
used. Specifically, immutability eliminates side-effects where changes to a sub-expression unexpectedly create changes
to the expression tree. But within the context of model transformations, developers may be able to limit the use of
expressions to avoid these side-effects. The following mutable private classes are available in Pyomo:

_MutableSumExpression
This class is used in the nonlinear_expression context manager to efficiently combine sums of nonlinear
terms.

_MutableLinearExpression
This class is used in the linear_expression context manager to efficiently combine sums of linear terms.

Expression Semantics

Pyomo clear semantics regarding what is considered a valid leaf and interior node.

The following classes are valid interior nodes:

• Subclasses of ExpressionBase

• Classes that that are duck typed to match the API of the ExpressionBase class. For example, the named
expression class Expression.

The following classes are valid leaf nodes:

14.3. Pyomo Expressions 195

Pyomo Documentation, Release 6.5.0

• Members of nonpyomo_leaf_types, which includes standard numeric data types like int, float and long,
as well as numeric data types defined by numpy and other commonly used packages. This set also includes
NonNumericValue, which is used to wrap non-numeric arguments to the ExternalFunctionExpression
class.

• Parameter component classes like ScalarParam and _ParamData, which arise in expression trees when the
parameters are declared as mutable. (Immutable parameters are identified when generating expressions, and
they are replaced with their associated numeric value.)

• Variable component classes like ScalarVar and _GeneralVarData, which often arise in expression trees.
<pyomo.core.expr.current.pyomo5_variable_types>`.

Note: In some contexts the LinearExpression class can be treated as an interior node, and sometimes it can be
treated as a leaf. This expression object does not have any child arguments, so nargs() is zero. But this expression
references variables and parameters in a linear expression, so in that sense it does not represent a leaf node in the tree.

Context Managers

Pyomo defines several context managers that can be used to declare the form of expressions, and to define a mutable
expression object that efficiently manages sums.

The linear_expression object is a context manager that can be used to declare a linear sum. For example, consider
the following two loops:

M = ConcreteModel()
M.x = Var(range(5))

s = 0
for i in range(5):

s += M.x[i]

with linear_expression() as e:
for i in range(5):

e += M.x[i]

The first apparent difference in these loops is that the value of s is explicitly initialized while e is initialized when
the context manager is entered. However, a more fundamental difference is that the expression representation for s
differs from e. Each term added to s results in a new, immutable expression. By contrast, the context manager creates
a mutable expression representation for e. This difference allows for both (a) a more efficient processing of each sum,
and (b) a more compact representation for the expression.

The difference between linear_expression and nonlinear_expression is the underlying representation that each
supports. Note that both of these are instances of context manager classes. In singled-threaded applications, these
objects can be safely used to construct different expressions with different context declarations.

Finally, note that these context managers can be passed into the startmethod for the quicksum function. For example:

M = ConcreteModel()
M.x = Var(range(5))
M.y = Var(range(5))

with linear_expression() as e:
quicksum((M.x[i] for i in M.x), start=e)
quicksum((M.y[i] for i in M.y), start=e)

196 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

This sum contains terms for M.x[i] and M.y[i]. The syntax in this example is not intuitive because the sum is being
stored in e.

Note: We do not generally expect users or developers to use these context managers. They are used by the quicksum
and sum_product functions to accelerate expression generation, and there are few cases where the direct use of these
context managers would provide additional utility to users and developers.

14.3.4 Managing Expressions

Creating a String Representation of an Expression

There are several ways that string representations can be created from an expression, but the expression_to_string
function provides the most flexible mechanism for generating a string representation. The options to this function
control distinct aspects of the string representation.

Algebraic vs. Nested Functional Form

The default string representation is an algebraic form, which closely mimics the Python operations used to construct
an expression. The verbose flag can be set to True to generate a string representation that is a nested functional form.
For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()

e = sin(M.x) + 2 * M.x

sin(x) + 2*x
print(EXPR.expression_to_string(e))

sum(sin(x), prod(2, x))
print(EXPR.expression_to_string(e, verbose=True))

Labeler and Symbol Map

The string representation used for variables in expression can be customized to define different label formats. If the
labeler option is specified, then this function (or class functor) is used to generate a string label used to represent the
variable. Pyomo defines a variety of labelers in the pyomo.core.base.label module. For example, the NumericLabeler
defines a functor that can be used to sequentially generate simple labels with a prefix followed by the variable count:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.y = Var()

e = sin(M.x) + 2 * M.y

(continues on next page)

14.3. Pyomo Expressions 197

Pyomo Documentation, Release 6.5.0

(continued from previous page)

sin(x1) + 2*x2
print(EXPR.expression_to_string(e, labeler=NumericLabeler('x')))

The smap option is used to specify a symbol map object (SymbolMap), which caches the variable label data. This
option is normally specified in contexts where the string representations for many expressions are being generated. In
that context, a symbol map ensures that variables in different expressions have a consistent label in their associated
string representations.

Standardized String Representations

The standardize option can be used to re-order the string representation to print polynomial terms before nonlin-
ear terms. By default, standardize is False, and the string representation reflects the order in which terms were
combined to form the expression. Pyomo does not guarantee that the string representation exactly matches the Python
expression order, since some simplification and re-ordering of terms is done automatically to improve the efficiency
of expression generation. But in most cases the string representation will closely correspond to the Python expression
order.

If standardize is True, then the pyomo expression is processed to identify polynomial terms, and the string repre-
sentation consists of the constant and linear terms followed by an expression that contains other nonlinear terms. For
example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.y = Var()

e = sin(M.x) + 2 * M.y + M.x * M.y - 3

-3 + 2*y + sin(x) + x*y
print(EXPR.expression_to_string(e, standardize=True))

Other Ways to Generate String Representations

There are two other standard ways to generate string representations:

• Call the __str__() magic method (e.g. using the Python str() function. This calls expression_to_string
with the option standardize equal to True (see below).

• Call the to_string() method on the ExpressionBase class. This defaults to calling
expression_to_string with the option standardize equal to False (see below).

In practice, we expect at the __str__()magic method will be used by most users, and the standardization of the output
provides a consistent ordering of terms that should make it easier to interpret expressions.

198 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

Cloning Expressions

Expressions are automatically cloned only during certain expression transformations. Since this can be an expensive op-
eration, the clone_counter context manager object is provided to track the number of times the clone_expression
function is executed.

For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()

with EXPR.clone_counter() as counter:
start = counter.count
e1 = sin(M.x)
e2 = e1.clone()
total = counter.count - start
assert total == 1

Evaluating Expressions

Expressions can be evaluated when all variables and parameters in the expression have a value. The value function
can be used to walk the expression tree and compute the value of an expression. For example:

M = ConcreteModel()
M.x = Var()
M.x.value = math.pi / 2.0
val = value(M.x)
assert isclose(val, math.pi / 2.0)

Additionally, expressions define the __call__() method, so the following is another way to compute the value of an
expression:

val = M.x()
assert isclose(val, math.pi / 2.0)

If a parameter or variable is undefined, then the value function and __call__() method will raise an exception. This
exception can be suppressed using the exception option. For example:

M = ConcreteModel()
M.x = Var()
val = value(M.x, exception=False)
assert val is None

This option is useful in contexts where adding a try block is inconvenient in your modeling script.

Note: Both the value function and __call__() method call the evaluate_expression function. In practice, this
function will be slightly faster, but the difference is only meaningful when expressions are evaluated many times.

14.3. Pyomo Expressions 199

Pyomo Documentation, Release 6.5.0

Identifying Components and Variables

Expression transformations sometimes need to find all nodes in an expression tree that are of a given type. Pyomo
contains two utility functions that support this functionality. First, the identify_components function is a generator
function that walks the expression tree and yields all nodes whose type is in a specified set of node types. For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.p = Param(mutable=True)

e = M.p + M.x
s = set([type(M.p)])
assert list(EXPR.identify_components(e, s)) == [M.p]

The identify_variables function is a generator function that yields all nodes that are variables. Pyomo uses several
different classes to represent variables, but this set of variable types does not need to be specified by the user. However,
the include_fixed flag can be specified to omit fixed variables. For example:

from pyomo.core.expr import current as EXPR

M = ConcreteModel()
M.x = Var()
M.y = Var()

e = M.x + M.y
M.y.value = 1
M.y.fixed = True

assert set(id(v) for v in EXPR.identify_variables(e)) == set([id(M.x), id(M.y)])
assert set(id(v) for v in EXPR.identify_variables(e, include_fixed=False)) == set(

[id(M.x)]
)

Walking an Expression Tree with a Visitor Class

Many of the utility functions defined above are implemented by walking an expression tree and performing an operation
at nodes in the tree. For example, evaluating an expression is performed using a post-order depth-first search process
where the value of a node is computed using the values of its children.

Walking an expression tree can be tricky, and the code requires intimate knowledge of the design of the expression
system. Pyomo includes several classes that define so-called visitor patterns for walking expression tree:

SimpleExpressionVisitor
A visitor() method is called for each node in the tree, and the visitor class collects information about the tree.

ExpressionValueVisitor
When the visitor() method is called on each node in the tree, the values of its children have been computed.
The value of the node is returned from visitor().

ExpressionReplacementVisitor
When the visitor() method is called on each node in the tree, it may clone or otherwise replace the node using
objects for its children (which themselves may be clones or replacements from the original child objects). The
new node object is returned from visitor().

200 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

These classes define a variety of suitable tree search methods:

• SimpleExpressionVisitor

– xbfs: breadth-first search where leaf nodes are immediately visited

– xbfs_yield_leaves: breadth-first search where leaf nodes are immediately visited, and the visit method
yields a value

• ExpressionValueVisitor

– dfs_postorder_stack: postorder depth-first search using a stack

• ExpressionReplacementVisitor

– dfs_postorder_stack: postorder depth-first search using a stack

Note: The PyUtilib visitor classes define several other search methods that could be used with Pyomo expressions.
But these are the only search methods currently used within Pyomo.

To implement a visitor object, a user creates a subclass of one of these classes. Only one of a few methods will need to
be defined to implement the visitor:

visitor()
Defines the operation that is performed when a node is visited. In the ExpressionValueVisitor and
ExpressionReplacementVisitor visitor classes, this method returns a value that is used by its parent node.

visiting_potential_leaf()
Checks if the search should terminate with this node. If no, then this method returns the tuple (False, None).
If yes, then this method returns (False, value), where value is computed by this method. This method is not
used in the SimpleExpressionVisitor visitor class.

finalize()
This method defines the final value that is returned from the visitor. This is not normally redefined.

Detailed documentation of the APIs for these methods is provided with the class documentation for these visitors.

SimpleExpressionVisitor Example

In this example, we describe an visitor class that counts the number of nodes in an expression (including leaf nodes).
Consider the following class:

from pyomo.core.expr import current as EXPR

class SizeofVisitor(EXPR.SimpleExpressionVisitor):
def __init__(self):

self.counter = 0

def visit(self, node):
self.counter += 1

def finalize(self):
return self.counter

14.3. Pyomo Expressions 201

Pyomo Documentation, Release 6.5.0

The class constructor creates a counter, and the visit() method increments this counter for every node that is visited.
The finalize() method returns the value of this counter after the tree has been walked. The following function
illustrates this use of this visitor class:

def sizeof_expression(expr):
#
Create the visitor object
#
visitor = SizeofVisitor()
#
Compute the value using the :func:`xbfs` search method.
#
return visitor.xbfs(expr)

ExpressionValueVisitor Example

In this example, we describe an visitor class that clones the expression tree (including leaf nodes). Consider the fol-
lowing class:

from pyomo.core.expr import current as EXPR

class CloneVisitor(EXPR.ExpressionValueVisitor):
def __init__(self):

self.memo = {'__block_scope__': {id(None): False}}

def visit(self, node, values):
#
Clone the interior node
#
return node.construct_clone(tuple(values), self.memo)

def visiting_potential_leaf(self, node):
#
Clone leaf nodes in the expression tree
#
if (

node.__class__ in native_numeric_types
or node.__class__ not in pyomo5_expression_types

):
return True, copy.deepcopy(node, self.memo)

return False, None

The visit() method creates a new expression node with children specified by values. The
visiting_potential_leaf() method performs a deepcopy() on leaf nodes, which are native Python types
or non-expression objects.

202 Chapter 14. Developer Reference

Pyomo Documentation, Release 6.5.0

def clone_expression(expr):
#
Create the visitor object
#
visitor = CloneVisitor()
#
Clone the expression using the :func:`dfs_postorder_stack`
search method.
#
return visitor.dfs_postorder_stack(expr)

ExpressionReplacementVisitor Example

In this example, we describe an visitor class that replaces variables with scaled variables, using a mutable parameter
that can be modified later. the following class:

from pyomo.core.expr import current as EXPR

class ScalingVisitor(EXPR.ExpressionReplacementVisitor):
def __init__(self, scale):

super(ScalingVisitor, self).__init__()
self.scale = scale

def visiting_potential_leaf(self, node):
#
Clone leaf nodes in the expression tree
#
if node.__class__ in native_numeric_types:

return True, node

if node.is_variable_type():
return True, self.scale[id(node)] * node

if isinstance(node, EXPR.LinearExpression):
node_ = copy.deepcopy(node)
node_.constant = node.constant
node_.linear_vars = copy.copy(node.linear_vars)
node_.linear_coefs = []
for i, v in enumerate(node.linear_vars):

node_.linear_coefs.append(node.linear_coefs[i] * self.scale[id(v)])
return True, node_

return False, None

No visit() method needs to be defined. The visiting_potential_leaf() function identifies variable nodes
and returns a product expression that contains a mutable parameter. The _LinearExpression class has a different
representation that embeds variables. Hence, this class must be handled in a separate condition that explicitly transforms

14.3. Pyomo Expressions 203

Pyomo Documentation, Release 6.5.0

this sub-expression.

def scale_expression(expr, scale):
#
Create the visitor object
#
visitor = ScalingVisitor(scale)
#
Scale the expression using the :func:`dfs_postorder_stack`
search method.
#
return visitor.dfs_postorder_stack(expr)

The scale_expression() function is called with an expression and a dictionary, scale, that maps variable ID to
model parameter. For example:

M = ConcreteModel()
M.x = Var(range(5))
M.p = Param(range(5), mutable=True)

scale = {}
for i in M.x:

scale[id(M.x[i])] = M.p[i]

e = quicksum(M.x[i] for i in M.x)
f = scale_expression(e, scale)

p[0]*x[0] + p[1]*x[1] + p[2]*x[2] + p[3]*x[3] + p[4]*x[4]
print(f)

204 Chapter 14. Developer Reference

CHAPTER

FIFTEEN

LIBRARY REFERENCE

Pyomo is being increasingly used as a library to support Python scripts. This section describes library APIs for key
elements of Pyomo’s core library. This documentation serves as a reference for both (1) Pyomo developers and (2)
advanced users who are developing Python scripts using Pyomo.

15.1 Common Utilities

Pyomo provides a set of general-purpose utilites through pyomo.common. These utilities are self-contained and do not
import or rely on any other parts of Pyomo.

15.1.1 pyomo.common.config

Core classes

ConfigDict([description, doc, implicit, ...]) Store and manipulate a dictionary of configuration val-
ues.

ConfigList(*args, **kwds) Store and manipulate a list of configuration values.
ConfigValue(*args, **kwds) Store and manipulate a single configuration value.

205

Pyomo Documentation, Release 6.5.0

Domain validators

PositiveInt(val) Domain validation function admitting strictly positive
integers

NegativeInt(val) Domain validation function admitting strictly negative
integers

NonNegativeInt(val) Domain validation function admitting integers >= 0
NonPositiveInt(val) Domain validation function admitting integers <= 0
PositiveFloat(val) Domain validation function admitting strictly positive

numbers
NegativeFloat(val) Domain validation function admitting strictly negative

numbers
NonPositiveFloat(val) Domain validation function admitting numbers less than

or equal to 0
NonNegativeFloat(val) Domain validation function admitting numbers greater

than or equal to 0
In(domain[, cast]) Domain validation class admitting a Container of possi-

ble values
InEnum(domain) Domain validation class admitting an enum value/name.
Path ([basePath, expandPath]) Domain validator for path-like options.
PathList([basePath, expandPath]) Domain validator for a list of path-like objects.
DynamicImplicitDomain(callback) Implicit domain that can return a custom domain based

on the key.

class pyomo.common.config.ConfigBase(default=None, domain=None, description=None, doc=None,
visibility=0)

class NoArgument

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

import_argparse(parsed_args)

initialize_argparse(parser)

name(fully_qualified=False)

reset()

set_default_value(default)

206 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

set_domain(domain)

unused_user_values()

user_values()

class pyomo.common.config.ConfigDict(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: ConfigBase, Mapping

Store and manipulate a dictionary of configuration values.

Parameters
• description (str, optional) – The short description of this list

• doc (str, optional) – The long documentation string for this list

• implicit (bool, optional) – If True, the ConfigDict will allow “implicitly” declared
keys, that is, keys can be stored into the ConfigDict that were not prevously declared using
declare() or declare_from().

• implicit_domain (callable, optional) – The domain that will be used for any
implicitly-declared keys. Follows the same rules as ConfigValue()’s domain.

• visibility (int, optional) – The visibility of this ConfigDict when generating tem-
plates and documentation. Visibility supports specification of “advanced” or “developer”
options. ConfigDicts with visibility=0 (the default) will always be printed / included. Con-
figDicts with higher visibility values will only be included when the generation method spec-
ifies a visibility greater than or equal to the visibility of this object.

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_from(other, skip=None)

domain_name()

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

15.1. Common Utilities 207

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

reset()

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

value(accessValue=True)

values()→ an object providing a view on D's values

class pyomo.common.config.ConfigList(*args, **kwds)
Bases: ConfigBase, Sequence

Store and manipulate a list of configuration values.

Parameters
• default (optional) – The default value that this ConfigList will take if no value is pro-

vided. If default is a list or ConfigList, then each member is cast to the ConfigList’s domain
to build the default value, otherwise the default is cast to the domain and forms a default list
with a single element.

• domain (callable, optional) – The domain can be any callable that accepts a candi-
date value and returns the value converted to the desired type, optionally performing any
data validation. The result will be stored / added to the ConfigList. Examples include type
constructors like int or float. More complex domain examples include callable objects; for
example, the In class that ensures that the value falls into an acceptable set or even a com-
plete ConfigDict instance.

• description (str, optional) – The short description of this list

• doc (str, optional) – The long documentation string for this list

• visibility (int, optional) – The visibility of this ConfigList when generating tem-
plates and documentation. Visibility supports specification of “advanced” or “developer”
options. ConfigLists with visibility=0 (the default) will always be printed / included. Con-
figLists with higher visibility values will only be included when the generation method spec-
ifies a visibility greater than or equal to the visibility of this object.

add(value=NOTSET)
DEPRECATED.

Append the specified value to the list, casting as necessary.

Deprecated since version 5.7.2: ConfigList.add() has been deprecated. Use append()

append(value=NOTSET)

get(key, default=NOTSET)

reset()

set_value(value)

value(accessValue=True)

class pyomo.common.config.ConfigValue(*args, **kwds)
Bases: ConfigBase

Store and manipulate a single configuration value.

Parameters

208 Chapter 15. Library Reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

• default (optional) – The default value that this ConfigValue will take if no value is pro-
vided.

• domain (callable, optional) – The domain can be any callable that accepts a candidate
value and returns the value converted to the desired type, optionally performing any data val-
idation. The result will be stored into the ConfigValue. Examples include type constructors
like int or float. More complex domain examples include callable objects; for example, the In
class that ensures that the value falls into an acceptable set or even a complete ConfigDict
instance.

• description (str, optional) – The short description of this value

• doc (str, optional) – The long documentation string for this value

• visibility (int, optional) – The visibility of this ConfigValue when generating tem-
plates and documentation. Visibility supports specification of “advanced” or “developer”
options. ConfigValues with visibility=0 (the default) will always be printed / included. Con-
figValues with higher visibility values will only be included when the generation method
specifies a visibility greater than or equal to the visibility of this object.

set_value(value)

value(accessValue=True)

class pyomo.common.config.DynamicImplicitDomain(callback)
Implicit domain that can return a custom domain based on the key.

This provides a mechanism for managing plugin-like systems, where the key specifies a source for additional
configuration information. For example, given the plugin module, pyomo/common/tests/config_plugin.
py:

from pyomo.common.config import ConfigDict, ConfigValue

def get_configuration(config):
ans = ConfigDict()
ans.declare('key1', ConfigValue(default=0, domain=int))
ans.declare('key2', ConfigValue(default=5, domain=str))
return ans(config)

>>> def _pluginImporter(name, config):
... mod = importlib.import_module(name)
... return mod.get_configuration(config)
>>> config = ConfigDict()
>>> config.declare('plugins', ConfigDict(
... implicit=True,
... implicit_domain=DynamicImplicitDomain(_pluginImporter)))
<pyomo.common.config.ConfigDict object at ...>
>>> config.plugins['pyomo.common.tests.config_plugin'] = {'key1': 5}
>>> config.display()
plugins:
pyomo.common.tests.config_plugin:
key1: 5
key2: '5'

Note: This initializer is only useful for the ConfigDict implicit_domain argument (and not for “regular”

15.1. Common Utilities 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

domain arguments)

Parameters
callback (Callable[[str, object], ConfigBase]) – A callable (function) that is passed
the ConfigDict key and value, and is expected to return the appropriate Config object (Config-
Value, ConfigList, or ConfigDict)

pyomo.common.config.PositiveInt(val)
Domain validation function admitting strictly positive integers

This domain will admit positive integers (n > 0), as well as any types that are convertible to positive integers.

pyomo.common.config.NegativeInt(val)
Domain validation function admitting strictly negative integers

This domain will admit negative integers (n < 0), as well as any types that are convertible to negative integers.

pyomo.common.config.NonNegativeInt(val)
Domain validation function admitting integers >= 0

This domain will admit non-negative integers (n >= 0), as well as any types that are convertible to non-negative
integers.

pyomo.common.config.NonPositiveInt(val)
Domain validation function admitting integers <= 0

This domain will admit non-positive integers (n <= 0), as well as any types that are convertible to non-positive
integers.

pyomo.common.config.PositiveFloat(val)
Domain validation function admitting strictly positive numbers

This domain will admit positive floating point numbers (n > 0), as well as any types that are convertible to positive
floating point numbers.

pyomo.common.config.NegativeFloat(val)
Domain validation function admitting strictly negative numbers

This domain will admit negative floating point numbers (n < 0), as well as any types that are convertible to
negative floating point numbers.

pyomo.common.config.NonPositiveFloat(val)
Domain validation function admitting numbers less than or equal to 0

This domain will admit non-positive floating point numbers (n <= 0), as well as any types that are convertible to
non-positive floating point numbers.

pyomo.common.config.NonNegativeFloat(val)
Domain validation function admitting numbers greater than or equal to 0

This domain will admit non-negative floating point numbers (n >= 0), as well as any types that are convertible
to non-negative floating point numbers.

class pyomo.common.config.In(domain, cast=None)
Domain validation class admitting a Container of possible values

This will admit any value that is in the domain Container (i.e., Container.__contains__() returns True). Most
common domains are list, set, and dict objects. If specified, incoming values are first passed to cast() to convert
them to the appropriate type before looking them up in domain.

210 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

Parameters
• domain (Container) – The container that specifies the allowable values. Incoming values

are passed to domain.__contains__(), and if True is returned, the value is accepted and
returned.

• cast (callable, optional) – A callable object. If specified, incoming values are first
passed to cast, and the resulting object is checked for membership in domain

Note: For backwards compatibility, In accepts enum.Enum classes as domain Containers. If the domain is an
Enum, then the constructor returns an instance of InEnum.

class pyomo.common.config.InEnum(domain)
Domain validation class admitting an enum value/name.

This will admit any value that is in the specified Enum, including Enum members, values, and string names. The
incoming value will be automatically cast to an Enum member.

Parameters
domain (enum.Enum) – The enum that incoming values should be mapped to

class pyomo.common.config.Path(basePath=None, expandPath=None)
Domain validator for path-like options.

This will admit any object and convert it to a string. It will then expand any environment variables and leading
usernames (e.g., “~myuser” or “~/”) appearing in either the value or the base path before concatenating the base
path and value, expanding the path to an absolute path, and normalizing the path.

Parameters
• basePath (None, str, ConfigValue) – The base path that will be prepended to any non-

absolute path values provided. If None, defaults to Path.BasePath.

• expandPath (bool) – If True, then the value will be expanded and normalized. If False,
the string representation of the value will be returned unchanged. If None, expandPath will
defer to the (negated) value of Path.SuppressPathExpansion

class pyomo.common.config.PathList(basePath=None, expandPath=None)
Domain validator for a list of path-like objects.

This will admit any iterable or object convertable to a string. Iterable objects (other than strings) will have each
member normalized using Path . Other types will be passed to Path , returning a list with the single resulting
path.

Parameters
• basePath (Union[None, str, ConfigValue]) – The base path that will be prepended

to any non-absolute path values provided. If None, defaults to Path.BasePath.

• expandPath (bool) – If True, then the value will be expanded and normalized. If False,
the string representation of the value will be returned unchanged. If None, expandPath will
defer to the (negated) value of Path.SuppressPathExpansion

15.1. Common Utilities 211

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

15.1.2 pyomo.common.dependencies

exception pyomo.common.dependencies.DeferredImportError

class pyomo.common.dependencies.ModuleUnavailable(name, message, version_error, import_error,
package)

Mock object that raises a DeferredImportError upon attribute access

This object is returned by attempt_import() in lieu of the module in the case that the module import fails.
Any attempts to access attributes on this object will raise a DeferredImportError exception.

Parameters
• name (str) – The module name that was being imported

• message (str) – The string message to return in the raised exception

• version_error (str) – A string to add to the message if the module failed to import be-
cause it did not match the required version

• import_error (str) – A string to add to the message documenting the Exception raised
when the module failed to import.

• package (str) – The module name that originally attempted the import

mro()

Return a type’s method resolution order.

log_import_warning(logger='pyomo', msg=None)
Log the import error message to the specified logger

This will log the the import error message to the specified logger. If msg= is specified, it will override the
default message passed to this instance of ModuleUnavailable.

generate_import_warning(logger='pyomo.common')
DEPRECATED.

Deprecated since version 6.0: use log_import_warning()

class pyomo.common.dependencies.DeferredImportModule(indicator, deferred_submodules,
submodule_name)

Mock module object to support the deferred import of a module.

This object is returned by attempt_import() in lieu of the module when attempt_import() is called with
defer_check=True. Any attempts to access attributes on this object will trigger the actual module import and
return either the appropriate module attribute or else if the module import fails, raise a DeferredImportError
exception.

mro()

Return a type’s method resolution order.

class pyomo.common.dependencies.DeferredImportIndicator(name, error_message, catch_exceptions,
minimum_version, original_globals,
callback, importer, deferred_submodules)

Placeholder indicating if an import was successful.

This object serves as a placeholder for the Boolean indicator if a deferred module import was successful. Cast-
ing this instance to bool will cause the import to be attempted. The actual import logic is here and not in the
DeferredImportModule to reduce the number of attributes on the DeferredImportModule.

212 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

DeferredImportIndicator supports limited logical expressions using the & (and) and | (or) binary operators.
Creating these expressions does not trigger the import of the corresponding DeferredImportModule instances,
although casting the resulting expression to bool() will trigger any relevant imports.

pyomo.common.dependencies.attempt_import(name, error_message=None, only_catch_importerror=None,
minimum_version=None, alt_names=None, callback=None,
importer=None, defer_check=True,
deferred_submodules=None, catch_exceptions=None)

Attempt to import the specified module.

This will attempt to import the specified module, returning a (module, available) tuple. If the import was
successful, module will be the imported module and available will be True. If the import results in an excep-
tion, then module will be an instance of ModuleUnavailable and available will be False

The following

>>> from pyomo.common.dependencies import attempt_import
>>> numpy, numpy_available = attempt_import('numpy')

Is roughly equivalent to

>>> from pyomo.common.dependencies import ModuleUnavailable
>>> try:
... import numpy
... numpy_available = True
... except ImportError as e:
... numpy = ModuleUnavailable('numpy', 'Numpy is not available',
... '', str(e), globals()['__name__'])
... numpy_available = False

The import can be “deferred” until the first time the code either attempts to access the module or checks the
Boolean value of the available flag. This allows optional dependencies to be declared at the module scope but
not imported until they are actually used by the module (thereby speeding up the initial package import). Deferred
imports are handled by two helper classes (DeferredImportModule and DeferredImportIndicator). Upon
actual import, DeferredImportIndicator.resolve() attempts to replace those objects (in both the local and
original global namespaces) with the imported module and Boolean flag so that subsequent uses of the module
do not incur any overhead due to the delayed import.

Parameters
• name (str) – The name of the module to import

• error_message (str, optional) – The message for the exception raised by
ModuleUnavailable

• only_catch_importerror (bool, optional) – DEPRECATED: use catch_exceptions
instead or only_catch_importerror. If True (the default), exceptions other than ImportError
raised during module import will be reraised. If False, any exception will result in returning
a ModuleUnavailable object. (deprecated in version 5.7.3)

• minimum_version (str, optional) – The minimum acceptable module version (re-
trieved from module.__version__)

• alt_names (list, optional) – DEPRECATED: alt_names no longer needs to be spec-
ified and is ignored. A list of common alternate names by which to look for this module
in the globals() namespaces. For example, the alt_names for NumPy would be ['np'].
(deprecated in version 6.0)

15.1. Common Utilities 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• callback (function, optional) – A function with the signature “fcn(module,
available)” that will be called after the import is first attempted.

• importer (function, optional) – A function that will perform the import and return
the imported module (or raise an ImportError). This is useful for cases where there are
several equivalent modules and you want to import/return the first one that is available.

• defer_check (bool, optional) – If True (the default), then the attempted import is de-
ferred until the first use of either the module or the availability flag. The method will return
instances of DeferredImportModule and DeferredImportIndicator.

• deferred_submodules (Iterable[str], optional) – If provided, an iterable of sub-
module names within this module that can be accessed without triggering a deferred im-
port of this module. For example, this module uses deferred_submodules=['pyplot',
'pylab'] for matplotlib.

• catch_exceptions (Iterable[Exception], optional) – If provided, this is the
list of exceptions that will be caught when importing the target module, resulting in
attempt_import returning a ModuleUnavailable instance. The default is to only catch
ImportError. This is useful when a module can regularly return additional exceptions dur-
ing import.

Returns
• module – the imported module, or an instance of ModuleUnavailable, or an instance of
DeferredImportModule

• bool – Boolean indicating if the module import succeeded or an instance of
DeferredImportIndicator

pyomo.common.dependencies.declare_deferred_modules_as_importable(globals_dict)
Make all DeferredImportModules in globals_dict importable

This function will go throught the specified globals_dict dictionary and add any instances of
DeferredImportModule that it finds (and any of their deferred submodules) to sys.modules so that the mod-
ules can be imported through the globals_dict namespace.

For example, pyomo/common/dependencies.py declares:

>>> scipy, scipy_available = attempt_import(
... 'scipy', callback=_finalize_scipy,
... deferred_submodules=['stats', 'sparse', 'spatial', 'integrate'])
>>> declare_deferred_modules_as_importable(globals())

Which enables users to use:

>>> import pyomo.common.dependencies.scipy.sparse as spa

If the deferred import has not yet been triggered, then the DeferredImportModule is returned and named spa.
However, if the import has already been triggered, then spa will either be the scipy.sparse module, or a
ModuleUnavailable instance.

214 Chapter 15. Library Reference

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ImportError

Pyomo Documentation, Release 6.5.0

15.1.3 pyomo.common.deprecation

This module provides utilities for deprecating functionality.

deprecated([msg, logger, version, remove_in]) Decorator to indicate that a function, method, or class is
deprecated.

deprecation_warning(msg[, logger, version, ...]) Standardized formatter for deprecation warnings
relocated_module(new_name[, msg, logger, ...]) Provide a deprecation path for moved / renamed modules
relocated_module_attribute(local, target, ...) Provide a deprecation path for moved / renamed module

attributes
RenamedClass(name, bases, classdict, *args, ...) Metaclass to provide a deprecation path for renamed

classes

pyomo.common.deprecation.default_deprecation_msg(obj, user_msg, version, remove_in)
Generate the default deprecation message.

See deprecated() function for argument details.

pyomo.common.deprecation.in_testing_environment()

Return True if we are currently running in a “testing” environment

This currently includes if nose, nose2, pytest, or Sphinx are running (imported).

pyomo.common.deprecation.deprecation_warning(msg, logger=None, version=None, remove_in=None,
calling_frame=None)

Standardized formatter for deprecation warnings

This is a standardized routine for formatting deprecation warnings so that things look consistent and “nice”.

Parameters
• msg (str) – the deprecation message to format

• logger (str) – the logger to use for emitting the warning (default: the calling pyomo pack-
age, or “pyomo”)

• version (str) – [required] the version in which the decorated object was deprecated. Gen-
eral practice is to set version to the current development version (from pyomo –version)
during development and update it to the actual release as part of the release process.

• remove_in (str) – the version in which the decorated object will be removed from the code.

• calling_frame (frame) – the original frame context that triggered the deprecation warn-
ing.

Example

>>> from pyomo.common.deprecation import deprecation_warning
>>> deprecation_warning('This functionality is deprecated.', version='1.2.3')
WARNING: DEPRECATED: This functionality is deprecated. (deprecated in 1.2.3) ...

pyomo.common.deprecation.deprecated(msg=None, logger=None, version=None, remove_in=None)
Decorator to indicate that a function, method, or class is deprecated.

This decorator will cause a warning to be logged when the wrapped function or method is called, or when the
deprecated class is constructed. This decorator also updates the target object’s docstring to indicate that it is
deprecated.

15.1. Common Utilities 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Parameters
• msg (str) – a custom deprecation message (default: “This {function|class} has been depre-

cated and may be removed in a future release.”)

• logger (str) – the logger to use for emitting the warning (default: the calling pyomo pack-
age, or “pyomo”)

• version (str) – [required] the version in which the decorated object was deprecated. Gen-
eral practice is to set version to the current development version (from pyomo –version)
during development and update it to the actual release as part of the release process.

• remove_in (str) – the version in which the decorated object will be removed from the code.

Example

>>> from pyomo.common.deprecation import deprecated
>>> @deprecated(version='1.2.3')
... def sample_function(x):
... return 2*x
>>> sample_function(5)
WARNING: DEPRECATED: This function (sample_function) has been deprecated and

may be removed in a future release. (deprecated in 1.2.3) ...
10

pyomo.common.deprecation.relocated_module(new_name, msg=None, logger=None, version=None,
remove_in=None)

Provide a deprecation path for moved / renamed modules

Upon import, the old module (that called relocated_module()) will be replaced in sys.modules by an alias that
points directly to the new module. As a result, the old module should have only two lines of executable Python
code (the import of relocated_module and the call to it).

Parameters
• new_name (str) – The new (fully-qualified) module name

• msg (str) – A custom deprecation message.

• logger (str) – The logger to use for emitting the warning (default: the calling pyomo
package, or “pyomo”)

• version (str [required]) – The version in which the module was renamed or moved.
General practice is to set version to the current development version (from pyomo –version)
during development and update it to the actual release as part of the release process.

• remove_in (str) – The version in which the module will be removed from the code.

216 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Example

>>> from pyomo.common.deprecation import relocated_module
>>> relocated_module('pyomo.common.deprecation', version='1.2.3')
WARNING: DEPRECATED: The '...' module has been moved to

'pyomo.common.deprecation'. Please update your import.
(deprecated in 1.2.3) ...

pyomo.common.deprecation.relocated_module_attribute(local, target, version, remove_in=None,
msg=None, f_globals=None)

Provide a deprecation path for moved / renamed module attributes

This function declares that a local module attribute has been moved to another location. For Python 3.7+, it
leverages a module.__getattr__ method to manage the deferred import of the object from the new location (on
request), as well as emitting the deprecation warning.

It contains backports of the __getattr__ functionality for earlier versions of Python (although the implementation
for 3.5+ is more efficient that the implementation for 2.7+)

Parameters
• local (str) – The original (local) name of the relocated attribute

• target (str) – The new absolute import name of the relocated attribute

• version (str) – The Pyomo version when this move was released (passed to depreca-
tion_warning)

• remove_in (str) – The Pyomo version when this deprecation path will be removed (passed
to deprecation_warning)

• msg (str) – If not None, then this specifies a custom deprecation message to be emitted
when the attribute is accessed from its original location.

class pyomo.common.deprecation.RenamedClass(name, bases, classdict, *args, **kwargs)
Metaclass to provide a deprecation path for renamed classes

This metaclass provides a mechanism for renaming old classes while still preserving isinstance / issubclass rela-
tionships.

Examples

>>> from pyomo.common.deprecation import RenamedClass
>>> class NewClass(object):
... pass
>>> class OldClass(metaclass=RenamedClass):
... __renamed__new_class__ = NewClass
... __renamed__version__ = '6.0'

Deriving from the old class generates a warning:

>>> class DerivedOldClass(OldClass):
... pass
WARNING: DEPRECATED: Declaring class 'DerivedOldClass' derived from

'OldClass'. The class 'OldClass' has been renamed to 'NewClass'.
(deprecated in 6.0) ...

15.1. Common Utilities 217

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

As does instantiating the old class:

>>> old = OldClass()
WARNING: DEPRECATED: Instantiating class 'OldClass'. The class

'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ...

Finally, isinstance and issubclass still work, for example:

>>> isinstance(old, NewClass)
True
>>> class NewSubclass(NewClass):
... pass
>>> new = NewSubclass()
>>> isinstance(new, OldClass)
WARNING: DEPRECATED: Checking type relative to 'OldClass'. The class

'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ...
True

15.1.4 pyomo.common.fileutils

This module provides general utilities for working with the file system

this_file([stack_offset]) Returns the file name for the module that calls this func-
tion.

this_file_dir([stack_offset]) Returns the directory containing the module that calls
this function.

find_path (name, validate[, cwd, mode, ext, ...]) Locate a path, given a set of search parameters
find_file(filename[, cwd, mode, ext, ...]) Locate a file, given a set of search parameters
find_dir(dirname[, cwd, mode, pathlist, ...]) Locate a directory, given a set of search parameters
find_library(libname[, cwd, include_PATH, ...]) Find a dynamic library using find_file to search typical

locations.
find_executable(exename[, cwd, ...]) Find an executable using find_file to search typical loca-

tions.
import_file(path[, clear_cache, ...]) Import a module given the full path/filename of the file.
PathManager(finder, dataClass) The PathManager defines a registry class for path loca-

tions
PathData(manager, name) An object for storing and managing a PathManager path

pyomo.common.fileutils.this_file(stack_offset=1)
Returns the file name for the module that calls this function.

This function is more reliable than __file__ on platforms like Windows and in situations where the program has
called os.chdir().

pyomo.common.fileutils.this_file_dir(stack_offset=1)
Returns the directory containing the module that calls this function.

pyomo.common.fileutils.find_path(name, validate, cwd=True, mode=4, ext=None, pathlist=[],
allow_pathlist_deep_references=True)

Locate a path, given a set of search parameters

Parameters

218 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

• name (str) – The name to locate. The name may contain references to a user’s home direc-
tory (~user), environment variables (${HOME}/bin), and shell wildcards (? and *); all of
which will be expanded.

• validate (function) – A function to call to validate the path (used by find_file and find_dir
to discriminate files and directories)

• cwd (bool) – Start by looking in the current working directory [default: True]

• mode (mask) – If not None, only return entries that can be accessed for read-
ing/writing/executing. Valid values are the inclusive OR of {os.R_OK, os.W_OK,
os.X_OK} [default: os.R_OK]

• ext (str or iterable of str) – If not None, also look for name+ext [default: None]

• pathlist (str or iterable of str) – A list of strings containing paths to search, each
string contains a single path. If pathlist is a string, then it is first split using os.pathsep to
generate the pathlist [default: []].

• allow_pathlist_deep_references (bool) – If allow_pathlist_deep_references is True
and the name appears to be a relative path, allow deep reference matches relative to direc-
tories in the pathlist (e.g., if name is foo/my.exe and /usr/bin is in the pathlist, then
find_file() could return /usr/bin/foo/my.exe). If allow_pathlist_deep_references is
False and the name appears to be a relative path, then only matches relative to the current
directory are allowed (assuming cwd==True). [default: True]

Notes

find_path uses glob, so the path and/or name may contain wildcards. The first matching entry is returned.

pyomo.common.fileutils.find_file(filename, cwd=True, mode=4, ext=None, pathlist=[],
allow_pathlist_deep_references=True)

Locate a file, given a set of search parameters

Parameters
• filename (str) – The file name to locate. The file name may contain references to a user’s

home directory (~user), environment variables (${HOME}/bin), and shell wildcards (? and
*); all of which will be expanded.

• cwd (bool) – Start by looking in the current working directory [default: True]

• mode (mask) – If not None, only return files that can be accessed for read-
ing/writing/executing. Valid values are the inclusive OR of {os.R_OK, os.W_OK,
os.X_OK} [default: os.R_OK]

• ext (str or iterable of str) – If not None, also look for filename+ext [default: None]

• pathlist (str or iterable of str) – A list of strings containing paths to search, each
string contains a single path. If pathlist is a string, then it is first split using os.pathsep to
generate the pathlist [default: []].

• allow_pathlist_deep_references (bool) – If allow_pathlist_deep_references is True
and the filename appears to be a relative path, allow deep reference matches relative to direc-
tories in the pathlist (e.g., if filename is foo/my.exe and /usr/bin is in the pathlist, then
find_file() could return /usr/bin/foo/my.exe). If allow_pathlist_deep_references is
False and the filename appears to be a relative path, then only matches relative to the current
directory are allowed (assuming cwd==True). [default: True]

15.1. Common Utilities 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Notes

find_file uses glob, so the path and/or file name may contain wildcards. The first matching file is returned.

pyomo.common.fileutils.find_dir(dirname, cwd=True, mode=4, pathlist=[],
allow_pathlist_deep_references=True)

Locate a directory, given a set of search parameters

Parameters
• dirname (str) – The directory name to locate. The name may contain references to a user’s

home directory (~user), environment variables (${HOME}/bin), and shell wildcards (? and
*); all of which will be expanded.

• cwd (bool) – Start by looking in the current working directory [default: True]

• mode (mask) – If not None, only return directories that can be accessed for read-
ing/writing/executing. Valid values are the inclusive OR of {os.R_OK, os.W_OK,
os.X_OK} [default: os.R_OK]

• pathlist (str or iterable of str) – A list of strings containing paths to search, each
string contains a single path. If pathlist is a string, then it is first split using os.pathsep to
generate the pathlist [default: []].

• allow_pathlist_deep_references (bool) – If allow_pathlist_deep_references is True
and the dirname appears to be a relative path, allow deep reference matches relative to di-
rectories in the pathlist (e.g., if dirname is foo/bar and /usr/bin is in the pathlist, then
find_dir() could return /usr/bin/foo/bar). If allow_pathlist_deep_references is False
and the dirname appears to be a relative path, then only matches relative to the current di-
rectory are allowed (assuming cwd==True). [default: True]

Notes

find_dir uses glob, so the path and/or directory name may contain wildcards. The first matching directory is
returned.

pyomo.common.fileutils.find_library(libname, cwd=True, include_PATH=True, pathlist=None)
Find a dynamic library using find_file to search typical locations.

Finds a specified library (file) by searching a specified set of paths. This routine will look for the specified file
name, as well as looking for the filename followed by architecture-specific extensions (e.g., .dll, .so, or .dynlib).
Note that as this uses :py:func:find_file(), the filename and search paths may contain wildcards.

If the explicit path search fails to locate a library, then this returns the result from passing the basename (with
‘lib’ and extension removed) to ctypes.util.find_library()

Parameters
• libname (str) – The library name to search for

• cwd (bool) – Start by looking in the current working directory [default: True]

• include_PATH (bool) – Include the executable search PATH at the end of the list of direc-
tories to search. [default: True]

• pathlist (str or list of str) – List of paths to search for the file. If None, then
pathlist will default to the local Pyomo configuration library directory (and the local Pyomo
binary directory if include_PATH is set) and the contents of LD_LIBRARY_PATH. If a
string, then the string is split using os.pathsep. [default: None]

220 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Notes

find_library() uses find_file() with allow_pathlist_deep_references=True, so libnames containing
relative paths will be matched relative to all paths in pathlist.

pyomo.common.fileutils.find_executable(exename, cwd=True, include_PATH=True, pathlist=None)
Find an executable using find_file to search typical locations.

Finds a specified executable by searching a specified set of paths. This routine will look for the specified file
name, as well as looking for the filename followed by architecture-specific extensions (e.g., .exe). Note that as
this uses find_file(), the filename and search paths may contain wildcards.

Parameters
• exename (str) – The executable file name to search for

• cwd (bool) – Start by looking in the current working directory [default: True]

• include_PATH (bool) – Include the executable search PATH at the end of the list of direc-
tories to search. [default: True]

• pathlist (str or list of str) – List of paths to search for the file. If None, then
pathlist will default to the local Pyomo configuration binary directory. If a string, then the
string is split using os.pathsep. [Default: None]

Notes

find_executable() uses find_file() with allow_pathlist_deep_references=False, so search strings
containing relative paths will only be matched relative to the current working directory. This prevents confusion
in the case where a user called find_executable("./foo") and forgot to copy foo into the local directory,
but this function picked up another foo in the user’s PATH that they did not want to use.

pyomo.common.fileutils.import_file(path, clear_cache=False, infer_package=True, module_name=None)
Import a module given the full path/filename of the file. Replaces import_file from pyutilib (Pyomo 6.0.0).

This function returns the module object that is created.

Parameters
• path (str) – Full path to .py file.

• clear_cache (bool) – Remove module if already loaded. The default is False.

class pyomo.common.fileutils.PathData(manager, name)
An object for storing and managing a PathManager path

path()

Return the full, normalized path to the registered path entry.

If the object is not found (or was marked “disabled”), path() returns None.

get_path()

DEPRECATED.

Deprecated since version 5.6.2: get_path() is deprecated; use pyomo.common.Executable(name).path()

disable()

Disable this path entry

This method “disables” this path entry by marking it as “not found”. Disabled entries return False for
available() and None for path(). The disabled status will persist until the next call to rehash().

15.1. Common Utilities 221

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

available()

Returns True if the registered path is available.

Entries are available if the object was found found in the search locations and has not been explicitly dis-
abled.

rehash()

Requery the location of this path entry

This method derives its name from the csh command of the same name, which rebuilds the hash table of
executables reachable through the PATH.

class pyomo.common.fileutils.ExecutableData(manager, name)
A PathData class specifically for executables.

property executable

Get (or set) the path to the executable

class pyomo.common.fileutils.PathManager(finder, dataClass)
The PathManager defines a registry class for path locations

The PathManager defines a class very similar to the CachedFactory class; however it does not register type
constructors. Instead, it registers instances of PathData (or ExecutableData). These contain the resolved
path to the directory object under which the PathData object was registered. We do not use the PyUtilib
register_executable and registered_executable functions so that we can automatically include Pyomo-
specific locations in the search path (namely the PYOMO_CONFIG_DIR).

Users will generally interact with this class through global instances of this class (pyomo.common.Executable
and pyomo.common.Library).

Users are not required or expected to register file names with the PathManager; they will be automatically
registered upon first use. Generally, users interact through the path() and available() methods:

>>> from pyomo.common import Executable
>>> if Executable('demo_exec_file').available():
... loc = Executable('demo_exec_file').path()
... print(os.path.isfile(loc))
True
>>> print(os.access(loc, os.X_OK))
True

For convenience, available() and path() are available by casting the PathData object requrned from
Executable or Library to either a bool or str:

>>> if Executable('demo_exec_file'):
... cmd = "%s --help" % Executable('demo_exec_file')

The PathManager caches the location / existence of the target directory entry. If something in the environment
changes (e.g., the PATH) or the file is created or removed after the first time a client queried the location or
availability, the PathManager will return incorrect information. You can cause the PathManager to refresh its
cache by calling rehash() on either the PathData (for the single file) or the PathManager to refresh the cache
for all files:

>>> # refresh the cache for a single file
>>> Executable('demo_exec_file').rehash()
>>> # or all registered files
>>> Executable.rehash()

222 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

The Executable singleton looks for executables in the system PATH and in the list of directories specified by the
pathlist attribute. Executable.pathlist defaults to a list containing the os.path.join(pyomo.common.
envvar.PYOMO_CONFIG_DIR, 'bin').

The Library singleton looks for executables in the system LD_LIBRARY_PATH, PATH and in the list of direc-
tories specified by the pathlist attribute. Library.pathlist defaults to a list containing the os.path.
join(pyomo.common.envvar.PYOMO_CONFIG_DIR, 'lib').

Users may also override the normal file resolution by explicitly setting the location using set_path():

>>> Executable('demo_exec_file').set_path(os.path.join(
... pyomo.common.envvar.PYOMO_CONFIG_DIR, 'bin', 'demo_exec_file'))

Explicitly setting the path is an absolute operation and will set the location whether or not that location points to
an actual file. Additionally, the explicit location will persist through calls to rehash(). If you wish to remove
the explicit executable location, call set_path(None):

>>> Executable('demo_exec_file').set_path(None)

The Executable singleton uses ExecutableData, an extended form of the PathData class, which provides
the executable property as an alais for path() and set_path():

>>> loc = Executable('demo_exec_file').executable
>>> print(os.path.isfile(loc))
True
>>> Executable('demo_exec_file').executable = os.path.join(
... pyomo.common.envvar.PYOMO_CONFIG_DIR, 'bin', 'demo_exec_file')
>>> Executable('demo_exec_file').executable = None

rehash()

Requery the location of all registered executables

This method derives its name from the csh command of the same name, which rebuilds the hash table of
executables reachable through the PATH.

pyomo.common.fileutils.register_executable(name, validate=None)
DEPRECATED.

Deprecated since version 5.6.2: pyomo.common.register_executable(name) has been deprecated; explicit regis-
tration is no longer necessary

pyomo.common.fileutils.registered_executable(name)
DEPRECATED.

Deprecated since version 5.6.2: pyomo.common.registered_executable(name) has been deprecated; use py-
omo.common.Executable(name).path() to get the path or pyomo.common.Executable(name).available() to get
a bool indicating file availability. Equivalent results can be obtained by casting Executable(name) to string or
bool.

pyomo.common.fileutils.unregister_executable(name)
DEPRECATED.

Deprecated since version 5.6.2: pyomo.common.unregister_executable(name) has been deprecated; use Exe-
cutable(name).disable()

15.1. Common Utilities 223

Pyomo Documentation, Release 6.5.0

15.1.5 pyomo.common.formatting

This module provides general utilities for producing formatted I/O

tostr(value[, quote_str]) Convert a value to a string
tabular_writer(ostream, prefix, data, ...) Output data in tabular form
StreamIndenter(ostream[, indent]) Mock-up of a file-like object that wraps another file-like

object and indents all data using the specified string be-
fore passing it to the underlying file.

pyomo.common.formatting.tostr(value, quote_str=False)
Convert a value to a string

This function is a thin wrapper around str(value) to resolve a problematic __str__ implementation in the standard
Python container types (tuple, list, and dict). Those classes implement __str__ the same as __repr__ (by calling
repr() on each contained object). That is frequently undesirable, as you may wish the string representation of a
container to contain the string representations of the contained objects.

This function generates string representations for native Python containers (tuple, list, and dict) that contains the
string representations of the contained objects. In addition, it also applies the same special handling to any types
that derive from the standard containers without overriding either __repn__ or __str__.

Parameters
• value (object) – the object to convert to a string

• quote_str (bool) – if True, and if value is a str, then return a “quoted string” (as generated
by repr()). This is primarily used when recursively processing native Python containers.

Return type
str

pyomo.common.formatting.tabular_writer(ostream, prefix, data, header, row_generator)
Output data in tabular form

Parameters
• ostream (io.TextIOBase) – the stream to write to

• prefix (str) – prefix each generated line with this string

• data (iterable) – an iterable object that returns (key, value) pairs (e.g., from iteritems())
defining each row in the table

• header (List[str]) – list of column headers

• row_generator (function) – a function that accepts the key and value from data and re-
turns either a tuple defining the entries for a single row, or a generator that returns a sequence
of table rows to be output for the specified key

class pyomo.common.formatting.StreamIndenter(ostream, indent=' ')
Mock-up of a file-like object that wraps another file-like object and indents all data using the specified string
before passing it to the underlying file. Since this presents a full file interface, StreamIndenter objects may be
arbitrarily nested.

224 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.TextIOBase
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

15.1.6 pyomo.common.tempfiles

class pyomo.common.tempfiles.TempfileManagerClass

A class for managing tempfile contexts

Pyomo declares a global instance of this class as TempfileManager:

>>> from pyomo.common.tempfiles import TempfileManager

This class provides an interface for managing TempfileContext contexts. It implements a basic stack, where
users can push() a new context (causing it to become the current “active” context) and pop() contexts off
(optionally deleting all files associated with the context). In general usage, users will either use this class to
create new tempfile contexts and use them explicitly (i.e., through a context manager):

>>> import os
>>> with TempfileManager.new_context() as tempfile:
... fd, fname = tempfile.mkstemp()
... dname = tempfile.mkdtemp()
... os.path.isfile(fname)
... os.path.isdir(dname)
True
True
>>> os.path.exists(fname)
False
>>> os.path.exists(dname)
False

or through an implicit active context accessed through the manager class:

>>> TempfileManager.push()
<pyomo.common.tempfiles.TempfileContext object ...>
>>> fname = TempfileManager.create_tempfile()
>>> dname = TempfileManager.create_tempdir()
>>> os.path.isfile(fname)
True
>>> os.path.isdir(dname)
True

>>> TempfileManager.pop()
<pyomo.common.tempfiles.TempfileContext object ...>
>>> os.path.exists(fname)
False
>>> os.path.exists(dname)
False

context()

Return the current active TempfileContext.

Raises
TempfileContextError if there is not a current context. –

create_tempfile(suffix=None, prefix=None, text=False, dir=None)
Call TempfileContext.create_tempfile() on the active context

create_tempdir(suffix=None, prefix=None, dir=None)
Call TempfileContext.create_tempdir() on the active context

15.1. Common Utilities 225

Pyomo Documentation, Release 6.5.0

add_tempfile(filename, exists=True)
Call TempfileContext.add_tempfile() on the active context

clear_tempfiles(remove=True)
Delete all temporary files and remove all contexts.

sequential_files(ctr=0)
DEPRECATED.

Deprecated since version 6.2: The TempfileManager.sequential_files() method has been removed. All tem-
porary files are created with guaranteed unique names. Users wishing sequentially numbered files should
create a temporary (empty) directory using mkdtemp / create_tempdir and place the sequential files within
it.

new_context()

Create and return an new tempfile context

Returns
the newly-created tempfile context

Return type
TempfileContext

push()

Create a new tempfile context and set it as the active context.

Returns
the newly-created tempfile context

Return type
TempfileContext

pop(remove=True)
Remove and release the active context

Parameters
remove (bool) – If True, delete all managed files / directories

class pyomo.common.tempfiles.TempfileContext(manager)
A context for managing collections of temporary files

Instances of this class hold a “temporary file context”. That is, this records a collection of temporary file system
objects that are all managed as a group. The most common use of the context is to ensure that all files are deleted
when the context is released.

This class replicates a significant portion of the tempfile module interface.

Instances of this class may be used as context managers (with the temporary files / directories getting automati-
cally deleted when the context manager exits).

Instances will also attempt to delete any temporary objects from the filesystem when the context falls out of scope
(although this behavior is not guaranteed for instances existing when the interpreter is shutting down).

mkstemp(suffix=None, prefix=None, dir=None, text=False)
Create a unique temporary file using tempfile.mkstemp()

Parameters are handled as in tempfile.mkstemp(), with the exception that the new file is created in the
directory returned by gettempdir()

Returns
• fd (int) – the opened file descriptor

226 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp
https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp

Pyomo Documentation, Release 6.5.0

• fname (str or bytes) – the absolute path to the new temporary file

mkdtemp(suffix=None, prefix=None, dir=None)
Create a unique temporary directory using tempfile.mkdtemp()

Parameters are handled as in tempfile.mkdtemp(), with the exception that the new file is created in the
directory returned by gettempdir()

Returns
dname – the absolute path to the new temporary directory

Return type
str or bytes

gettempdir()

Return the default name of the directory used for temporary files.

This method returns the first non-null location returned from:

• This context’s tempdir (i.e., self.tempdir)

• This context’s manager’s tempdir (i.e., self.manager().tempdir)

• tempfile.gettempdir()

Returns
dir – The default directory to use for creating temporary objects

Return type
str

gettempdirb()

Same as gettempdir(), but the return value is bytes

gettempprefix()

Return the filename prefix used to create temporary files.

See tempfile.gettempprefix()

gettempprefixb()

Same as gettempprefix(), but the return value is bytes

create_tempfile(suffix=None, prefix=None, text=False, dir=None)
Create a unique temporary file.

The file name is generated as in tempfile.mkstemp().

Any file handles to the new file (e.g., from mkstemp()) are closed.

Returns
fname – The absolute path of the new file.

Return type
str or bytes

create_tempdir(suffix=None, prefix=None, dir=None)
Create a unique temporary directory.

The file name is generated as in tempfile.mkdtemp().

Returns
dname – The absolute path of the new directory.

15.1. Common Utilities 227

https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp
https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/tempfile.html#tempfile.gettempprefix
https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp

Pyomo Documentation, Release 6.5.0

Return type
str or bytes

add_tempfile(filename, exists=True)
Declare the specified file/directory to be temporary.

This adds the specified path as a “temporary” object to this context’s list of managed temporary paths (i.e.,
it will be potentially be deleted when the context is released (see release()).

Parameters
• filename (str) – the file / directory name to be treated as temporary

• exists (bool) – if True, the file / directory must already exist.

release(remove=True)
Release this context

This releases the current context, potentially deleting all managed temporary objects (files and directories),
and resetting the context to generate unique names.

Parameters
remove (bool) – If True, delete all managed files / directories

15.1.7 pyomo.common.timing

A module of utilities for collecting timing information

report_timing([stream, level]) Set reporting of Pyomo timing information.
TicTocTimer([ostream, logger]) A class to calculate and report elapsed time.
tic([msg, ostream, logger, level]) Reset the global TicTocTimer instance.
toc([msg, delta, ostream, logger, level]) Print the elapsed time from the global TicTocTimer in-

stance.
HierarchicalTimer() A class for collecting and displaying hierarchical timing

information

pyomo.common.timing.report_timing(stream=True, level=20)
Set reporting of Pyomo timing information.

Parameters
• stream (bool, TextIOBase) – The destination stream to emit timing information. If
True, defaults to sys.stdout. If False or None, disables reporting of timing informa-
tion.

• level (int) – The logging level for the timing logger

class pyomo.common.timing.TicTocTimer(ostream=NOTSET, logger=None)
A class to calculate and report elapsed time.

228 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Examples

>>> from pyomo.common.timing import TicTocTimer
>>> timer = TicTocTimer()
>>> timer.tic('starting timer') # starts the elapsed time timer (from 0)
[0.00] starting timer
>>> # ... do task 1
>>> dT = timer.toc('task 1')
[+ 0.00] task 1
>>> print("elapsed time: %0.1f" % dT)
elapsed time: 0.0

If no ostream or logger is provided, then output is printed to sys.stdout

Parameters
• ostream (FILE) – an optional output stream to print the timing information

• logger (Logger) – an optional output stream using the python logging package. Note: the
timing logged using logger.info()

tic(msg=NOTSET, *args, ostream=NOTSET, logger=NOTSET, level=NOTSET)
Reset the tic/toc delta timer.

This resets the reference time from which the next delta time is calculated to the current time.

Parameters
• msg (str) – The message to print out. If not specified, then prints out “Resetting the tic/toc

delta timer”; if msg is None, then no message is printed.

• *args (tuple) – optional positional arguments used for %-formatting the msg

• ostream (FILE) – an optional output stream (overrides the ostream provided when the
class was constructed).

• logger (Logger) – an optional output stream using the python logging package (over-
rides the ostream provided when the class was constructed). Note: timing logged using
logger.info

• level (int) – an optional logging output level.

toc(msg=NOTSET, *args, delta=True, ostream=NOTSET, logger=NOTSET, level=NOTSET)
Print out the elapsed time.

This resets the reference time from which the next delta time is calculated to the current time.

Parameters
• msg (str) – The message to print out. If not specified, then print out the file name, line

number, and function that called this method; if msg is None, then no message is printed.

• *args (tuple) – optional positional arguments used for %-formatting the msg

• delta (bool) – print out the elapsed wall clock time since the last call to tic() (False)
or since the most recent call to either tic() or toc() (True (default)).

• ostream (FILE) – an optional output stream (overrides the ostream provided when the
class was constructed).

• logger (Logger) – an optional output stream using the python logging package (overrides
the ostream provided when the class was constructed). Note: timing logged using level

15.1. Common Utilities 229

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• level (int) – an optional logging output level.

pyomo.common.timing.tic(msg=NOTSET, *args, ostream=NOTSET, logger=NOTSET, level=NOTSET)
Reset the global TicTocTimer instance.

See TicTocTimer.tic().

pyomo.common.timing.toc(msg=NOTSET, *args, delta=True, ostream=NOTSET, logger=NOTSET,
level=NOTSET)

Print the elapsed time from the global TicTocTimer instance.

See TicTocTimer.toc().

class pyomo.common.timing.HierarchicalTimer

A class for collecting and displaying hierarchical timing information

When implementing an iterative algorithm with nested subroutines (e.g. an optimization solver), we often want
to know the cumulative time spent in each subroutine as well as this time as a proportion of time spent in the
calling routine. This class collects timing information, for user-specified keys, that accumulates over the life of
the timer object and preserves the hierarchical (nested) structure of timing categories.

Examples

>>> import time
>>> from pyomo.common.timing import HierarchicalTimer
>>> timer = HierarchicalTimer()
>>> timer.start('all')
>>> time.sleep(0.2)
>>> for i in range(10):
... timer.start('a')
... time.sleep(0.1)
... for i in range(5):
... timer.start('aa')
... time.sleep(0.01)
... timer.stop('aa')
... timer.start('ab')
... timer.stop('ab')
... timer.stop('a')
...
>>> for i in range(10):
... timer.start('b')
... time.sleep(0.02)
... timer.stop('b')
...
>>> timer.stop('all')
>>> print(timer)
Identifier ncalls cumtime percall %

all 1 2.248 2.248 100.0

--
a 10 1.787 0.179 79.5

aa 50 0.733 0.015 41.0
ab 10 0.000 0.000 0.0

(continues on next page)

230 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

(continued from previous page)

other n/a 1.055 n/a 59.0
===

b 10 0.248 0.025 11.0
other n/a 0.213 n/a 9.5
==

===

The columns are:

ncalls
The number of times the timer was started and stopped

cumtime
The cumulative time (in seconds) the timer was active (started but not stopped)

percall
cumtime (in seconds) / ncalls

“%”
This is cumtime of the timer divided by cumtime of the parent timer times 100

>>> print('a total time: %f' % timer.get_total_time('all.a'))
a total time: 1.902037
>>> print('ab num calls: %d' % timer.get_num_calls('all.a.ab'))
ab num calls: 10
>>> print('aa %% time: %f' % timer.get_relative_percent_time('all.a.aa'))
aa % time: 44.144148
>>> print('aa %% total: %f' % timer.get_total_percent_time('all.a.aa'))
aa % total: 35.976058

When implementing an algorithm, it is often useful to collect detailed hierarchical timing information. However,
when communicating a timing profile, it is often best to retain only the most relevant information in a flattened
data structure. In the following example, suppose we want to compare the time spent in the "c" and "f" sub-
routines. We would like to generate a timing profile that displays only the time spent in these two subroutines,
in a flattened structure so that they are easy to compare. To do this, we

1. Ignore subroutines of "c" and "f" that are unnecessary for this comparison

2. Flatten the hierarchical timing information

3. Eliminate all the information we don’t care about

>>> import time
>>> from pyomo.common.timing import HierarchicalTimer
>>> timer = HierarchicalTimer()
>>> timer.start("root")
>>> timer.start("a")
>>> time.sleep(0.01)
>>> timer.start("b")
>>> timer.start("c")
>>> time.sleep(0.1)
>>> timer.stop("c")
>>> timer.stop("b")
>>> timer.stop("a")
>>> timer.start("d")
>>> timer.start("e")

(continues on next page)

15.1. Common Utilities 231

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> time.sleep(0.01)
>>> timer.start("f")
>>> time.sleep(0.05)
>>> timer.stop("f")
>>> timer.start("c")
>>> timer.start("g")
>>> timer.start("h")
>>> time.sleep(0.1)
>>> timer.stop("h")
>>> timer.stop("g")
>>> timer.stop("c")
>>> timer.stop("e")
>>> timer.stop("d")
>>> timer.stop("root")
>>> print(timer)
Identifier ncalls cumtime percall %
--
root 1 0.290 0.290 100.0

a 1 0.118 0.118 40.5

--
b 1 0.105 0.105 89.4

c 1 0.105 0.105 100.0
other n/a 0.000 n/a 0.0
===

other n/a 0.013 n/a 10.6
==

d 1 0.173 0.173 59.5
--
e 1 0.173 0.173 100.0

c 1 0.105 0.105 60.9

--
g 1 0.105 0.105 100.0

h 1 0.105 0.105 100.0
other n/a 0.000 n/a 0.0
===

other n/a 0.000 n/a 0.0
==

f 1 0.055 0.055 31.9
other n/a 0.013 n/a 7.3
===

other n/a 0.000 n/a 0.0
==

other n/a 0.000 n/a 0.0
===

==
>>> # Clear subroutines under "c" that we don't care about
>>> timer.timers["root"].timers["d"].timers["e"].timers["c"].timers.clear()
>>> # Flatten hierarchy

(continues on next page)

232 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> timer.timers["root"].flatten()
>>> # Clear except for the subroutines we care about
>>> timer.timers["root"].clear_except("c", "f")
>>> print(timer)
Identifier ncalls cumtime percall %
--
root 1 0.290 0.290 100.0

c 2 0.210 0.105 72.4
f 1 0.055 0.055 19.0
other n/a 0.025 n/a 8.7
===

==

Notes

The HierarchicalTimer uses a stack to track which timers are active at any point in time. Additionally, each
timer has a dictionary of timers for its children timers. Consider

>>> timer = HierarchicalTimer()
>>> timer.start('all')
>>> timer.start('a')
>>> timer.start('aa')

After the above code is run, timer.stack will be ['all', 'a', 'aa'] and timer.timers will have one
key, 'all' and one value which will be a _HierarchicalHelper. The _HierarchicalHelper has its own
timers dictionary:

{'a': _HierarchicalHelper}

and so on. This way, we can easily access any timer with something that looks like the stack. The logic is
recursive (although the code is not).

start(identifier)
Start incrementing the timer identified with identifier

Parameters
identifier (str) – The name of the timer

stop(identifier)
Stop incrementing the timer identified with identifier

Parameters
identifier (str) – The name of the timer

reset()

Completely reset the timer.

get_total_time(identifier)

Parameters
identifier (str) – The full name of the timer including parent timers separated with dots.

Returns
total_time – The total time spent with the specified timer active.

15.1. Common Utilities 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Return type
float

get_num_calls(identifier)

Parameters
identifier (str) – The full name of the timer including parent timers separated with dots.

Returns
num_calss – The number of times start was called for the specified timer.

Return type
int

get_relative_percent_time(identifier)

Parameters
identifier (str) – The full name of the timer including parent timers separated with dots.

Returns
percent_time – The percent of time spent in the specified timer relative to the timer’s imme-
diate parent.

Return type
float

get_total_percent_time(identifier)

Parameters
identifier (str) – The full name of the timer including parent timers separated with dots.

Returns
percent_time – The percent of time spent in the specified timer relative to the total time in
all timers.

Return type
float

get_timers()

Returns
identifiers – Returns a list of all timer identifiers

Return type
list of str

flatten()

Flatten the HierarchicalTimer in-place, moving all the timing categories into a single level

If any timers moved into the same level have the same identifier, the total_time and n_calls fields
are added together. The total_time of a “child timer” that is “moved upwards” is subtracted from the
total_time of that timer’s original parent.

clear_except(*args)
Prune all “sub-timers” except those specified

Parameters
args (str) – Keys that will be retained

234 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

15.2 AML Library Reference

The following modeling components make up the core of the Pyomo Algebraic Modeling Language (AML). These
classes are all available through the pyomo.environ namespace.

ConcreteModel(*args, **kwds) A concrete optimization model that does not defer con-
struction of components.

AbstractModel(*args, **kwds) An abstract optimization model that defers construction
of components.

Block(*args, **kwds) Blocks are indexed components that contain other com-
ponents (including blocks).

Set(*args, **kwds) A component used to index other Pyomo components.
RangeSet(*args, **kwds) A set object that represents a set of numeric values
Param(*args, **kwds) A parameter value, which may be defined over an index.
Var(*args, **kwargs) A numeric variable, which may be defined over an index.
Objective(*args, **kwds) This modeling component defines an objective expres-

sion.
Constraint(*args, **kwds) This modeling component defines a constraint expres-

sion using a rule function.
ExternalFunction(*args, **kwargs) Interface to an external (non-algebraic) function.
Reference(reference[, ctype]) Creates a component that references other components

15.2.1 AML Component Documentation

class pyomo.environ.ConcreteModel(*args, **kwds)
Bases: Model

A concrete optimization model that does not defer construction of components.

activate()

Set the active attribute to True

property active

Return the active attribute

active_blocks(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The active_blocks method is deprecated. Use the
Block.block_data_objects() method.

active_component_data(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The active_component_data method is deprecated. Use the
Block.component_data_objects() method.

active_components(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The active_components method is deprecated. Use the
Block.component_objects() method.

15.2. AML Library Reference 235

Pyomo Documentation, Release 6.5.0

add_component(name, val)
Add a component ‘name’ to the block.

This method assumes that the attribute is not in the model.

all_blocks(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The all_blocks method is deprecated. Use the
Block.block_data_objects() method.

all_component_data(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The all_component_data method is deprecated. Use the
Block.component_data_objects() method.

all_components(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The all_components method is deprecated. Use the
Block.component_objects() method.

block_data_objects(active=None, sort=False, descend_into=True, descent_order=None)
Generator returning this block and any matching sub-blocks.

This is roughly equivalent to

iter(block for block in itertools.chain(
[self], self.component_data_objects(descend_into, ...))
if block.active == active)

Notes

The self block is always returned, regardless of the types indicated by descend_into.

The active flag is enforced on all blocks, including self.

Parameters
• active (None or bool) – If not None, filter components by the active flag

• sort (None or bool or SortComponents) – Iterate over the components in a specified
sorted order

• descend_into (None or type or iterable) – Specifies the component types
(ctypes) to return and to descend into. If True or None, defaults to (Block,). If False,
only self is returned.

• descent_order (None or TraversalStrategy) – The strategy used to walk the block
hierarchy. Defaults to TraversalStrategy.PrefixDepthFirstSearch.

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Set the suffix value for this component data

clone(memo=None)
TODO

236 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type

Pyomo Documentation, Release 6.5.0

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

collect_ctypes(active=None, descend_into=True)
Count all component types stored on or under this block.

Parameters
• active (True/None) – Set to True to indicate that only active components should be

counted. The default value of None indicates that all components (including those that
have been deactivated) should be counted.

• descend_into (bool) – Indicates whether or not component types should be counted on
sub-blocks. Default is True.

Returns: A set of component types.

component(name_or_object)
Return a child component of this block.

If passed a string, this will return the child component registered by that name. If passed a component, this
will return that component IFF the component is a child of this block. Returns None on lookup failure.

component_data_iterindex(ctype=None, active=None, sort=False, descend_into=True,
descent_order=None)

Return a generator that returns a tuple for each component data object in a block. By default, this generator
recursively descends into sub-blocks. The tuple is

((component name, index value), _ComponentData)

component_data_objects(ctype=None, active=None, sort=False, descend_into=True,
descent_order=None)

Return a generator that iterates through the component data objects for all components in a block. By
default, this generator recursively descends into sub-blocks.

component_map(ctype=None, active=None, sort=False)
Returns a PseudoMap of the components in this block.

Parameters
• ctype (None or type or iterable) – Specifies the component types (ctypes) to in-

clude in the resulting PseudoMap

None All components
type A single component type
iterable All component types in the iterable

• active (None or bool) – Filter components by the active flag

None Return all components
True Return only active components
False Return only inactive components

15.2. AML Library Reference 237

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• sort (bool) – Iterate over the components in a sorted order

True Iterate using Block.alphabetizeComponentAndIndex
False Iterate using Block.declarationOrder

component_objects(ctype=None, active=None, sort=False, descend_into=True, descent_order=None)
Return a generator that iterates through the component objects in a block. By default, the generator recur-
sively descends into sub-blocks.

compute_statistics(active=True)
Compute model statistics

construct(data=None)
Initialize the block

contains_component(ctype)
Return True if the component type is in _ctypes and . . . TODO.

create_instance(filename=None, data=None, name=None, namespace=None, namespaces=None,
profile_memory=0, report_timing=False, **kwds)

Create a concrete instance of an abstract model, possibly using data read in from a file.

Parameters
• filename (str, optional) – The name of a Pyomo Data File that will be used to load data

into the model.

• data (dict, optional) – A dictionary containing initialization data for the model to be used
if there is no filename

• name (str, optional) – The name given to the model.

• namespace (str, optional) – A namespace used to select data.

• namespaces (list, optional) – A list of namespaces used to select data.

• profile_memory (int, optional) – A number that indicates the profiling level.

• report_timing (bool, optional) – Report timing statistics during construction.

property ctype

Return the class type for this component

deactivate()

Set the active attribute to False

del_component(name_or_object)
Delete a component from this block.

dim()

Return the dimension of the index

display(filename=None, ostream=None, prefix='')
Display values in the block

find_component(label_or_component)
Returns a component in the block given a name.

238 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Parameters
label_or_component (str, Component, or ComponentUID) – The name of the com-
ponent to find in this block. String or Component arguments are first converted to Compo-
nentUID.

Returns
Component on the block identified by the ComponentUID. If a matching component is not
found, None is returned.

Return type
Component

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Return a string with the component name and index

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index()

Returns the index of this ComponentData instance relative to the parent component index set. None is
returned if this instance does not have a parent component, or if - for some unknown reason - this instance
does not belong to the parent component’s index set.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

A boolean indicating whether or not all active components of the input model have been properly con-
structed.

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

15.2. AML Library Reference 239

https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

load(arg, namespaces=[None], profile_memory=0)
Load the model with data from a file, dictionary or DataPortal object.

property local_name

Get the component name only within the context of the immediate parent container.

model()

Return the model of the component that owns this data.

property name

Get the fully qualifed component name.

parent_block()

Return the parent of the component that owns this data.

parent_component()

Returns the component associated with this object.

240 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

pprint(ostream=None, verbose=False, prefix='')
Print component information

preprocess(preprocessor=None)
DEPRECATED.

Deprecated since version 6.0: The Model.preprocess() method is deprecated and no longer performs any
actions

reclassify_component_type(name_or_object, new_ctype, preserve_declaration_order=True)
TODO

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(val)
Set the value of a scalar component.

to_dense_data()

TODO

transfer_attributes_from(src)
Transfer user-defined attributes from src to this block

This transfers all components and user-defined attributes from the block or dictionary src and places them
on this Block. Components are transferred in declaration order.

If a Component on src is also declared on this block as either a Component or attribute, the local Component
or attribute is replaced by the incoming component. If an attribute name on src matches a Component
declared on this block, then the incoming attribute is passed to the local Component’s set_value() method.
Attribute names appearing in this block’s _Block_reserved_words set will not be transferred (although
Components will be).

Parameters
src (_BlockData or dict) – The Block or mapping that contains the new attributes to
assign to this block.

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

15.2. AML Library Reference 241

https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

valid_problem_types()

This method allows the pyomo.opt convert function to work with a Model object.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

write(filename=None, format=None, solver_capability=None, io_options={})
Write the model to a file, with a given format.

class pyomo.environ.AbstractModel(*args, **kwds)
Bases: Model

An abstract optimization model that defers construction of components.

activate()

Set the active attribute to True

property active

Return the active attribute

active_blocks(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The active_blocks method is deprecated. Use the
Block.block_data_objects() method.

active_component_data(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The active_component_data method is deprecated. Use the
Block.component_data_objects() method.

active_components(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The active_components method is deprecated. Use the
Block.component_objects() method.

add_component(name, val)
Add a component ‘name’ to the block.

This method assumes that the attribute is not in the model.

all_blocks(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The all_blocks method is deprecated. Use the
Block.block_data_objects() method.

all_component_data(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The all_component_data method is deprecated. Use the
Block.component_data_objects() method.

242 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

all_components(*args, **kwargs)
DEPRECATED.

Deprecated since version 4.1.10486: The all_components method is deprecated. Use the
Block.component_objects() method.

block_data_objects(active=None, sort=False, descend_into=True, descent_order=None)
Generator returning this block and any matching sub-blocks.

This is roughly equivalent to

iter(block for block in itertools.chain(
[self], self.component_data_objects(descend_into, ...))
if block.active == active)

Notes

The self block is always returned, regardless of the types indicated by descend_into.

The active flag is enforced on all blocks, including self.

Parameters
• active (None or bool) – If not None, filter components by the active flag

• sort (None or bool or SortComponents) – Iterate over the components in a specified
sorted order

• descend_into (None or type or iterable) – Specifies the component types
(ctypes) to return and to descend into. If True or None, defaults to (Block,). If False,
only self is returned.

• descent_order (None or TraversalStrategy) – The strategy used to walk the block
hierarchy. Defaults to TraversalStrategy.PrefixDepthFirstSearch.

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Set the suffix value for this component data

clone(memo=None)
TODO

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

collect_ctypes(active=None, descend_into=True)
Count all component types stored on or under this block.

Parameters
• active (True/None) – Set to True to indicate that only active components should be

counted. The default value of None indicates that all components (including those that
have been deactivated) should be counted.

15.2. AML Library Reference 243

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type

Pyomo Documentation, Release 6.5.0

• descend_into (bool) – Indicates whether or not component types should be counted on
sub-blocks. Default is True.

Returns: A set of component types.

component(name_or_object)
Return a child component of this block.

If passed a string, this will return the child component registered by that name. If passed a component, this
will return that component IFF the component is a child of this block. Returns None on lookup failure.

component_data_iterindex(ctype=None, active=None, sort=False, descend_into=True,
descent_order=None)

Return a generator that returns a tuple for each component data object in a block. By default, this generator
recursively descends into sub-blocks. The tuple is

((component name, index value), _ComponentData)

component_data_objects(ctype=None, active=None, sort=False, descend_into=True,
descent_order=None)

Return a generator that iterates through the component data objects for all components in a block. By
default, this generator recursively descends into sub-blocks.

component_map(ctype=None, active=None, sort=False)
Returns a PseudoMap of the components in this block.

Parameters
• ctype (None or type or iterable) – Specifies the component types (ctypes) to in-

clude in the resulting PseudoMap

None All components
type A single component type
iterable All component types in the iterable

• active (None or bool) – Filter components by the active flag

None Return all components
True Return only active components
False Return only inactive components

• sort (bool) – Iterate over the components in a sorted order

True Iterate using Block.alphabetizeComponentAndIndex
False Iterate using Block.declarationOrder

component_objects(ctype=None, active=None, sort=False, descend_into=True, descent_order=None)
Return a generator that iterates through the component objects in a block. By default, the generator recur-
sively descends into sub-blocks.

compute_statistics(active=True)
Compute model statistics

construct(data=None)
Initialize the block

244 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

contains_component(ctype)
Return True if the component type is in _ctypes and . . . TODO.

create_instance(filename=None, data=None, name=None, namespace=None, namespaces=None,
profile_memory=0, report_timing=False, **kwds)

Create a concrete instance of an abstract model, possibly using data read in from a file.

Parameters
• filename (str, optional) – The name of a Pyomo Data File that will be used to load data

into the model.

• data (dict, optional) – A dictionary containing initialization data for the model to be used
if there is no filename

• name (str, optional) – The name given to the model.

• namespace (str, optional) – A namespace used to select data.

• namespaces (list, optional) – A list of namespaces used to select data.

• profile_memory (int, optional) – A number that indicates the profiling level.

• report_timing (bool, optional) – Report timing statistics during construction.

property ctype

Return the class type for this component

deactivate()

Set the active attribute to False

del_component(name_or_object)
Delete a component from this block.

dim()

Return the dimension of the index

display(filename=None, ostream=None, prefix='')
Display values in the block

find_component(label_or_component)
Returns a component in the block given a name.

Parameters
label_or_component (str, Component, or ComponentUID) – The name of the com-
ponent to find in this block. String or Component arguments are first converted to Compo-
nentUID.

Returns
Component on the block identified by the ComponentUID. If a matching component is not
found, None is returned.

Return type
Component

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Return a string with the component name and index

15.2. AML Library Reference 245

https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index()

Returns the index of this ComponentData instance relative to the parent component index set. None is
returned if this instance does not have a parent component, or if - for some unknown reason - this instance
does not belong to the parent component’s index set.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

A boolean indicating whether or not all active components of the input model have been properly con-
structed.

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

246 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

load(arg, namespaces=[None], profile_memory=0)
Load the model with data from a file, dictionary or DataPortal object.

property local_name

Get the component name only within the context of the immediate parent container.

model()

Return the model of the component that owns this data.

property name

Get the fully qualifed component name.

parent_block()

Return the parent of the component that owns this data.

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

preprocess(preprocessor=None)
DEPRECATED.

Deprecated since version 6.0: The Model.preprocess() method is deprecated and no longer performs any
actions

reclassify_component_type(name_or_object, new_ctype, preserve_declaration_order=True)
TODO

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users

15.2. AML Library Reference 247

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(val)
Set the value of a scalar component.

to_dense_data()

TODO

transfer_attributes_from(src)
Transfer user-defined attributes from src to this block

This transfers all components and user-defined attributes from the block or dictionary src and places them
on this Block. Components are transferred in declaration order.

If a Component on src is also declared on this block as either a Component or attribute, the local Component
or attribute is replaced by the incoming component. If an attribute name on src matches a Component
declared on this block, then the incoming attribute is passed to the local Component’s set_value() method.
Attribute names appearing in this block’s _Block_reserved_words set will not be transferred (although
Components will be).

Parameters
src (_BlockData or dict) – The Block or mapping that contains the new attributes to
assign to this block.

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

valid_problem_types()

This method allows the pyomo.opt convert function to work with a Model object.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

write(filename=None, format=None, solver_capability=None, io_options={})
Write the model to a file, with a given format.

248 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

class pyomo.environ.Block(*args, **kwds)
Bases: ActiveIndexedComponent

Blocks are indexed components that contain other components (including blocks). Blocks have a global attribute
that defines whether construction is deferred. This applies to all components that they contain except blocks.
Blocks contained by other blocks use their local attribute to determine whether construction is deferred.

activate()

Set the active attribute to True

property active

Return the active attribute

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
Initialize the block

property ctype

Return the class type for this component

deactivate()

Set the active attribute to False

dim()

Return the dimension of the index

display(filename=None, ostream=None, prefix='')
Display values in the block

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index_set()

Return the index set

15.2. AML Library Reference 249

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

250 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(value)
Set the value of a scalar component.

to_dense_data()

TODO

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

15.2. AML Library Reference 251

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

valid_model_component()

Return True if this can be used as a model component.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

class pyomo.environ.Constraint(*args, **kwds)
Bases: ActiveIndexedComponent

This modeling component defines a constraint expression using a rule function.

Constructor arguments:
expr

A Pyomo expression for this constraint

rule
A function that is used to construct constraint expressions

name
A name for this component

doc
A text string describing this component

Public class attributes:
doc

A text string describing this component

name
A name for this component

active
A boolean that is true if this component will be used to construct a model instance

rule
The rule used to initialize the constraint(s)

Private class attributes:
_constructed

A boolean that is true if this component has been constructed

_data
A dictionary from the index set to component data objects

_index
The set of valid indices

_implicit_subsets
A tuple of set objects that represents the index set

_model
A weakref to the model that owns this component

_parent
A weakref to the parent block that owns this component

252 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

_type
The class type for the derived subclass

activate()

Set the active attribute to True

property active

Return the active attribute

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
Construct the expression(s) for this constraint.

property ctype

Return the class type for this component

deactivate()

Set the active attribute to False

dim()

Return the dimension of the index

display(prefix='', ostream=None)
Print component state information

This duplicates logic in Component.pprint()

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

15.2. AML Library Reference 253

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

254 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(value)
Set the value of a scalar component.

to_dense_data()

TODO

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

values(ordered=False)
Return an iterator of the component data objects

15.2. AML Library Reference 255

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

class pyomo.environ.ExternalFunction(*args, **kwargs)
Bases: Component

Interface to an external (non-algebraic) function.

ExternalFunction provides an interface for declaring general user-provided functions, and then embedding
calls to the external functions within Pyomo expressions.

Note: Just because you can express a Pyomo model with external functions does not mean that the resulting
model is solvable. In particular, linear solvers do not accept external functions. The AMPL Solver Library
(ASL) interface does support external functions for general nonlinear solvers compiled against it, but only allows
functions in compiled libraries through the AMPLExternalFunction interface.

__init__(*args, **kwargs)
Construct a reference to an external function.

There are two fundamental interfaces supported by ExternalFunction: Python callback functions and
AMPL external functions.

Python callback functions (PythonCallbackFunction interface)

Python callback functions can be specified one of two ways:

1. FGH interface:

A single external function call with a signature matching the evaluate_fgh() method.

2. Independent functions:

One to three functions that can evaluate the function value, gradient of the function [partial deriva-
tives] with respect to its inputs, and the Hessian of the function [partial second derivatives]. The
function interface expects a function matching the prototype:

def function(*args): float

The gradient and hessian interface expect functions matching the prototype:

def gradient_or_hessian(args, fixed=None): List[float]

Where args is a tuple of function arguments and fixed is either None or a list of values equal in
length to args indicating which arguments are currently fixed (True) or variable (False).

ASL function libraries (AMPLExternalFunction interface)

Pyomo can also call functions compiled as part of an AMPL External Function library (see the User-defined
functions section in the Hooking your solver to AMPL report). Links to these functions are declared by
creating an ExternalFunction and passing the compiled library name (or path) to the library keyword
and the name of the function to the function keyword.

property active

Return the active attribute

256 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://www.ampl.com/REFS/HOOKING/#userdefinedfuncs
https://www.ampl.com/REFS/HOOKING/#userdefinedfuncs
https://www.ampl.com/REFS/hooking3.pdf

Pyomo Documentation, Release 6.5.0

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
API definition for constructing components

property ctype

Return the class type for this component

evaluate(args)
Return the value of the function given the specified arguments

Parameters
args (Iterable) – Iterable containing the arguments to pass to the external function. Non-
native type elements will be converted to a native value using the value() function.

Returns
The return value of the function evaluated at args

Return type
float

evaluate_fgh(args, fixed=None, fgh=2)
Evaluate the function and gradients given the specified arguments

This evaluates the function given the specified arguments returning a 3-tuple of (function value [f], list of
first partial derivatives [g], and the upper triangle of the Hessian matrix [h]).

Parameters
• args (Iterable) – Iterable containing the arguments to pass to the external function.

Non-native type elements will be converted to a native value using the value() function.

• fixed (Optional[List[bool]]) – List of values indicating if the corresponding argu-
ment value is fixed. Any fixed indices are guaranteed to return 0 for first and second deriva-
tives, regardless of what is computed by the external function.

• fgh ({0, 1, 2}) – What evaluations to return:

– 0: just return function evaluation

– 1: return function and first derivatives

– 2: return function, first derivatives, and hessian matrix

Any return values not requested will be None.

Returns
• f (float) – The return value of the function evaluated at args

• g (List[float] or None) – The list of first partial derivatives

• h (List[float] or None) – The upper-triangle of the Hessian matrix (second partial deriva-
tives), stored column-wise. Element 𝐻𝑖,𝑗 (with 0 <= 𝑖 <= 𝑗 < 𝑁 are mapped using
ℎ[𝑖 + 𝑗 * (𝑗 + 1)/2] == 𝐻𝑖,𝑗 .

15.2. AML Library Reference 257

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

get_arg_units()

Return the units for this ExternalFunctions arguments

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

get_units()

Return the units for this ExternalFunction

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this object is a reference.

is_variable_type()

Return False unless this class is a variable object

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

258 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

class pyomo.environ.Objective(*args, **kwds)
Bases: ActiveIndexedComponent

This modeling component defines an objective expression.

Note that this is a subclass of NumericValue to allow objectives to be used as part of expressions.

Constructor arguments:
expr

A Pyomo expression for this objective

rule
A function that is used to construct objective expressions

sense
Indicate whether minimizing (the default) or maximizing

name
A name for this component

doc
A text string describing this component

Public class attributes:
doc

A text string describing this component

15.2. AML Library Reference 259

Pyomo Documentation, Release 6.5.0

name
A name for this component

active
A boolean that is true if this component will be used to construct a model instance

rule
The rule used to initialize the objective(s)

sense
The objective sense

Private class attributes:
_constructed

A boolean that is true if this component has been constructed

_data
A dictionary from the index set to component data objects

_index
The set of valid indices

_implicit_subsets
A tuple of set objects that represents the index set

_model
A weakref to the model that owns this component

_parent
A weakref to the parent block that owns this component

_type
The class type for the derived subclass

activate()

Set the active attribute to True

property active

Return the active attribute

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
Construct the expression(s) for this objective.

property ctype

Return the class type for this component

260 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

deactivate()

Set the active attribute to False

dim()

Return the dimension of the index

display(prefix='', ostream=None)
Provide a verbose display of this object

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

15.2. AML Library Reference 261

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

262 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(value)
Set the value of a scalar component.

to_dense_data()

TODO

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

class pyomo.environ.Param(*args, **kwds)
Bases: IndexedComponent, IndexedComponent_NDArrayMixin

A parameter value, which may be defined over an index.

Constructor Arguments:
domain

A set that defines the type of values that each parameter must be.

within
A set that defines the type of values that each parameter must be.

validate
A rule for validating this parameter w.r.t. data that exists in the model

default
A scalar, rule, or dictionary that defines default values for this parameter

initialize
A dictionary or rule for setting up this parameter with existing model data

15.2. AML Library Reference 263

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

unit: pyomo unit expression
An expression containing the units for the parameter

mutable: boolean
Flag indicating if the value of the parameter may change between calls to a solver. Defaults to False

name
Name for this component.

doc
Text describing this component.

class NoValue

Bases: object

A dummy type that is pickle-safe that we can use as the default value for Params to indicate that no valid
value is present.

property active

Return the active attribute

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
Initialize this component.

A parameter is constructed using the initial data or the data loaded from an external source. We first set all
the values based on self._rule, and then allow the data dictionary to overwrite anything.

Note that we allow an undefined Param value to be constructed. We throw an exception if a user tries to
use an uninitialized Param.

property ctype

Return the class type for this component

default()

Return the value of the parameter default.

Possible values:
Param.NoValue

No default value is provided.

Numeric
A constant value that is the default value for all undefined parameters.

Function
f(model, i) returns the value for the default value for parameter i

264 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

dim()

Return the dimension of the index

extract_values()

A utility to extract all index-value pairs defined for this parameter, returned as a dictionary.

This method is useful in contexts where key iteration and repeated __getitem__ calls are too expensive to
extract the contents of a parameter.

extract_values_sparse()

A utility to extract all index-value pairs defined with non-default values, returned as a dictionary.

This method is useful in contexts where key iteration and repeated __getitem__ calls are too expensive to
extract the contents of a parameter.

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

get_units()

Return the units for this ParamData

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

15.2. AML Library Reference 265

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

parent_component()

Returns the component associated with this object.

266 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_default(val)
Perform error checks and then set the default value for this parameter.

NOTE: this test will not validate the value of function return values.

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(value)
Set the value of a scalar component.

sparse_items()

Return a list (index,data) tuples for defined parameters

sparse_iteritems()

Return an iterator of (index,data) tuples for defined parameters

sparse_iterkeys()

Return an iterator for the keys in the defined parameters

sparse_itervalues()

Return an iterator for the defined param data objects

sparse_keys()

Return a list of keys in the defined parameters

sparse_values()

Return a list of the defined param data objects

store_values(new_values, check=True)
A utility to update a Param with a dictionary or scalar.

If check=True, then both the index and value are checked through the __getitem__ method. Using
check=False should only be used by developers!

to_dense_data()

TODO

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

15.2. AML Library Reference 267

Pyomo Documentation, Release 6.5.0

valid_model_component()

Return True if this can be used as a model component.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

class pyomo.environ.RangeSet(*args, **kwds)
Bases: Component

A set object that represents a set of numeric values

RangeSet objects are based around NumericRange objects, which include support for non-finite ranges (both
continuous and unbounded). Similarly, boutique ranges (like semi-continuous domains) can be represented,
e.g.:

>>> from pyomo.core.base.range import NumericRange
>>> from pyomo.environ import RangeSet
>>> print(RangeSet(ranges=(NumericRange(0,0,0), NumericRange(1,100,0))))
([0] | [1..100])

The RangeSet object continues to support the notation for specifying discrete ranges using “[first=1], last,
[step=1]” values:

>>> r = RangeSet(3)
>>> print(r)
[1:3]
>>> print(list(r))
[1, 2, 3]

>>> r = RangeSet(2, 5)
>>> print(r)
[2:5]
>>> print(list(r))
[2, 3, 4, 5]

>>> r = RangeSet(2, 5, 2)
>>> print(r)
[2:4:2]
>>> print(list(r))
[2, 4]

>>> r = RangeSet(2.5, 4, 0.5)
>>> print(r)
([2.5] | [3.0] | [3.5] | [4.0])
>>> print(list(r))
[2.5, 3.0, 3.5, 4.0]

By implementing RangeSet using NumericRanges, the global Sets (like Reals, Integers, PositiveReals, etc.) are
trivial instances of a RangeSet and support all Set operations.

Parameters

268 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• *args (int | float | None) – The range defined by ([start=1], end, [step=1]). If only a
single positional parameter, end is supplied, then the RangeSet will be the integers starting
at 1 up through and including end. Providing two positional arguments, x and y, will result
in a range starting at x up to and including y, incrementing by 1. Providing a 3-tuple enables
the specification of a step other than 1.

• finite (bool, optional) – This sets if this range is finite (discrete and bounded) or infi-
nite

• ranges (iterable, optional) – The list of range objects that compose this RangeSet

• bounds (tuple, optional) – The lower and upper bounds of values that are admissible
in this RangeSet

• filter (function, optional) – Function (rule) that returns True if the specified value
is in the RangeSet or False if it is not.

• validate (function, optional) – Data validation function (rule). The function will be
called for every data member of the set, and if it returns False, a ValueError will be raised.

• name (str, optional) – Name for this component.

• doc (str, optional) – Text describing this component.

property active

Return the active attribute

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
API definition for constructing components

property ctype

Return the class type for this component

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

15.2. AML Library Reference 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this object is a reference.

is_variable_type()

Return False unless this class is a variable object

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

270 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

pyomo.environ.Reference(reference, ctype=NOTSET)
Creates a component that references other components

Reference generates a reference component; that is, an indexed component that does not contain data, but
instead references data stored in other components as defined by a component slice. The ctype parameter sets the
Component.type() of the resulting indexed component. If the ctype parameter is not set and all data identified
by the slice (at construction time) share a common Component.type(), then that type is assumed. If either the
ctype parameter is None or the data has more than one ctype, the resulting indexed component will have a ctype
of IndexedComponent.

If the indices associated with wildcards in the component slice all refer to the same Set objects for all data
identifed by the slice, then the resulting indexed component will be indexed by the product of those sets. However,
if all data do not share common set objects, or only a subset of indices in a multidimentional set appear as
wildcards, then the resulting indexed component will be indexed by a SetOf containing a _ReferenceSet for
the slice.

Parameters
• reference (IndexedComponent_slice) – component slice that defines the data to include

in the Reference component

• ctype (type [optional]) – the type used to create the resulting indexed component. If not
specified, the data’s ctype will be used (if all data share a common ctype). If multiple data
ctypes are found or type is None, then IndexedComponent will be used.

Examples

>>> from pyomo.environ import *
>>> m = ConcreteModel()
>>> @m.Block([1,2],[3,4])
... def b(b,i,j):
... b.x = Var(bounds=(i,j))
...
>>> m.r1 = Reference(m.b[:,:].x)
>>> m.r1.pprint()
r1 : Size=4, Index=r1_index, ReferenceTo=b[:, :].x

Key : Lower : Value : Upper : Fixed : Stale : Domain
(1, 3) : 1 : None : 3 : False : True : Reals
(1, 4) : 1 : None : 4 : False : True : Reals
(2, 3) : 2 : None : 3 : False : True : Reals
(2, 4) : 2 : None : 4 : False : True : Reals

Reference components may also refer to subsets of the original data:

>>> m.r2 = Reference(m.b[:,3].x)
>>> m.r2.pprint()

(continues on next page)

15.2. AML Library Reference 271

https://docs.python.org/3/library/functions.html#type

Pyomo Documentation, Release 6.5.0

(continued from previous page)

r2 : Size=2, Index=b_index_0, ReferenceTo=b[:, 3].x
Key : Lower : Value : Upper : Fixed : Stale : Domain

1 : 1 : None : 3 : False : True : Reals
2 : 2 : None : 3 : False : True : Reals

Reference components may have wildcards at multiple levels of the model hierarchy:

>>> m = ConcreteModel()
>>> @m.Block([1,2])
... def b(b,i):
... b.x = Var([3,4], bounds=(i,None))
...
>>> m.r3 = Reference(m.b[:].x[:])
>>> m.r3.pprint()
r3 : Size=4, Index=r3_index, ReferenceTo=b[:].x[:]

Key : Lower : Value : Upper : Fixed : Stale : Domain
(1, 3) : 1 : None : None : False : True : Reals
(1, 4) : 1 : None : None : False : True : Reals
(2, 3) : 2 : None : None : False : True : Reals
(2, 4) : 2 : None : None : False : True : Reals

The resulting reference component may be used just like any other component. Changes to the stored data will
be reflected in the original objects:

>>> m.r3[1,4] = 10
>>> m.b[1].x.pprint()
x : Size=2, Index=b[1].x_index

Key : Lower : Value : Upper : Fixed : Stale : Domain
3 : 1 : None : None : False : True : Reals
4 : 1 : 10 : None : False : False : Reals

class pyomo.environ.Set(*args, **kwds)
Bases: IndexedComponent

A component used to index other Pyomo components.

This class provides a Pyomo component that is API-compatible with Python set objects, with additional features,
including:

1. Member validation and filtering. The user can declare domains and provide callback functions to validate
set members and to filter (ignore) potential members.

2. Set expressions. Operations on Set objects (&,|,*,-,^) produce Set expressions that preserve their references
to the original Set objects so that updating the argument Sets implicitly updates the Set operator instance.

3. Support for set operations with RangeSet instances (both finite and non-finite ranges).

Parameters
• initialize (initializer(iterable), optional) – The initial values to store in the

Set when it is constructed. Values passed to initializemay be overridden by data passed
to the construct() method.

• dimen (initializer(int), optional) – Specify the Set’s arity (the required tuple
length for all members of the Set), or None if no arity is enforced

272 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

• ordered (bool or Set.InsertionOrder or Set.SortedOrder or function) –
Specifies whether the set is ordered. Possible values are:

False Unordered
True Ordered by insertion order
Set.InsertionOrder Ordered by insertion order [default]
Set.SortedOrder Ordered by sort order
<function> Ordered with this comparison function

• within (initialiser(set), optional) – A set that defines the valid values that can be
contained in this set

• domain (initializer(set), optional) – A set that defines the valid values that can be
contained in this set

• bounds (initializer(tuple), optional) – A tuple that specifies the bounds for valid
Set values (accepts 1-, 2-, or 3-tuple RangeSet arguments)

• filter (initializer(rule), optional) – A rule for determining membership in this
set. This has the functional form:

f: Block, *data -> bool

and returns True if the data belongs in the set. Set will quietly ignore any values where filter
returns False.

• validate (initializer(rule), optional) – A rule for validating membership in this
set. This has the functional form:

f: Block, *data -> bool

and returns True if the data belongs in the set. Set will raise a ValueError for any values
where validate returns False.

• name (str, optional) – The name of the set

• doc (str, optional) – A text string describing this component

Notes

Note: domain=, within=, and bounds= all provide restrictions on the valid set values. If more than one is
specified, Set values will be restricted to the intersection of domain, within, and bounds.

property active

Return the active attribute

check_values()

DEPRECATED.

Verify that the values in this set are valid.

Deprecated since version 5.7: check_values() is deprecated: Sets only contain valid members

clear()

Clear the data in this component

15.2. AML Library Reference 273

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
API definition for constructing components

property ctype

Return the class type for this component

dim()

Return the dimension of the index

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

274 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

15.2. AML Library Reference 275

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

set_value(value)
Set the value of a scalar component.

to_dense_data()

TODO

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

class pyomo.environ.Var(*args, **kwargs)
Bases: IndexedComponent, IndexedComponent_NDArrayMixin

A numeric variable, which may be defined over an index.

Parameters
• domain (Set or function, optional) – A Set that defines valid values for the variable

(e.g., Reals, NonNegativeReals, Binary), or a rule that returns Sets. Defaults to Reals.

• within (Set or function, optional) – An alias for domain.

• bounds (tuple or function, optional) – A tuple of (lower, upper) bounds for the
variable, or a rule that returns tuples. Defaults to (None, None).

276 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

• initialize (float or function, optional) – The initial value for the variable, or a
rule that returns initial values.

• rule (float or function, optional) – An alias for initialize.

• dense (bool, optional) – Instantiate all elements from index_set()when constructing
the Var (True) or just the variables returned by initialize/rule (False). Defaults to True.

• units (pyomo units expression, optional) – Set the units corresponding to the en-
tries in this variable.

• name (str, optional) – Name for this component.

• doc (str, optional) – Text describing this component.

property active

Return the active attribute

add(index)
Add a variable with a particular index.

clear()

Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

cname(*args, **kwds)
DEPRECATED.

Deprecated since version 5.0: The cname() method has been renamed to getname(). The preferred method
of obtaining a component name is to use the .name property, which returns the fully qualified component
name. The .local_name property will return the component name only within the context of the immediate
parent container.

construct(data=None)
Construct the _VarData objects for this variable

property ctype

Return the class type for this component

dim()

Return the dimension of the index

extract_values(include_fixed_values=True)
Return a dictionary of index-value pairs.

flag_as_stale()

Set the ‘stale’ attribute of every variable data object to True.

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

get_units()

Return the units expression for this Var.

get_values(include_fixed_values=True)
Return a dictionary of index-value pairs.

15.2. AML Library Reference 277

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters
• fully_qualified (bool) – Generate full name from nested block names

• relative_to (Block) – Generate fully_qualified names reletive to the specified block.

id_index_map()

Return an dictionary id->index for all ComponentData instances.

index_set()

Return the index set

is_component_type()

Return True if this class is a Pyomo component

is_constructed()

Return True if this class has been constructed

is_expression_type(expression_system=None)
Return True if this numeric value is an expression

is_indexed()

Return true if this component is indexed

is_logical_type()

Return True if this class is a Pyomo Boolean value, variable, or expression.

is_named_expression_type()

Return True if this numeric value is a named expression

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_parameter_type()

Return False unless this class is a parameter object

is_reference()

Return True if this component is a reference, where “reference” is interpreted as any component that does
not own its own data.

is_variable_type()

Return False unless this class is a variable object

items(ordered=False)
Return an iterator of (index,data) component data tuples

Parameters
ordered (bool) – If True, then the items are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the items are sorted using
sorted_robust().

iteritems()

DEPRECATED.

Return a list (index,data) tuples from the dictionary

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.items().

278 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

iterkeys()

DEPRECATED.

Return a list of keys in the dictionary

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Return a list of the component data objects in the dictionary

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.values().

keys(ordered=False)
Return an iterator over the component data keys

This method sets the ordering of component data objects within this IndexedComponent container. For
consistency, __init__(), values(), and items() all leverage this method to ensure consistent ordering.

Parameters
ordered (bool) – If True, then the keys are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the keys are sorted using
sorted_robust().

property local_name

Get the component name only within the context of the immediate parent container.

model()

Returns the model associated with this object.

property name

Get the fully qualifed component name.

parent_block()

Returns the parent of this object.

parent_component()

Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix='')
Print component information

reconstruct(data=None)
REMOVED: reconstruct() was removed in Pyomo 6.0.

Re-constructing model components was fragile and did not correctly update instances of the component
used in other components or contexts (this was particularly problemmatic for Var, Param, and Set). Users
who wish to reproduce the old behavior of reconstruct(), are comfortable manipulating non-public inter-
faces, and who take the time to verify that the correct thing happens to their model can approximate the old
behavior of reconstruct with:

component.clear() component._constructed = False component.construct()

root_block()

Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
Set the suffix value for this component data

15.2. AML Library Reference 279

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

set_value(value)
Set the value of a scalar component.

set_values(new_values, skip_validation=False)
Set the values of a dictionary.

The default behavior is to validate the values in the dictionary.

to_dense_data()

TODO

type()

DEPRECATED.

Return the class type for this component

Deprecated since version 5.7: Component.type() method has been replaced by the .ctype property.

valid_model_component()

Return True if this can be used as a model component.

values(ordered=False)
Return an iterator of the component data objects

Parameters
ordered (bool) – If True, then the values are returned in a deterministic order. If the under-
lying indexing set is ordered then that ordering is used. Otherwise, the component keys are
sorted using sorted_robust() and the values are returned in that order.

15.3 Expression Reference

15.3.1 Utilities to Build Expressions

pyomo.core.util.prod(terms)
A utility function to compute the product of a list of terms.

Parameters
terms (list) – A list of terms that are multiplied together.

Returns
The value of the product, which may be a Pyomo expression object.

pyomo.core.util.quicksum(args, start=0, linear=None)
A utility function to compute a sum of Pyomo expressions.

The behavior of quicksum() is similar to the builtin sum() function, but this function generates a more compact
Pyomo expression.

Parameters
• args – A generator for terms in the sum.

• start – A value that is initializes the sum. If this value is not a numeric constant, then the
+= operator is used to add terms to this object. Defaults to zero.

• linear – If start is not a numeric constant, then this option is ignored. Otherwise, this
value indicates whether the terms in the sum are linear. If the value is False, then the terms
are treated as nonlinear, and if True, then the terms are treated as linear. Default is None,
which indicates that the first term in the args is used to determine this value.

280 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#sum

Pyomo Documentation, Release 6.5.0

Returns
The value of the sum, which may be a Pyomo expression object.

pyomo.core.util.sum_product(*args, **kwds)
A utility function to compute a generalized dot product.

This function accepts one or more components that provide terms that are multiplied together. These products
are added together to form a sum.

Parameters
• *args – Variable length argument list of generators that create terms in the summation.

• **kwds – Arbitrary keyword arguments.

Keyword Arguments
• index – A set that is used to index the components used to create the terms

• denom – A component or tuple of components that are used to create the denominator of the
terms

• start – The initial value used in the sum

Returns
The value of the sum.

pyomo.core.util.summation = <function sum_product>

An alias for sum_product

pyomo.core.util.dot_product = <function sum_product>

An alias for sum_product

15.3.2 Utilities to Manage and Analyze Expressions

Functions

pyomo.core.expr.current.expression_to_string(expr, verbose=None, labeler=None, smap=None,
compute_values=False)

Return a string representation of an expression.

Parameters
• expr (ExpressionBase) – The root node of an expression tree.

• verbose (bool) – If True, then the output is a nested functional form. Otherwise, the output
is an algebraic expression. Default is retrieved from common.TO_STRING_VERBOSE

• labeler (Callable) – If specified, this labeler is used to generate the string representation
for leaves (Var / Param objects) in the expression.

• smap (SymbolMap) – If specified, this SymbolMap is used to cache labels.

• compute_values (bool) – If True, then parameters and fixed variables are evaluated before
the expression string is generated. Default is False.

• Returns – A string representation for the expression.

pyomo.core.expr.current.decompose_term(expr)
A function that returns a tuple consisting of (1) a flag indicated whether the expression is linear, and (2) a list of
tuples that represents the terms in the linear expression.

15.3. Expression Reference 281

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Parameters
expr (expression) – The root node of an expression tree

Returns
A tuple with the form (flag, list). If flag is False, then a nonlinear term has been found,
and list is None. Otherwise, list is a list of tuples: (coef, value). If value is None, then
this represents a constant term with value coef. Otherwise, value is a variable object, and coef
is the numeric coefficient.

pyomo.core.expr.current.clone_expression(expr, substitute=None)
A function that is used to clone an expression.

Cloning is equivalent to calling copy.deepcopy with no Block scope. That is, the expression tree is duplicated,
but no Pyomo components (leaf nodes or named Expressions) are duplicated.

Parameters
• expr – The expression that will be cloned.

• substitute (dict) – A dictionary mapping object ids to objects. This dictionary has the
same semantics as the memo object used with copy.deepcopy. Defaults to None, which
indicates that no user-defined dictionary is used.

Returns
The cloned expression.

pyomo.core.expr.current.evaluate_expression(exp, exception=True, constant=False)
Evaluate the value of the expression.

Parameters
• expr – The root node of an expression tree.

• exception (bool) – A flag that indicates whether exceptions are raised. If this flag is False,
then an exception that occurs while evaluating the expression is caught and the return value
is None. Default is True.

• constant (bool) – If True, constant expressions are evaluated and returned but noncon-
stant expressions raise either FixedExpressionError or NonconstantExpressionError (de-
fault=False).

Returns
A floating point value if the expression evaluates normally, or None if an exception occurs and is
caught.

pyomo.core.expr.current.identify_components(expr, component_types)
A generator that yields a sequence of nodes in an expression tree that belong to a specified set.

Parameters
• expr – The root node of an expression tree.

• component_types (set or list) – A set of class types that will be matched during the
search.

Yields
Each node that is found.

pyomo.core.expr.current.identify_variables(expr, include_fixed=True)
A generator that yields a sequence of variables in an expression tree.

Parameters

282 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• expr – The root node of an expression tree.

• include_fixed (bool) – If True, then this generator will yield variables whose value is
fixed. Defaults to True.

Yields
Each variable that is found.

pyomo.core.expr.differentiate(expr, wrt=None, wrt_list=None, mode=Modes.reverse_numeric)
Return derivative of expression.

This function returns the derivative of expr with respect to one or more variables. The type of the return value
depends on the arguments wrt, wrt_list, and mode. See below for details.

Parameters
• expr (pyomo.core.expr.numeric_expr.NumericExpression) – The expression to dif-

ferentiate

• wrt (pyomo.core.base.var._GeneralVarData) – If specified, this function will return
the derivative with respect to wrt. wrt is normally a _GeneralVarData, but could also be a
_ParamData. wrt and wrt_list cannot both be specified.

• wrt_list (list of pyomo.core.base.var._GeneralVarData) – If specified, this
function will return the derivative with respect to each element in wrt_list. A list will be re-
turned where the values are the derivatives with respect to the corresponding entry in wrt_list.

• mode (pyomo.core.expr.calculus.derivatives.Modes) – Specifies the method to use
for differentiation. Should be one of the members of the Modes enum:

Modes.sympy:
The pyomo expression will be converted to a sympy expression. Differentiation will
then be done with sympy, and the result will be converted back to a pyomo expres-
sion. The sympy mode only does symbolic differentiation. The sympy mode requires
exactly one of wrt and wrt_list to be specified.

Modes.reverse_symbolic:
Symbolic differentiation will be performed directly with the pyomo expression in
reverse mode. If neither wrt nor wrt_list are specified, then a ComponentMap is
returned where there will be a key for each node in the expression tree, and the values
will be the symbolic derivatives.

Modes.reverse_numeric:
Numeric differentiation will be performed directly with the pyomo expression in re-
verse mode. If neither wrt nor wrt_list are specified, then a ComponentMap is re-
turned where there will be a key for each node in the expression tree, and the values
will be the floating point values of the derivatives at the current values of the vari-
ables.

Returns
res – The value or expression of the derivative(s)

Return type
float, NumericExpression, ComponentMap, or list

15.3. Expression Reference 283

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Classes

class pyomo.core.expr.symbol_map.SymbolMap(labeler=None)
A class for tracking assigned labels for modeling components.

Symbol maps are used, for example, when writing problem files for input to an optimizer.

Warning: A symbol map should never be pickled. This class is typically constructed by solvers and writers,
and it may be owned by models.

Note: We should change the API to not use camelcase.

byObject

maps (object id) to (string label)

Type
dict

bySymbol

maps (string label) to (object weakref)

Type
dict

alias

maps (string label) to (object weakref)

Type
dict

default_labeler

used to compute a string label from an object

15.3.3 Context Managers

class pyomo.core.expr.current.nonlinear_expression

Context manager for mutable sums.

This context manager is used to compute a sum while treating the summation as a mutable object.

class pyomo.core.expr.current.linear_expression

Context manager for mutable linear sums.

This context manager is used to compute a linear sum while treating the summation as a mutable object.

class pyomo.core.expr.current.clone_counter

DEPRECATED.

Context manager for counting cloning events.

This context manager counts the number of times that the clone_expression function is
executed.

284 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

Deprecated since version 6.4.3: The clone counter has been removed and will always return 0.

Beginning with Pyomo5 expressions, expression cloning (detangling) no longer occurs automatically within
expression generation. As a result, the ‘clone counter’ has lost its utility and is no longer supported. This context
manager will always report 0.

property count

A property that returns the clone count value.

15.3.4 Core Classes

The following are the two core classes documented here:

• NumericValue

• NumericExpression

The remaining classes are the public classes for expressions, which developers may need to know about. The methods
for these classes are not documented because they are described in the NumericExpression class.

Sets with Expression Types

The following sets can be used to develop visitor patterns for Pyomo expressions.

pyomo.core.expr.numvalue.native_numeric_types = {<class 'numpy.uint64'>, <class
'numpy.int64'>, <class 'numpy.ndarray'>, <class 'numpy.float64'>, <class 'bool'>, <class
'complex'>, <class 'numpy.float16'>, <class 'float'>, <class 'numpy.uint8'>, <class
'numpy.int8'>, <class 'numpy.float32'>, <class 'numpy.uint16'>, <class 'numpy.int16'>,
<class 'int'>, <class 'numpy.uint32'>, <class 'numpy.int32'>}

set() -> new empty set object set(iterable) -> new set object

Build an unordered collection of unique elements.

pyomo.core.expr.numvalue.native_types = {<class 'numpy.uint64'>, <class 'numpy.int64'>,
<class 'numpy.float64'>, <class 'numpy.uint32'>, <class 'numpy.int32'>, <class 'slice'>,
<class 'bool'>, <class 'complex'>, <class 'numpy.float32'>, <class 'numpy.uint16'>,
<class 'numpy.int16'>, <class 'numpy.bool_'>, <class 'NoneType'>, <class 'str'>, <class
'numpy.float16'>, <class 'numpy.uint8'>, <class 'numpy.int8'>, <class 'bytes'>, <class
'numpy.ndarray'>, <class 'float'>, <class 'int'>}

set() -> new empty set object set(iterable) -> new set object

Build an unordered collection of unique elements.

pyomo.core.expr.numvalue.nonpyomo_leaf_types = {<class 'numpy.uint64'>, <class
'numpy.int64'>, <class 'numpy.float64'>, <class 'numpy.uint32'>, <class 'numpy.int32'>,
<class 'slice'>, <class 'bool'>, <class 'complex'>, <class 'numpy.float32'>, <class
'numpy.uint16'>, <class 'numpy.int16'>, <class 'numpy.bool_'>, <class 'NoneType'>, <class
'str'>, <class 'numpy.float16'>, <class 'numpy.uint8'>, <class 'numpy.int8'>, <class
'bytes'>, <class 'pyomo.core.expr.numvalue.NonNumericValue'>, <class 'numpy.ndarray'>,
<class 'float'>, <class 'int'>}

set() -> new empty set object set(iterable) -> new set object

Build an unordered collection of unique elements.

15.3. Expression Reference 285

Pyomo Documentation, Release 6.5.0

NumericValue and NumericExpression

class pyomo.core.expr.numvalue.NumericValue

This is the base class for numeric values used in Pyomo.

__abs__()

Absolute value

This method is called when Python processes the statement:

abs(self)

__add__(other)
Binary addition

This method is called when Python processes the statement:

self + other

__bool__()

Coerce the value to a bool

Numeric values can be coerced to bool only if the value / expression is constant. Fixed (but non-constant)
or variable values will raise an exception.

Raises
PyomoException –

__div__(other)
Binary division

This method is called when Python processes the statement:

self / other

__eq__(other)
Equal to operator

This method is called when Python processes the statement:

self == other

__float__()

Coerce the value to a floating point

Numeric values can be coerced to float only if the value / expression is constant. Fixed (but non-constant)
or variable values will raise an exception.

Raises
TypeError –

__ge__(other)
Greater than or equal operator

This method is called when Python processes statements of the form:

self >= other
other <= self

286 Chapter 15. Library Reference

https://docs.python.org/3/library/exceptions.html#TypeError

Pyomo Documentation, Release 6.5.0

__gt__(other)
Greater than operator

This method is called when Python processes statements of the form:

self > other
other < self

__hash__ = None

__iadd__(other)
Binary addition

This method is called when Python processes the statement:

self += other

__idiv__(other)
Binary division

This method is called when Python processes the statement:

self /= other

__imul__(other)
Binary multiplication

This method is called when Python processes the statement:

self *= other

__int__()

Coerce the value to an integer

Numeric values can be coerced to int only if the value / expression is constant. Fixed (but non-constant) or
variable values will raise an exception.

Raises
TypeError –

__ipow__(other)
Binary power

This method is called when Python processes the statement:

self **= other

__isub__(other)
Binary subtraction

This method is called when Python processes the statement:

self -= other

__itruediv__(other)
Binary division (when __future__.division is in effect)

This method is called when Python processes the statement:

15.3. Expression Reference 287

https://docs.python.org/3/library/exceptions.html#TypeError

Pyomo Documentation, Release 6.5.0

self /= other

__le__(other)
Less than or equal operator

This method is called when Python processes statements of the form:

self <= other
other >= self

__lt__(other)
Less than operator

This method is called when Python processes statements of the form:

self < other
other > self

__mul__(other)
Binary multiplication

This method is called when Python processes the statement:

self * other

__neg__()

Negation

This method is called when Python processes the statement:

- self

__pos__()

Positive expression

This method is called when Python processes the statement:

+ self

__pow__(other)
Binary power

This method is called when Python processes the statement:

self ** other

__radd__(other)
Binary addition

This method is called when Python processes the statement:

other + self

__rdiv__(other)
Binary division

This method is called when Python processes the statement:

288 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

other / self

__rmul__(other)
Binary multiplication

This method is called when Python processes the statement:

other * self

when other is not a NumericValue object.

__rpow__(other)
Binary power

This method is called when Python processes the statement:

other ** self

__rsub__(other)
Binary subtraction

This method is called when Python processes the statement:

other - self

__rtruediv__(other)
Binary division (when __future__.division is in effect)

This method is called when Python processes the statement:

other / self

__sub__(other)
Binary subtraction

This method is called when Python processes the statement:

self - other

__truediv__(other)
Binary division (when __future__.division is in effect)

This method is called when Python processes the statement:

self / other

_compute_polynomial_degree(values)
Compute the polynomial degree of this expression given the degree values of its children.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
None

getname(fully_qualified=False, name_buffer=None)
If this is a component, return the component’s name on the owning block; otherwise return the value con-
verted to a string

15.3. Expression Reference 289

https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

is_constant()

Return True if this numeric value is a constant value

is_fixed()

Return True if this is a non-constant value that has been fixed

is_indexed()

Return True if this numeric value is an indexed object

is_numeric_type()

Return True if this class is a Pyomo numeric object

is_potentially_variable()

Return True if variables can appear in this expression

is_relational()

DEPRECATED.

Return True if this numeric value represents a relational expression.

Deprecated since version 6.4.3: is_relational() is deprecated in favor of
is_expression_type(ExpressionType.RELATIONAL)

polynomial_degree()

Return the polynomial degree of the expression.

Returns
None

to_string(verbose=None, labeler=None, smap=None, compute_values=False)
Return a string representation of the expression tree.

Parameters
• verbose (bool) – If True, then the string representation consists of nested functions.

Otherwise, the string representation is an infix algebraic equation. Defaults to False.

• labeler – An object that generates string labels for non-constant in the expression tree.
Defaults to None.

• smap – A SymbolMap instance that stores string labels for non-constant nodes in the ex-
pression tree. Defaults to None.

• compute_values (bool) – If True, then fixed expressions are evaluated and the string
representation of the resulting value is returned.

Returns
A string representation for the expression tree.

class pyomo.core.expr.current.NumericExpression(args)
Bases: ExpressionBase, NumericValue

The base class for Pyomo expressions.

This class is used to define nodes in a numeric expression tree.

Parameters
args (list or tuple) – Children of this node.

290 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

PRECEDENCE = 0

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

__init__(args)

_compute_polynomial_degree(values)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

property args

Return the child nodes

Returns
Sequence containing only the child nodes of this node. The return type depends on the node
storage model. Users are not permitted to change the returned data (even for the case of data
returned as a list), as that breaks the promise of tree immutability.

Return type
list or tuple

create_potentially_variable_object()

DEPRECATED.

Create a potentially variable version of this object.

This method returns an object that is a potentially variable version of the current object. In the
simplest case, this simply sets the value of __class__:

self.__class__ = self.__class__.__mro__[1]

Note that this method is allowed to modify the current object and return it. But in some cases it
may create a new potentially variable object.

Returns:
An object that is potentially variable.

Deprecated since version 6.4.3: The implicit recasting of a “not potentially variable” expression node to a
potentially variable one is no longer supported (this violates that immutability promise for Pyomo5 expres-
sion trees).

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

15.3. Expression Reference 291

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

polynomial_degree()

Return the polynomial degree of the expression.

Returns
A non-negative integer that is the polynomial degree if the expression is polynomial, or None
otherwise.

Other Public Classes

class pyomo.core.expr.current.NegationExpression(args)
Bases: NumericExpression

Negation expressions:

- x

PRECEDENCE = 4

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

292 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.ExternalFunctionExpression(args, fcn=None)
Bases: NumericExpression

External function expressions

Example:

model = ConcreteModel()
model.a = Var()
model.f = ExternalFunction(library='foo.so', function='bar')
expr = model.f(model.a)

Parameters

15.3. Expression Reference 293

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• args (tuple) – children of this node

• fcn – a class that defines this external function

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

_fcn

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

create_node_with_local_data(args, classtype=None)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In
the simplest case, this simply returns:

294 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child
nodes.

Parameters
args (list) – A list of child nodes for the new expression object

Returns
A new expression object with the same type as the current class.

get_arg_units()

Return the units for this external functions arguments

get_units()

Get the units of the return value for this external function

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.ProductExpression(args)
Bases: NumericExpression

Product expressions:

x*y

PRECEDENCE = 4

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

15.3. Expression Reference 295

https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

_is_fixed(args)
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the _IsFixedVisitor class. It can be over-written by expression classes to
customize this logic.

Parameters
values (list) – A list of boolean values that indicate whether the children of this expression
are fixed

Returns
A boolean that is True if the fixed values of the children are all True.

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

296 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

class pyomo.core.expr.current.DivisionExpression(args)
Bases: NumericExpression

Division expressions:

x/y

PRECEDENCE = 4

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

15.3. Expression Reference 297

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

class pyomo.core.expr.current.InequalityExpression(args, strict)
Bases: RelationalExpression

Inequality expressions, which define less-than or less-than-or-equal relations:

x < y
x <= y

Parameters
• args (tuple) – child nodes

• strict (bool) – a flag that indicates whether the inequality is strict

PRECEDENCE = 9

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those

298 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_strict

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

create_node_with_local_data(args)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In
the simplest case, this simply returns:

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child
nodes.

Parameters
args (list) – A list of child nodes for the new expression object

Returns
A new expression object with the same type as the current class.

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

15.3. Expression Reference 299

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

property strict

class pyomo.core.expr.current.EqualityExpression(args)
Bases: RelationalExpression

Equality expression:

x == y

PRECEDENCE = 9

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

300 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.SumExpression(args)
Bases: SumExpressionBase

Sum expression:

x + y

Parameters
args (list) – Children nodes

PRECEDENCE = 6

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_nargs

_shared_args

add(new_arg)

property args

Return the child nodes

Returns
Sequence containing only the child nodes of this node. The return type depends on the node
storage model. Users are not permitted to change the returned data (even for the case of data
returned as a list), as that breaks the promise of tree immutability.

Return type
list or tuple

create_node_with_local_data(args, classtype=None)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In
the simplest case, this simply returns:

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child
nodes.

Parameters
args (list) – A list of child nodes for the new expression object

Returns
A new expression object with the same type as the current class.

15.3. Expression Reference 301

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.GetItemExpression(args)
Bases: NumericExpression

Expression to call __getitem__() on the base object.

PRECEDENCE = 1

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

args

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

302 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

_is_fixed(values)
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the _IsFixedVisitor class. It can be over-written by expression classes to
customize this logic.

Parameters
values (list) – A list of boolean values that indicate whether the children of this expression
are fixed

Returns
A boolean that is True if the fixed values of the children are all True.

_resolve_template(args)

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

is_potentially_variable()

Return True if this expression might represent a variable expression.

This method returns Truewhen (a) the expression tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the
variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed
variables.

Returns
A boolean. Defaults to True for expressions.

15.3. Expression Reference 303

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.Expr_ifExpression(IF_=None, THEN_=None, ELSE_=None)
Bases: NumericExpression

A logical if-then-else expression:

Expr_if(IF_=x, THEN_=y, ELSE_=z)

Parameters
• IF (expression) – A relational expression

• THEN (expression) – An expression that is used if IF_ is true.

• ELSE (expression) – An expression that is used if IF_ is false.

PRECEDENCE = None

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

304 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

_else

_if

_is_fixed(args)
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the _IsFixedVisitor class. It can be over-written by expression classes to
customize this logic.

Parameters
values (list) – A list of boolean values that indicate whether the children of this expression
are fixed

Returns
A boolean that is True if the fixed values of the children are all True.

_then

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

15.3. Expression Reference 305

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

is_potentially_variable()

Return True if this expression might represent a variable expression.

This method returns Truewhen (a) the expression tree contains one or more variables, or (b) the expression
tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the
variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed
variables.

Returns
A boolean. Defaults to True for expressions.

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.UnaryFunctionExpression(args, name=None, fcn=None)
Bases: NumericExpression

An expression object used to define intrinsic functions (e.g. sin, cos, tan).

Parameters
• args (tuple) – Children nodes

• name (string) – The function name

• fcn – The function that is used to evaluate this expression

PRECEDENCE = None

Return the associativity of this operator.

Returns 1 if this operator is left-to-right associative or -1 if it is right-to-left associative. Any other return
value will be interpreted as “not associative” (implying any arguments that are at this operator’s PRECE-
DENCE will be enclosed in parens).

_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to
customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate
the arguments in the process, but assumes that they have been previously evaluated. But note that if this
class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class) then those
values must be evaluated as part of this function call. An uninitialized parameter value encountered during
the execution of this method is considered an error.

306 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

Parameters
values (list) – A list of values that indicate the value of the children expressions.

Returns
A floating point value for this expression.

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression
classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is
None.

_fcn

_name

_to_string(values, verbose, smap)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the string representation consists of nested functions.
Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

Returns
A string representation for this node.

create_node_with_local_data(args, classtype=None)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In
the simplest case, this simply returns:

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child
nodes.

Parameters
args (list) – A list of child nodes for the new expression object

Returns
A new expression object with the same type as the current class.

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters

15.3. Expression Reference 307

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• *arg – a variable length list of arguments

• **kwds – keyword arguments

Returns
A string name for the function.

nargs()

Returns the number of child nodes.

Note: Individual expression nodes may use different internal storage schemes, so it is imperative that
developers use this method and not assume the existence of a particular attribute!

Returns
int

Return type
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.AbsExpression(arg)
Bases: UnaryFunctionExpression

An expression object for the abs() function.

Parameters
args (tuple) – Children nodes

create_node_with_local_data(args, classtype=None)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In
the simplest case, this simply returns:

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child
nodes.

Parameters
args (list) – A list of child nodes for the new expression object

Returns
A new expression object with the same type as the current class.

15.3.5 Visitor Classes

class pyomo.core.expr.current.SimpleExpressionVisitor

Note: This class is a customization of the PyUtilib SimpleVisitor class that is tailored to efficiently walk
Pyomo expression trees. However, this class is not a subclass of the PyUtilib SimpleVisitor class because all
key methods are reimplemented.

308 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

finalize()

Return the “final value” of the search.

The default implementation returns None, because the traditional visitor pattern does not return a value.

Returns
The final value after the search. Default is None.

visit(node)
Visit a node in an expression tree and perform some operation on it.

This method should be over-written by a user that is creating a sub-class.

Parameters
node – a node in an expression tree

Returns
nothing

xbfs(node)
Breadth-first search of an expression tree, except that leaf nodes are immediately visited.

Note: This method has the same functionality as the PyUtilib SimpleVisitor.xbfs method. The dif-
ference is that this method is tailored to efficiently walk Pyomo expression trees.

Parameters
node – The root node of the expression tree that is searched.

Returns
The return value is determined by the finalize() function, which may be defined by the
user. Defaults to None.

xbfs_yield_leaves(node)
Breadth-first search of an expression tree, except that leaf nodes are immediately visited.

Note: This method has the same functionality as the PyUtilib SimpleVisitor.xbfs_yield_leaves
method. The difference is that this method is tailored to efficiently walk Pyomo expression trees.

Parameters
node – The root node of the expression tree that is searched.

Returns
The return value is determined by the finalize() function, which may be defined by the
user. Defaults to None.

class pyomo.core.expr.current.ExpressionValueVisitor

Note: This class is a customization of the PyUtilib ValueVisitor class that is tailored to efficiently walk
Pyomo expression trees. However, this class is not a subclass of the PyUtilib ValueVisitor class because all
key methods are reimplemented.

15.3. Expression Reference 309

Pyomo Documentation, Release 6.5.0

dfs_postorder_stack(node)
Perform a depth-first search in postorder using a stack implementation.

Note: This method has the same functionality as the PyUtilib ValueVisitor.dfs_postorder_stack
method. The difference is that this method is tailored to efficiently walk Pyomo expression trees.

Parameters
node – The root node of the expression tree that is searched.

Returns
The return value is determined by the finalize() function, which may be defined by the
user.

finalize(ans)
This method defines the return value for the search methods in this class.

The default implementation returns the value of the initial node (aka the root node), because this visitor
pattern computes and returns value for each node to enable the computation of this value.

Parameters
ans – The final value computed by the search method.

Returns
The final value after the search. Defaults to simply returning ans.

visit(node, values)
Visit a node in a tree and compute its value using the values of its children.

This method should be over-written by a user that is creating a sub-class.

Parameters
• node – a node in a tree

• values – a list of values of this node’s children

Returns
The value for this node, which is computed using values

visiting_potential_leaf(node)
Visit a node and return its value if it is a leaf.

Note: This method needs to be over-written for a specific visitor application.

Parameters
node – a node in a tree

Returns
(flag, value). If flag is False, then the node is not a leaf and value is None. Otherwise,
value is the computed value for this node.

Return type
A tuple

310 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

class pyomo.core.expr.current.ExpressionReplacementVisitor(substitute=None, de-
scend_into_named_expressions=True,
remove_named_expressions=True)

dfs_postorder_stack(expr)
DEPRECATED.

Deprecated since version 6.2: ExpressionReplacementVisitor: this walker has been ported to derive from
StreamBasedExpressionVisitor. dfs_postorder_stack() has been replaced with walk_expression()

15.4 Solver Interfaces

15.4.1 GAMS

GAMSShell Solver

GAMSShell.available([exception_flag]) True if the solver is available.
GAMSShell.executable() Returns the executable used by this solver.
GAMSShell.solve(*args, **kwds) Solve a model via the GAMS executable.
GAMSShell.version() Returns a 4-tuple describing the solver executable ver-

sion.
GAMSShell.warm_start_capable() True is the solver can accept a warm-start solution.

class pyomo.solvers.plugins.solvers.GAMS.GAMSShell(**kwds)
A generic shell interface to GAMS solvers.

available(exception_flag=True)
True if the solver is available.

executable()

Returns the executable used by this solver.

solve(*args, **kwds)
Solve a model via the GAMS executable.

Keyword Arguments
• tee=False (bool) – Output GAMS log to stdout.

• logfile=None (str) – Filename to output GAMS log to a file.

• load_solutions=True (bool) – Load solution into model. If False, the results object
will contain the solution data.

• keepfiles=False (bool) – Keep temporary files.

• tmpdir=None (str) – Specify directory path for storing temporary files. A directory will
be created if one of this name doesn’t exist. By default uses the system default temporary
path.

• report_timing=False (bool) – Print timing reports for presolve, solver, postsolve, etc.

• io_options (dict) – Options that get passed to the writer. See writer in py-
omo.repn.plugins.gams_writer for details. Updated with any other keywords passed to
solve method. Note: put_results is not available for modification on GAMSShell solver.

15.4. Solver Interfaces 311

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

GAMSDirect Solver

GAMSDirect.available([exception_flag]) True if the solver is available.
GAMSDirect.solve(*args, **kwds) Solve a model via the GAMS Python API.
GAMSDirect.version() Returns a 4-tuple describing the solver executable ver-

sion.
GAMSDirect.warm_start_capable() True is the solver can accept a warm-start solution.

class pyomo.solvers.plugins.solvers.GAMS.GAMSDirect(**kwds)
A generic python interface to GAMS solvers.

Visit Python API page on gams.com for installation help.

available(exception_flag=True)
True if the solver is available.

solve(*args, **kwds)
Solve a model via the GAMS Python API.

Keyword Arguments
• tee=False (bool) – Output GAMS log to stdout.

• logfile=None (str) – Filename to output GAMS log to a file.

• load_solutions=True (bool) – Load solution into model. If False, the results object
will contain the solution data.

• keepfiles=False (bool) – Keep temporary files. Equivalent of DebugLevel.KeepFiles.
Summary of temp files can be found in _gams_py_gjo0.pf

• tmpdir=None (str) – Specify directory path for storing temporary files. A directory will
be created if one of this name doesn’t exist. By default uses the system default temporary
path.

• report_timing=False (bool) – Print timing reports for presolve, solver, postsolve, etc.

• io_options (dict) – Options that get passed to the writer. See writer in py-
omo.repn.plugins.gams_writer for details. Updated with any other keywords passed to
solve method.

GAMS Writer

This class is most commonly accessed and called upon via model.write(“filename.gms”, . . .), but is also utilized by the
GAMS solver interfaces.

class pyomo.repn.plugins.gams_writer.ProblemWriter_gams

__call__(model, output_filename, solver_capability, io_options)
Write a model in the GAMS modeling language format.

Keyword Arguments
• output_filename (str) – Name of file to write GAMS model to. Optionally pass a

file-like stream and the model will be written to that instead.

• io_options (dict) –

– warmstart=True
Warmstart by initializing model’s variables to their values.

312 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

– symbolic_solver_labels=False
Use full Pyomo component names rather than shortened symbols (slower, but useful
for debugging).

– labeler=None
Custom labeler. Incompatible with symbolic_solver_labels.

– solver=None
If None, GAMS will use default solver for model type.

– mtype=None
Model type. If None, will chose from lp, nlp, mip, and minlp.

– add_options=None
List of additional lines to write directly into model file before the solve statement. For
model attributes, <model name> is GAMS_MODEL.

– skip_trivial_constraints=False
Skip writing constraints whose body section is fixed.

– output_fixed_variables=False
If True, output fixed variables as variables; otherwise, output numeric value.

– file_determinism=1

How much effort do we want to put into ensuring the
GAMS file is written deterministically for a Pyomo model:

0 : None
1 : sort keys of indexed components (default)
2 : sort keys AND sort names (over declaration order)

– put_results=None
Filename for optionally writing solution values and marginals. If
put_results_format is ‘gdx’, then GAMS will write solution values and marginals
to GAMS_MODEL_p.gdx and solver statuses to {put_results}_s.gdx. If
put_results_format is ‘dat’, then solution values and marginals are written to
(put_results).dat, and solver statuses to (put_results + ‘stat’).dat.

– put_results_format=’gdx’
Format used for put_results, one of ‘gdx’, ‘dat’.

15.4.2 CPLEXPersistent

class pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent(**kwds)
Bases: PersistentSolver, CPLEXDirect

A class that provides a persistent interface to Cplex. Direct solver interfaces do not use any file io. Rather, they
interface directly with the python bindings for the specific solver. Persistent solver interfaces are similar except
that they “remember” their model. Thus, persistent solver interfaces allow incremental changes to the solver
model (e.g., the gurobi python model or the cplex python model). Note that users are responsible for notifying
the persistent solver interfaces when changes are made to the corresponding pyomo model.

Keyword Arguments
• model (ConcreteModel) – Passing a model to the constructor is equivalent to calling

the set_instance mehtod.

• type (str) – String indicating the class type of the solver instance.

15.4. Solver Interfaces 313

https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

• name (str) – String representing either the class type of the solver instance or an as-
signed name.

• doc (str) – Documentation for the solver

• options (dict) – Dictionary of solver options
add_block(block)

Add a single Pyomo Block to the solver’s model.

This will keep any existing model components intact.
Parameters

block (Block (scalar Block or single _BlockData)) –

add_column(model, var, obj_coef, constraints, coefficients)
Add a column to the solver’s and Pyomo model

This will add the Pyomo variable var to the solver’s model, and put the coefficients on the associated
constraints in the solver model. If the obj_coef is not zero, it will add obj_coef*var to the objective of both
the Pyomo and solver’s model.

Parameters
• model (pyomo ConcreteModel to which the column will be added) –

• var (Var (scalar Var or single _VarData)) –

• obj_coef (float, pyo.Param) –

• constraints (list of scalar Constraints of single
_ConstraintDatas) –

• coefficients (list of the coefficient to put on var in the
associated constraint) –

add_constraint(con)
Add a single constraint to the solver’s model.

This will keep any existing model components intact.
Parameters

con (Constraint (scalar Constraint or single _ConstraintData)) –

add_sos_constraint(con)
Add a single SOS constraint to the solver’s model (if supported).

This will keep any existing model components intact.
Parameters

con (SOSConstraint) –

add_var(var)
Add a single variable to the solver’s model.

This will keep any existing model components intact.
Parameters

var (Var) –

available(exception_flag=True)
True if the solver is available.

has_capability(cap)
Returns a boolean value representing whether a solver supports a specific feature. Defaults to ‘False’ if the
solver is unaware of an option. Expects a string.

314 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Example: # prints True if solver supports sos1 constraints, and False otherwise
print(solver.has_capability(‘sos1’)

prints True is solver supports ‘feature’, and False otherwise print(solver.has_capability(‘feature’)
Parameters

cap (str) – The feature

Returns
val – Whether or not the solver has the specified capability.

Return type
bool

has_instance()

True if set_instance has been called and this solver interface has a pyomo model and a solver model.
Returns

tmp
Return type

bool

license_is_valid()

True if the solver is present and has a valid license (if applicable)

load_duals(cons_to_load=None)
Load the duals into the ‘dual’ suffix. The ‘dual’ suffix must live on the parent model.

Parameters
cons_to_load (list of Constraint) –

load_rc(vars_to_load)
Load the reduced costs into the ‘rc’ suffix. The ‘rc’ suffix must live on the parent model.

Parameters
vars_to_load (list of Var) –

load_slacks(cons_to_load=None)
Load the values of the slack variables into the ‘slack’ suffix. The ‘slack’ suffix must live on the parent
model.

Parameters
cons_to_load (list of Constraint) –

load_vars(vars_to_load=None)
Load the values from the solver’s variables into the corresponding pyomo variables.

Parameters
vars_to_load (list of Var) –

problem_format()

Returns the current problem format.

remove_block(block)
Remove a single block from the solver’s model.

This will keep any other model components intact.

WARNING: Users must call remove_block BEFORE modifying the block.
Parameters

block (Block (scalar Block or a single _BlockData)) –

15.4. Solver Interfaces 315

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

remove_constraint(con)
Remove a single constraint from the solver’s model.

This will keep any other model components intact.
Parameters

con (Constraint (scalar Constraint or single _ConstraintData)) –

remove_sos_constraint(con)
Remove a single SOS constraint from the solver’s model.

This will keep any other model components intact.
Parameters

con (SOSConstraint) –

remove_var(var)
Remove a single variable from the solver’s model.

This will keep any other model components intact.
Parameters

var (Var (scalar Var or single _VarData)) –

reset()

Reset the state of the solver

results

A results object return from the solve method.

results_format()

Returns the current results format.

set_callback(name, callback_fn=None)
Set the callback function for a named callback.

A call-back function has the form:
def fn(solver, model):

pass
where ‘solver’ is the native solver interface object and ‘model’ is a Pyomo model instance object.

set_instance(model, **kwds)
This method is used to translate the Pyomo model provided to an instance of the solver’s Python model.
This discards any existing model and starts from scratch.

Parameters
model (ConcreteModel) – The pyomo model to be used with the solver.

Keyword Arguments
• symbolic_solver_labels (bool) – If True, the solver’s components (e.g., vari-

ables, constraints) will be given names that correspond to the Pyomo component
names.

• skip_trivial_constraints (bool) – If True, then any constraints with a con-
stant body will not be added to the solver model. Be careful with this. If a triv-
ial constraint is skipped then that constraint cannot be removed from a persistent
solver (an error will be raised if a user tries to remove a non-existent constraint).

• output_fixed_variable_bounds (bool) – If False then an error will be raised
if a fixed variable is used in one of the solver constraints. This is useful for catching
bugs. Ordinarily a fixed variable should appear as a constant value in the solver
constraints. If True, then the error will not be raised.

316 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

set_objective(obj)
Set the solver’s objective. Note that, at least for now, any existing objective will be discarded. Other than
that, any existing model components will remain intact.

Parameters
obj (Objective) –

set_problem_format(format)
Set the current problem format (if it’s valid) and update the results format to something valid for this
problem format.

set_results_format(format)
Set the current results format (if it’s valid for the current problem format).

solve(*args, **kwds)
Solve the model.

Keyword Arguments
• suffixes (list of str) – The strings should represnt suffixes support by the

solver. Examples include ‘dual’, ‘slack’, and ‘rc’.

• options (dict) – Dictionary of solver options. See the solver documentation for
possible solver options.

• warmstart (bool) – If True, the solver will be warmstarted.

• keepfiles (bool) – If True, the solver log file will be saved.

• logfile (str) – Name to use for the solver log file.

• load_solutions (bool) – If True and a solution exists, the solution will be
loaded into the Pyomo model.

• report_timing (bool) – If True, then timing information will be printed.

• tee (bool) – If True, then the solver log will be printed.

update_var(var)
Update a single variable in the solver’s model.

This will update bounds, fix/unfix the variable as needed, and update the variable type.
Parameters

var (Var (scalar Var or single _VarData)) –

version()

Returns a 4-tuple describing the solver executable version.

warm_start_capable()

True is the solver can accept a warm-start solution

write(filename, filetype='')
Write the model to a file (e.g., and lp file).

Parameters
• filename (str) – Name of the file to which the model should be written.

• filetype (str) – The file type (e.g., lp).

15.4. Solver Interfaces 317

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

15.4.3 GurobiPersistent

Methods

GurobiPersistent.add_block(block) Add a single Pyomo Block to the solver's model.
GurobiPersistent.add_constraint(con) Add a single constraint to the solver's model.
GurobiPersistent.set_objective(obj) Set the solver's objective.
GurobiPersistent.add_sos_constraint(con) Add a single SOS constraint to the solver's model (if sup-

ported).
GurobiPersistent.add_var(var) Add a single variable to the solver's model.
GurobiPersistent.available([exception_flag]) True if the solver is available.
GurobiPersistent.has_capability(cap) Returns a boolean value representing whether a solver

supports a specific feature.
GurobiPersistent.has_instance() True if set_instance has been called and this solver inter-

face has a pyomo model and a solver model.
GurobiPersistent.load_vars([vars_to_load]) Load the values from the solver's variables into the cor-

responding pyomo variables.
GurobiPersistent.problem_format() Returns the current problem format.
GurobiPersistent.remove_block(block) Remove a single block from the solver's model.
GurobiPersistent.remove_constraint(con) Remove a single constraint from the solver's model.
GurobiPersistent.remove_sos_constraint(con) Remove a single SOS constraint from the solver's model.
GurobiPersistent.remove_var(var) Remove a single variable from the solver's model.
GurobiPersistent.reset() Reset the state of the solver
GurobiPersistent.results_format() Returns the current results format.
GurobiPersistent.set_callback([func]) Specify a callback for gurobi to use.
GurobiPersistent.set_instance(model, **kwds) This method is used to translate the Pyomo model pro-

vided to an instance of the solver's Python model.
GurobiPersistent.set_problem_format(format) Set the current problem format (if it's valid) and update

the results format to something valid for this problem
format.

GurobiPersistent.set_results_format(format) Set the current results format (if it's valid for the current
problem format).

GurobiPersistent.solve(*args, **kwds) Solve the model.
GurobiPersistent.update_var(var) Update a single variable in the solver's model.
GurobiPersistent.version() Returns a 4-tuple describing the solver executable ver-

sion.
GurobiPersistent.write(filename) Write the model to a file (e.g., and lp file).

class pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent(**kwds)
Bases: PersistentSolver, GurobiDirect

A class that provides a persistent interface to Gurobi. Direct solver interfaces do not use any file io. Rather, they
interface directly with the python bindings for the specific solver. Persistent solver interfaces are similar except
that they “remember” their model. Thus, persistent solver interfaces allow incremental changes to the solver
model (e.g., the gurobi python model or the cplex python model). Note that users are responsible for notifying
the persistent solver interfaces when changes are made to the corresponding pyomo model.

Keyword Arguments
• model (ConcreteModel) – Passing a model to the constructor is equivalent to calling

the set_instance mehtod.

• type (str) – String indicating the class type of the solver instance.

318 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

• name (str) – String representing either the class type of the solver instance or an as-
signed name.

• doc (str) – Documentation for the solver

• options (dict) – Dictionary of solver options
add_block(block)

Add a single Pyomo Block to the solver’s model.

This will keep any existing model components intact.
Parameters

block (Block (scalar Block or single _BlockData)) –

add_column(model, var, obj_coef, constraints, coefficients)
Add a column to the solver’s and Pyomo model

This will add the Pyomo variable var to the solver’s model, and put the coefficients on the associated
constraints in the solver model. If the obj_coef is not zero, it will add obj_coef*var to the objective of both
the Pyomo and solver’s model.

Parameters
• model (pyomo ConcreteModel to which the column will be added) –

• var (Var (scalar Var or single _VarData)) –

• obj_coef (float, pyo.Param) –

• constraints (list of scalar Constraints of single
_ConstraintDatas) –

• coefficients (list of the coefficient to put on var in the
associated constraint) –

add_constraint(con)
Add a single constraint to the solver’s model.

This will keep any existing model components intact.
Parameters

con (Constraint (scalar Constraint or single _ConstraintData)) –

add_sos_constraint(con)
Add a single SOS constraint to the solver’s model (if supported).

This will keep any existing model components intact.
Parameters

con (SOSConstraint) –

add_var(var)
Add a single variable to the solver’s model.

This will keep any existing model components intact.
Parameters

var (Var) –

available(exception_flag=True)
True if the solver is available.

cbCut(con)
Add a cut within a callback.

Parameters
con (pyomo.core.base.constraint._GeneralConstraintData) – The cut to
add

15.4. Solver Interfaces 319

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

cbGetNodeRel(vars)
Parameters

vars (Var or iterable of Var) –

cbGetSolution(vars)
Parameters

vars (iterable of vars) –

cbLazy(con)
Parameters

con (pyomo.core.base.constraint._GeneralConstraintData) – The lazy con-
straint to add

get_gurobi_param_info(param)

Get information about a gurobi parameter.
Parameters

param (str) – The gurobi parameter to get info for. See Gurobi documenation for
possible options.

Return type
six-tuple containing the parameter name, type, value, minimum value, maximum value,
and default value.

get_linear_constraint_attr(con, attr)
Get the value of an attribute on a gurobi linear constraint.

Parameters
• con (pyomo.core.base.constraint._GeneralConstraintData) – The py-

omo constraint for which the corresponding gurobi constraint attribute should be
retrieved.

• attr (str) – The attribute to get. Options are:

Sense RHS ConstrName Pi Slack CBasis DStart Lazy IISConstr
SARHSLow SARHSUp FarkasDual

get_model_attr(attr)
Get the value of an attribute on the Gurobi model.

Parameters
attr (str) – The attribute to get. See Gurobi documentation for descriptions of the
attributes.

Options are:

NumVars NumConstrs NumSOS NumQConstrs NumgGenConstrs NumNZs
DNumNZs NumQNZs NumQCNZs NumIntVars NumBinVars NumP-
WLObjVars ModelName ModelSense ObjCon ObjVal ObjBound Ob-
jBoundC PoolObjBound PoolObjVal MIPGap Runtime Status SolCount
IterCount BarIterCount NodeCount IsMIP IsQP IsQCP IsMultiObj IISMin-
imal MaxCoeff MinCoeff MaxBound MinBound MaxObjCoeff MinObjCo-
eff MaxRHS MinRHS MaxQCCoeff MinQCCoeff MaxQCLCoeff MinQ-
CLCoeff MaxQCRHS MinQCRHS MaxQObjCoeff MinQObjCoeff Kappa
KappaExact FarkasProof TuneResultCount LicenseExpiration BoundVio
BoundSVio BoundVioIndex BoundSVioIndex BoundVioSum BoundSVio-
Sum ConstrVio ConstrSVio ConstrVioIndex ConstrSVioIndex ConstrVio-
Sum ConstrSVioSum ConstrResidual ConstrSResidual ConstrResidualIn-
dex ConstrSResidualIndex ConstrResidualSum ConstrSResidualSum Du-
alVio DualSVio DualVioIndex DualSVioIndex DualVioSum DualSVioSum

320 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

DualResidual DualSResidual DualResidualIndex DualSResidualIndex Du-
alResidualSum DualSResidualSum ComplVio ComplVioIndex ComplVio-
Sum IntVio IntVioIndex IntVioSum

get_quadratic_constraint_attr(con, attr)
Get the value of an attribute on a gurobi quadratic constraint.

Parameters
• con (pyomo.core.base.constraint._GeneralConstraintData) – The py-

omo constraint for which the corresponding gurobi constraint attribute should be
retrieved.

• attr (str) – The attribute to get. Options are:

QCSense QCRHS QCName QCPi QCSlack IISQConstr

get_sos_attr(con, attr)
Get the value of an attribute on a gurobi sos constraint.

Parameters
• con (pyomo.core.base.sos._SOSConstraintData) – The pyomo SOS con-

straint for which the corresponding gurobi SOS constraint attribute should be re-
trieved.

• attr (str) – The attribute to get. Options are:

IISSOS

get_var_attr(var, attr)
Get the value of an attribute on a gurobi var.

Parameters
• var (pyomo.core.base.var._GeneralVarData) – The pyomo var for which

the corresponding gurobi var attribute should be retrieved.

• attr (str) – The attribute to get. Options are:

LB UB Obj VType VarName X Xn RC BarX Start VarHintVal VarHint-
Pri BranchPriority VBasis PStart IISLB IISUB PWLObjCvx SAObjLow
SAObjUp SALBLow SALBUp SAUBLow SAUBUp UnbdRay

has_capability(cap)
Returns a boolean value representing whether a solver supports a specific feature. Defaults to ‘False’ if the
solver is unaware of an option. Expects a string.

Example: # prints True if solver supports sos1 constraints, and False otherwise
print(solver.has_capability(‘sos1’)

prints True is solver supports ‘feature’, and False otherwise print(solver.has_capability(‘feature’)
Parameters

cap (str) – The feature

Returns
val – Whether or not the solver has the specified capability.

Return type
bool

has_instance()

True if set_instance has been called and this solver interface has a pyomo model and a solver model.
Returns

tmp

15.4. Solver Interfaces 321

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Return type
bool

license_is_valid()

True if the solver is present and has a valid license (if applicable)

load_duals(cons_to_load=None)
Load the duals into the ‘dual’ suffix. The ‘dual’ suffix must live on the parent model.

Parameters
cons_to_load (list of Constraint) –

load_rc(vars_to_load)
Load the reduced costs into the ‘rc’ suffix. The ‘rc’ suffix must live on the parent model.

Parameters
vars_to_load (list of Var) –

load_slacks(cons_to_load=None)
Load the values of the slack variables into the ‘slack’ suffix. The ‘slack’ suffix must live on the parent
model.

Parameters
cons_to_load (list of Constraint) –

load_vars(vars_to_load=None)
Load the values from the solver’s variables into the corresponding pyomo variables.

Parameters
vars_to_load (list of Var) –

problem_format()

Returns the current problem format.

remove_block(block)
Remove a single block from the solver’s model.

This will keep any other model components intact.

WARNING: Users must call remove_block BEFORE modifying the block.
Parameters

block (Block (scalar Block or a single _BlockData)) –

remove_constraint(con)
Remove a single constraint from the solver’s model.

This will keep any other model components intact.
Parameters

con (Constraint (scalar Constraint or single _ConstraintData)) –

remove_sos_constraint(con)
Remove a single SOS constraint from the solver’s model.

This will keep any other model components intact.
Parameters

con (SOSConstraint) –

remove_var(var)
Remove a single variable from the solver’s model.

This will keep any other model components intact.
Parameters

var (Var (scalar Var or single _VarData)) –

322 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

reset()

Reset the state of the solver

results

A results object return from the solve method.

results_format()

Returns the current results format.

set_callback(func=None)
Specify a callback for gurobi to use.

Parameters
func (function) – The function to call. The function should have three arguments.
The first will be the pyomo model being solved. The second will be the GurobiPersistent
instance. The third will be an enum member of gurobipy.GRB.Callback. This will
indicate where in the branch and bound algorithm gurobi is at. For example, suppose

we want to solve

min 2𝑥 + 𝑦
s.t. 𝑦 ≥ (𝑥− 2)2

0 ≤ 𝑥 ≤ 4
𝑦 ≥ 0
𝑦 ∈ Z

as an MILP using exteneded cutting planes in

callbacks.

from gurobipy import GRB
import pyomo.environ as pe
from pyomo.core.expr.taylor_series import taylor_series_expansion

m = pe.ConcreteModel()
m.x = pe.Var(bounds=(0, 4))
m.y = pe.Var(within=pe.Integers, bounds=(0, None))
m.obj = pe.Objective(expr=2*m.x + m.y)
m.cons = pe.ConstraintList() # for the cutting planes

def _add_cut(xval):
a function to generate the cut
m.x.value = xval
return m.cons.add(m.y >= taylor_series_expansion((m.x -␣

→˓2)**2))

_add_cut(0) # start with 2 cuts at the bounds of x
_add_cut(4) # this is an arbitrary choice

opt = pe.SolverFactory('gurobi_persistent')
opt.set_instance(m)
opt.set_gurobi_param('PreCrush', 1)
opt.set_gurobi_param('LazyConstraints', 1)

def my_callback(cb_m, cb_opt, cb_where):
if cb_where == GRB.Callback.MIPSOL:

cb_opt.cbGetSolution(vars=[m.x, m.y])
if m.y.value < (m.x.value - 2)**2 - 1e-6:

cb_opt.cbLazy(_add_cut(m.x.value))

opt.set_callback(my_callback)
(continues on next page)

15.4. Solver Interfaces 323

Pyomo Documentation, Release 6.5.0

(continued from previous page)

opt.solve()

>>> assert abs(m.x.value - 1) <= 1e-6
>>> assert abs(m.y.value - 1) <= 1e-6

set_gurobi_param(param, val)
Set a gurobi parameter.

Parameters
• param (str) – The gurobi parameter to set. Options include any gurobi parameter.

Please see the Gurobi documentation for options.

• val (any) – The value to set the parameter to. See Gurobi documentation for
possible values.

set_instance(model, **kwds)
This method is used to translate the Pyomo model provided to an instance of the solver’s Python model.
This discards any existing model and starts from scratch.

Parameters
model (ConcreteModel) – The pyomo model to be used with the solver.

Keyword Arguments
• symbolic_solver_labels (bool) – If True, the solver’s components (e.g., vari-

ables, constraints) will be given names that correspond to the Pyomo component
names.

• skip_trivial_constraints (bool) – If True, then any constraints with a con-
stant body will not be added to the solver model. Be careful with this. If a triv-
ial constraint is skipped then that constraint cannot be removed from a persistent
solver (an error will be raised if a user tries to remove a non-existent constraint).

• output_fixed_variable_bounds (bool) – If False then an error will be raised
if a fixed variable is used in one of the solver constraints. This is useful for catching
bugs. Ordinarily a fixed variable should appear as a constant value in the solver
constraints. If True, then the error will not be raised.

set_linear_constraint_attr(con, attr, val)
Set the value of an attribute on a gurobi linear constraint.

Parameters
• con (pyomo.core.base.constraint._GeneralConstraintData) – The py-

omo constraint for which the corresponding gurobi constraint attribute should be
modified.

• attr (str) – The attribute to be modified. Options are:

CBasis DStart Lazy

• val (any) – See gurobi documentation for acceptable values.

set_objective(obj)
Set the solver’s objective. Note that, at least for now, any existing objective will be discarded. Other than
that, any existing model components will remain intact.

Parameters
obj (Objective) –

324 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

set_problem_format(format)
Set the current problem format (if it’s valid) and update the results format to something valid for this
problem format.

set_results_format(format)
Set the current results format (if it’s valid for the current problem format).

set_var_attr(var, attr, val)
Set the value of an attribute on a gurobi variable.

Parameters
• con (pyomo.core.base.var._GeneralVarData) – The pyomo var for which

the corresponding gurobi var attribute should be modified.

• attr (str) – The attribute to be modified. Options are:

Start VarHintVal VarHintPri BranchPriority VBasis PStart

• val (any) – See gurobi documentation for acceptable values.

solve(*args, **kwds)
Solve the model.

Keyword Arguments
• suffixes (list of str) – The strings should represnt suffixes support by the

solver. Examples include ‘dual’, ‘slack’, and ‘rc’.

• options (dict) – Dictionary of solver options. See the solver documentation for
possible solver options.

• warmstart (bool) – If True, the solver will be warmstarted.

• keepfiles (bool) – If True, the solver log file will be saved.

• logfile (str) – Name to use for the solver log file.

• load_solutions (bool) – If True and a solution exists, the solution will be
loaded into the Pyomo model.

• report_timing (bool) – If True, then timing information will be printed.

• tee (bool) – If True, then the solver log will be printed.

update_var(var)
Update a single variable in the solver’s model.

This will update bounds, fix/unfix the variable as needed, and update the variable type.
Parameters

var (Var (scalar Var or single _VarData)) –

version()

Returns a 4-tuple describing the solver executable version.

warm_start_capable()

True is the solver can accept a warm-start solution

write(filename)
Write the model to a file (e.g., and lp file).

Parameters
filename (str) – Name of the file to which the model should be written.

15.4. Solver Interfaces 325

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

15.4.4 XpressPersistent

class pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent(**kwds)
Bases: PersistentSolver, XpressDirect

A class that provides a persistent interface to Xpress. Direct solver interfaces do not use any file io. Rather, they
interface directly with the python bindings for the specific solver. Persistent solver interfaces are similar except
that they “remember” their model. Thus, persistent solver interfaces allow incremental changes to the solver
model (e.g., the gurobi python model or the cplex python model). Note that users are responsible for notifying
the persistent solver interfaces when changes are made to the corresponding pyomo model.

Keyword Arguments
• model (ConcreteModel) – Passing a model to the constructor is equivalent to calling

the set_instance mehtod.

• type (str) – String indicating the class type of the solver instance.

• name (str) – String representing either the class type of the solver instance or an as-
signed name.

• doc (str) – Documentation for the solver

• options (dict) – Dictionary of solver options
XpressException

alias of RuntimeError

add_block(block)
Add a single Pyomo Block to the solver’s model.

This will keep any existing model components intact.
Parameters

block (Block (scalar Block or single _BlockData)) –

add_column(model, var, obj_coef, constraints, coefficients)
Add a column to the solver’s and Pyomo model

This will add the Pyomo variable var to the solver’s model, and put the coefficients on the associated
constraints in the solver model. If the obj_coef is not zero, it will add obj_coef*var to the objective of both
the Pyomo and solver’s model.

Parameters
• model (pyomo ConcreteModel to which the column will be added) –

• var (Var (scalar Var or single _VarData)) –

• obj_coef (float, pyo.Param) –

• constraints (list of scalar Constraints of single
_ConstraintDatas) –

• coefficients (list of the coefficient to put on var in the
associated constraint) –

add_constraint(con)
Add a single constraint to the solver’s model.

This will keep any existing model components intact.
Parameters

con (Constraint (scalar Constraint or single _ConstraintData)) –

326 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

add_sos_constraint(con)
Add a single SOS constraint to the solver’s model (if supported).

This will keep any existing model components intact.
Parameters

con (SOSConstraint) –

add_var(var)
Add a single variable to the solver’s model.

This will keep any existing model components intact.
Parameters

var (Var) –

available(exception_flag=True)
True if the solver is available.

get_xpress_attribute(*args)
Get xpress atrributes.

Parameters
• control(s) (str, strs, list, None) – The xpress attribute to get. Options

include any xpress attribute. Can also be list of xpress controls or None for every
atrribute Please see the Xpress documentation for options.

• other (See the Xpress documentation for xpress.problem.
getAttrib for) –

• function (uses of this) –

Return type
control value or dictionary of control values

get_xpress_control(*args)
Get xpress controls.

Parameters
• control(s) (str, strs, list, None) – The xpress control to get. Options

include any xpress control. Can also be list of xpress controls or None for every
contorl Please see the Xpress documentation for options.

• other (See the Xpress documentation for xpress.problem.
getControl for) –

• function (uses of this) –

Return type
control value or dictionary of control values

has_capability(cap)
Returns a boolean value representing whether a solver supports a specific feature. Defaults to ‘False’ if the
solver is unaware of an option. Expects a string.

Example: # prints True if solver supports sos1 constraints, and False otherwise
print(solver.has_capability(‘sos1’)

prints True is solver supports ‘feature’, and False otherwise print(solver.has_capability(‘feature’)
Parameters

cap (str) – The feature

Returns
val – Whether or not the solver has the specified capability.

15.4. Solver Interfaces 327

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Return type
bool

has_instance()

True if set_instance has been called and this solver interface has a pyomo model and a solver model.
Returns

tmp
Return type

bool

license_is_valid()

True if the solver is present and has a valid license (if applicable)

load_duals(cons_to_load=None)
Load the duals into the ‘dual’ suffix. The ‘dual’ suffix must live on the parent model.

Parameters
cons_to_load (list of Constraint) –

load_rc(vars_to_load=None)
Load the reduced costs into the ‘rc’ suffix. The ‘rc’ suffix must live on the parent model.

Parameters
vars_to_load (list of Var) –

load_slacks(cons_to_load=None)
Load the values of the slack variables into the ‘slack’ suffix. The ‘slack’ suffix must live on the parent
model.

Parameters
cons_to_load (list of Constraint) –

load_vars(vars_to_load=None)
Load the values from the solver’s variables into the corresponding pyomo variables.

Parameters
vars_to_load (list of Var) –

problem_format()

Returns the current problem format.

remove_block(block)
Remove a single block from the solver’s model.

This will keep any other model components intact.

WARNING: Users must call remove_block BEFORE modifying the block.
Parameters

block (Block (scalar Block or a single _BlockData)) –

remove_constraint(con)
Remove a single constraint from the solver’s model.

This will keep any other model components intact.
Parameters

con (Constraint (scalar Constraint or single _ConstraintData)) –

remove_sos_constraint(con)
Remove a single SOS constraint from the solver’s model.

This will keep any other model components intact.

328 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Parameters
con (SOSConstraint) –

remove_var(var)
Remove a single variable from the solver’s model.

This will keep any other model components intact.
Parameters

var (Var (scalar Var or single _VarData)) –

reset()

Reset the state of the solver

results

A results object return from the solve method.

results_format()

Returns the current results format.

set_callback(name, callback_fn=None)
Set the callback function for a named callback.

A call-back function has the form:
def fn(solver, model):

pass
where ‘solver’ is the native solver interface object and ‘model’ is a Pyomo model instance object.

set_instance(model, **kwds)
This method is used to translate the Pyomo model provided to an instance of the solver’s Python model.
This discards any existing model and starts from scratch.

Parameters
model (ConcreteModel) – The pyomo model to be used with the solver.

Keyword Arguments
• symbolic_solver_labels (bool) – If True, the solver’s components (e.g., vari-

ables, constraints) will be given names that correspond to the Pyomo component
names.

• skip_trivial_constraints (bool) – If True, then any constraints with a con-
stant body will not be added to the solver model. Be careful with this. If a triv-
ial constraint is skipped then that constraint cannot be removed from a persistent
solver (an error will be raised if a user tries to remove a non-existent constraint).

• output_fixed_variable_bounds (bool) – If False then an error will be raised
if a fixed variable is used in one of the solver constraints. This is useful for catching
bugs. Ordinarily a fixed variable should appear as a constant value in the solver
constraints. If True, then the error will not be raised.

set_objective(obj)
Set the solver’s objective. Note that, at least for now, any existing objective will be discarded. Other than
that, any existing model components will remain intact.

Parameters
obj (Objective) –

set_problem_format(format)
Set the current problem format (if it’s valid) and update the results format to something valid for this
problem format.

15.4. Solver Interfaces 329

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

set_results_format(format)
Set the current results format (if it’s valid for the current problem format).

set_xpress_control(*args)
Set xpress controls.

Parameters
• control (str) – The xpress control to set. Options include any xpree control.

Please see the Xpress documentation for options.

• val (any) – The value to set the control to. See Xpress documentation for possible
values.

• argument (If one) –

• values (it must be a dictionary with control keys and control)
–

solve(*args, **kwds)
Solve the model.

Keyword Arguments
• suffixes (list of str) – The strings should represnt suffixes support by the

solver. Examples include ‘dual’, ‘slack’, and ‘rc’.

• options (dict) – Dictionary of solver options. See the solver documentation for
possible solver options.

• warmstart (bool) – If True, the solver will be warmstarted.

• keepfiles (bool) – If True, the solver log file will be saved.

• logfile (str) – Name to use for the solver log file.

• load_solutions (bool) – If True and a solution exists, the solution will be
loaded into the Pyomo model.

• report_timing (bool) – If True, then timing information will be printed.

• tee (bool) – If True, then the solver log will be printed.

update_var(var)
Update a single variable in the solver’s model.

This will update bounds, fix/unfix the variable as needed, and update the variable type.
Parameters

var (Var (scalar Var or single _VarData)) –

version()

Returns a 4-tuple describing the solver executable version.

warm_start_capable()

True is the solver can accept a warm-start solution

write(filename, flags='')
Write the model to a file (e.g., a lp file).

Parameters
• filename (str) – Name of the file to which the model should be written.

• flags (str) – Flags for xpress.problem.write

330 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

15.5 Model Data Management

class pyomo.dataportal.DataPortal.DataPortal(*args, **kwds)
An object that manages loading and storing data from external data sources. This object interfaces to plugins
that manipulate the data in a manner that is dependent on the data format.

Internally, the data in a DataPortal object is organized as follows:

data[namespace][symbol][index] -> value

All data is associated with a symbol name, which may be indexed, and which may belong to a namespace. The
default namespace is None.

Parameters
• model – The model for which this data is associated. This is used for error checking

(e.g. object names must exist in the model, set dimensions must match, etc.). Default
is None.

• filename (str) – A file from which data is loaded. Default is None.

• data_dict (dict) – A dictionary used to initialize the data in this object. Default is
None.

__getitem__(*args)
Return the specified data value.

If a single argument is given, then this is the symbol name:

dp = DataPortal()
dp[name]

If a two arguments are given, then the first is the namespace and the second is the symbol name:

dp = DataPortal()
dp[namespace, name]

Parameters
*args (str) – A tuple of arguents.

Returns
If a single argument is given, then the data associated with that symbol in the namespace
None is returned. If two arguments are given, then the data associated with symbol in
the given namespace is returned.

__init__(*args, **kwds)
Constructor

__setitem__(name, value)
Set the value of name with the given value.

Parameters
• name (str) – The name of the symbol that is set.

• value – The value of the symbol.

__weakref__

list of weak references to the object (if defined)

15.5. Model Data Management 331

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

connect(**kwds)
Construct a data manager object that is associated with the input source. This data manager is used to
process future data imports and exports.

Parameters
• filename (str) – A filename that specifies the data source. Default is None.

• server (str) – The name of the remote server that hosts the data. Default is
None.

• using (str) – The name of the resource used to load the data. Default is None.
Other keyword arguments are passed to the data manager object.

data(name=None, namespace=None)
Return the data associated with a symbol and namespace

Parameters
• name (str) – The name of the symbol that is returned. Default is None, which

indicates that the entire data in the namespace is returned.

• namespace (str) – The name of the namespace that is accessed. Default is None.

Returns
If name is None, then the dictionary for the namespace is returned. Otherwise, the data
associated with name in given namespace is returned. The return value is a constant
if None if there is a single value in the symbol dictionary, and otherwise the symbol
dictionary is returned.

disconnect()

Close the data manager object that is associated with the input source.

items(namespace=None)
Return an iterator of (name, value) tuples from the data in the specified namespace.

Yields
The next (name, value) tuple in the namespace. If the symbol has a simple data value,
then that is included in the tuple. Otherwise, the tuple includes a dictionary mapping
symbol indices to values.

keys(namespace=None)
Return an iterator of the data keys in the specified namespace.

Yields
A string name for the next symbol in the specified namespace.

load(**kwds)
Import data from an external data source.

Parameters
model – The model object for which this data is associated. Default is None.

Other keyword arguments are passed to the connect() method.

namespaces()

Return an iterator for the namespaces in the data portal.
Yields

A string name for the next namespace.

store(**kwds)
Export data to an external data source.

Parameters
model – The model object for which this data is associated. Default is None.

332 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Other keyword arguments are passed to the connect() method.

values(namespace=None)
Return an iterator of the data values in the specified namespace.

Yields
The data value for the next symbol in the specified namespace. This may be a simple
value, or a dictionary of values.

class pyomo.dataportal.TableData.TableData

A class used to read/write data from/to a table in an external data source.

__init__()

Constructor

__weakref__

list of weak references to the object (if defined)

add_options(**kwds)
Add the keyword options to the Options object in this object.

available()

Returns
Return True if the data manager is available.

clear()

Clear the data that was extracted from this table

close()

Close the data manager.

initialize(**kwds)
Initialize the data manager with keyword arguments.

The filename argument is recognized here, and other arguments are passed to the add_options()method.

open()

Open the data manager.

process(model, data, default)
Process the data that was extracted from this data manager and return it.

read()

Read data from the data manager.

write(data)
Write data to the data manager.

15.6 APPSI

Auto-Persistent Pyomo Solver Interfaces

15.6. APPSI 333

Pyomo Documentation, Release 6.5.0

15.6.1 APPSI Base Classes

class pyomo.contrib.appsi.base.TerminationCondition(value)
Bases: Enum

An enumeration for checking the termination condition of solvers

error = 11

The solver exited due to an error

infeasible = 9

The solver exited because the problem is infeasible

infeasibleOrUnbounded = 10

The solver exited because the problem is either infeasible or unbounded

interrupted = 12

The solver exited because it was interrupted

licensingProblems = 13

The solver exited due to licensing problems

maxIterations = 2

The solver exited due to an iteration limit

maxTimeLimit = 1

The solver exited due to a time limit

minStepLength = 4

The solver exited due to a minimum step length

objectiveLimit = 3

The solver exited due to an objective limit

optimal = 5

The solver exited with the optimal solution

unbounded = 8

The solver exited because the problem is unbounded

unknown = 0

unknown serves as both a default value, and it is used when no other enum member makes sense

class pyomo.contrib.appsi.base.Results

Bases: object

termination_condition

The reason the solver exited. This is a member of the TerminationCondition enum.
Type

TerminationCondition

best_feasible_objective

If a feasible solution was found, this is the objective value of the best solution found. If no feasible solution
was found, this is None.

Type
float

334 Chapter 15. Library Reference

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

best_objective_bound

The best objective bound found. For minimization problems, this is the lower bound. For maximization
problems, this is the upper bound. For solvers that do not provide an objective bound, this should be -inf
(minimization) or inf (maximization)

Type
float

Here is an example workflow

>>> import pyomo.environ as pe
>>> from pyomo.contrib import appsi
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2)
>>> opt = appsi.solvers.Ipopt()
>>> opt.config.load_solution = False
>>> results = opt.solve(m)
>>> if results.termination_condition == appsi.base.TerminationCondition.
→˓optimal:
... print('optimal solution found: ', results.best_feasible_objective)
... results.solution_loader.load_vars()
... print('the optimal value of x is ', m.x.value)
... elif results.best_feasible_objective is not None:
... print('sub-optimal but feasible solution found: ', results.best_
→˓feasible_objective)
... results.solution_loader.load_vars(vars_to_load=[m.x])
... print('The value of x in the feasible solution is ', m.x.value)
... elif results.termination_condition in {appsi.base.TerminationCondition.
→˓maxIterations, appsi.base.TerminationCondition.maxTimeLimit}:
... print('No feasible solution was found. The best lower bound found was
→˓', results.best_objective_bound)
... else:
... print('The following termination condition was encountered: ', results.
→˓termination_condition)

class pyomo.contrib.appsi.base.Solver

Bases: ABC

class Availability(value)
Bases: IntEnum

An enumeration.

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

15.6. APPSI 335

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/enum.html#enum.IntEnum

Pyomo Documentation, Release 6.5.0

abstract available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to
True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

abstract property config

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

Return type
SolverConfig

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

abstract solve(model: _BlockData, timer: Optional[HierarchicalTimer] = None)→ Results
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

abstract property symbol_map

abstract version()→ Tuple
Returns

version – A tuple representing the version

Return type
tuple

class pyomo.contrib.appsi.base.PersistentSolver

Bases: Solver

336 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

class Availability(value)
Bases: IntEnum

An enumeration.

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

abstract add_block(block: _BlockData)

abstract add_constraints(cons: List[_GeneralConstraintData])

abstract add_params(params: List[_ParamData])

abstract add_variables(variables: List[_GeneralVarData])

abstract available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to
True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

abstract property config

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

Return type
SolverConfig

get_duals(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)→
Dict[_GeneralConstraintData, float]

Declare sign convention in docstring here.
Parameters

cons_to_load (list) – A list of the constraints whose duals should be loaded. If
cons_to_load is None, then the duals for all constraints will be loaded.

15.6. APPSI 337

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Returns
duals – Maps constraints to dual values

Return type
dict

abstract get_primals(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

get_reduced_costs(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

Parameters
vars_to_load (list) – A list of the variables whose reduced cost should be loaded.
If vars_to_load is None, then all reduced costs will be loaded.

Returns
reduced_costs – Maps variable to reduced cost

Return type
ComponentMap

get_slacks(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)→
Dict[_GeneralConstraintData, float]

Parameters
cons_to_load (list) – A list of the constraints whose slacks should be loaded. If
cons_to_load is None, then the slacks for all constraints will be loaded.

Returns
slacks – Maps constraints to slack values

Return type
dict

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

load_vars(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→ NoReturn
Load the solution of the primal variables into the value attribut of the variables.

Parameters
vars_to_load (list) – A list of the variables whose solution should be loaded. If
vars_to_load is None, then the solution to all primal variables will be loaded.

abstract remove_block(block: _BlockData)

abstract remove_constraints(cons: List[_GeneralConstraintData])

abstract remove_params(params: List[_ParamData])

abstract remove_variables(variables: List[_GeneralVarData])

abstract set_instance(model)

abstract set_objective(obj: _GeneralObjectiveData)

338 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.NoReturn
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

abstract solve(model: _BlockData, timer: Optional[HierarchicalTimer] = None)→ Results
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

abstract property symbol_map

abstract property update_config: UpdateConfig

abstract update_params()

abstract update_variables(variables: List[_GeneralVarData])

abstract version()→ Tuple
Returns

version – A tuple representing the version

Return type
tuple

class pyomo.contrib.appsi.base.SolverConfig(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: ConfigDict

time_limit

Time limit for the solver
Type

float

stream_solver

If True, then the solver log goes to stdout
Type

bool

load_solution

If False, then the values of the primal variables will not be loaded into the model
Type

bool

symbolic_solver_labels

If True, the names given to the solver will reflect the names of the pyomo components. Cannot be changed
after set_instance is called.

Type
bool

report_timing

If True, then some timing information will be printed at the end of the solve.
Type

bool

15.6. APPSI 339

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

declare_from(other, skip=None)

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

import_argparse(parsed_args)

initialize_argparse(parser)

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

name(fully_qualified=False)

reset()

set_default_value(default)

set_domain(domain)

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

340 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

unused_user_values()

user_values()

value(accessValue=True)

values()→ an object providing a view on D's values

class pyomo.contrib.appsi.base.MIPSolverConfig(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: SolverConfig

mip_gap

Solver will terminate if the mip gap is less than mip_gap
Type

float

relax_integrality

If True, all integer variables will be relaxed to continuous variables before solving
Type

bool

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

declare_from(other, skip=None)

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

import_argparse(parsed_args)

initialize_argparse(parser)

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

15.6. APPSI 341

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

load_solution: bool

name(fully_qualified=False)

report_timing: bool

reset()

set_default_value(default)

set_domain(domain)

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

stream_solver: bool

symbolic_solver_labels: bool

time_limit: Optional[float]

unused_user_values()

user_values()

value(accessValue=True)

values()→ an object providing a view on D's values

class pyomo.contrib.appsi.base.UpdateConfig(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: ConfigDict

check_for_new_or_removed_constraints

Type
bool

check_for_new_or_removed_vars

Type
bool

check_for_new_or_removed_params

Type
bool

342 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

update_constraints

Type
bool

update_vars

Type
bool

update_params

Type
bool

update_named_expressions

Type
bool

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

declare_from(other, skip=None)

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

import_argparse(parsed_args)

initialize_argparse(parser)

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

15.6. APPSI 343

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

name(fully_qualified=False)

reset()

set_default_value(default)

set_domain(domain)

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

unused_user_values()

user_values()

value(accessValue=True)

values()→ an object providing a view on D's values

15.6.2 Solvers

Gurobi

class pyomo.contrib.appsi.solvers.gurobi.GurobiResults(solver)
Bases: Results

class pyomo.contrib.appsi.solvers.gurobi.Gurobi(only_child_vars=True)
Bases: PersistentBase, PersistentSolver

Interface to Gurobi

class Availability(value)
Bases: IntEnum

An enumeration.

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

add_block(block)

add_constraints(cons: List[_GeneralConstraintData])

344 Chapter 15. Library Reference

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

add_params(params: List[_ParamData])

add_sos_constraints(cons: List[_SOSConstraintData])

add_variables(variables: List[_GeneralVarData])

available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to
True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

cbCut(con)
Add a cut within a callback.

Parameters
con (pyomo.core.base.constraint._GeneralConstraintData) – The cut to
add

cbGet(what)

cbGetNodeRel(vars)
Parameters

vars (Var or iterable of Var) –

cbGetSolution(vars)
Parameters

vars (iterable of vars) –

cbLazy(con)
Parameters

con (pyomo.core.base.constraint._GeneralConstraintData) – The lazy con-
straint to add

cbSetSolution(vars, solution)

cbUseSolution()

property config: GurobiConfig

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

Return type
SolverConfig

15.6. APPSI 345

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

get_duals(cons_to_load=None)
Declare sign convention in docstring here.

Parameters
cons_to_load (list) – A list of the constraints whose duals should be loaded. If
cons_to_load is None, then the duals for all constraints will be loaded.

Returns
duals – Maps constraints to dual values

Return type
dict

get_gurobi_param_info(param)

Get information about a gurobi parameter.
Parameters

param (str) – The gurobi parameter to get info for. See Gurobi documenation for
possible options.

Return type
six-tuple containing the parameter name, type, value, minimum value, maximum value,
and default value.

get_linear_constraint_attr(con, attr)
Get the value of an attribute on a gurobi linear constraint.

Parameters
• con (pyomo.core.base.constraint._GeneralConstraintData) – The py-

omo constraint for which the corresponding gurobi constraint attribute should be
retrieved.

• attr (str) – The attribute to get. See the Gurobi documentation

get_model_attr(attr)
Get the value of an attribute on the Gurobi model.

Parameters
attr (str) – The attribute to get. See Gurobi documentation for descriptions of the
attributes.

get_primals(vars_to_load=None, solution_number=0)

get_quadratic_constraint_attr(con, attr)
Get the value of an attribute on a gurobi quadratic constraint.

Parameters
• con (pyomo.core.base.constraint._GeneralConstraintData) – The py-

omo constraint for which the corresponding gurobi constraint attribute should be
retrieved.

• attr (str) – The attribute to get. See the Gurobi documentation

get_reduced_costs(vars_to_load=None)
Parameters

vars_to_load (list) – A list of the variables whose reduced cost should be loaded.
If vars_to_load is None, then all reduced costs will be loaded.

Returns
reduced_costs – Maps variable to reduced cost

Return type
ComponentMap

346 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

get_slacks(cons_to_load=None)
Parameters

cons_to_load (list) – A list of the constraints whose slacks should be loaded. If
cons_to_load is None, then the slacks for all constraints will be loaded.

Returns
slacks – Maps constraints to slack values

Return type
dict

get_sos_attr(con, attr)
Get the value of an attribute on a gurobi sos constraint.

Parameters
• con (pyomo.core.base.sos._SOSConstraintData) – The pyomo SOS con-

straint for which the corresponding gurobi SOS constraint attribute should be re-
trieved.

• attr (str) – The attribute to get. See the Gurobi documentation

get_var_attr(var, attr)
Get the value of an attribute on a gurobi var.

Parameters
• var (pyomo.core.base.var._GeneralVarData) – The pyomo var for which

the corresponding gurobi var attribute should be retrieved.

• attr (str) – The attribute to get. See gurobi documentation

property gurobi_options

A dictionary mapping solver options to values for those options. These are solver specific.
Returns

A dictionary mapping solver options to values for those options

Return type
dict

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

load_vars(vars_to_load=None, solution_number=0)
Load the solution of the primal variables into the value attribut of the variables.

Parameters
vars_to_load (list) – A list of the variables whose solution should be loaded. If
vars_to_load is None, then the solution to all primal variables will be loaded.

release_license()

remove_block(block)

remove_constraints(cons: List[_GeneralConstraintData])

remove_params(params: List[_ParamData])

remove_sos_constraints(cons: List[_SOSConstraintData])

15.6. APPSI 347

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

remove_variables(variables: List[_GeneralVarData])

reset()

set_callback(func=None)
Specify a callback for gurobi to use.

Parameters
func (function) – The function to call. The function should have three arguments.
The first will be the pyomo model being solved. The second will be the GurobiPersistent
instance. The third will be an enum member of gurobipy.GRB.Callback. This will
indicate where in the branch and bound algorithm gurobi is at. For example, suppose
we want to solve

𝑚𝑖𝑛2 * 𝑥 + 𝑦

𝑠.𝑡.

𝑦 >= (𝑥− 2) * *2

0 <= 𝑥 <= 4

𝑦 >= 0

𝑦𝑖𝑛𝑡𝑒𝑔𝑒𝑟

as an MILP using extended cutting planes in callbacks.

>>> from gurobipy import GRB
>>> import pyomo.environ as pe
>>> from pyomo.core.expr.taylor_series import taylor_series_
→˓expansion
>>> from pyomo.contrib import appsi
>>>
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var(bounds=(0, 4))
>>> m.y = pe.Var(within=pe.Integers, bounds=(0, None))
>>> m.obj = pe.Objective(expr=2*m.x + m.y)
>>> m.cons = pe.ConstraintList() # for the cutting planes
>>>
>>> def _add_cut(xval):
... # a function to generate the cut
... m.x.value = xval
... return m.cons.add(m.y >= taylor_series_expansion((m.x -␣
→˓2)**2))
...
>>> _c = _add_cut(0) # start with 2 cuts at the bounds of x
>>> _c = _add_cut(4) # this is an arbitrary choice
>>>
>>> opt = appsi.solvers.Gurobi()
>>> opt.config.stream_solver = True
>>> opt.set_instance(m)
>>> opt.gurobi_options['PreCrush'] = 1
>>> opt.gurobi_options['LazyConstraints'] = 1
>>>
>>> def my_callback(cb_m, cb_opt, cb_where):
... if cb_where == GRB.Callback.MIPSOL:
... cb_opt.cbGetSolution(vars=[m.x, m.y])
... if m.y.value < (m.x.value - 2)**2 - 1e-6:

(continues on next page)

348 Chapter 15. Library Reference

https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... cb_opt.cbLazy(_add_cut(m.x.value))

...
>>> opt.set_callback(my_callback)
>>> res = opt.solve(m)

set_gurobi_param(param, val)
Set a gurobi parameter.

Parameters
• param (str) – The gurobi parameter to set. Options include any gurobi parameter.

Please see the Gurobi documentation for options.

• val (any) – The value to set the parameter to. See Gurobi documentation for
possible values.

set_instance(model)

set_linear_constraint_attr(con, attr, val)
Set the value of an attribute on a gurobi linear constraint.

Parameters
• con (pyomo.core.base.constraint._GeneralConstraintData) – The py-

omo constraint for which the corresponding gurobi constraint attribute should be
modified.

• attr (str) –

The attribute to be modified. Options are:
CBasis DStart Lazy

• val (any) – See gurobi documentation for acceptable values.

set_objective(obj: _GeneralObjectiveData)

set_var_attr(var, attr, val)
Set the value of an attribute on a gurobi variable.

Parameters
• var (pyomo.core.base.var._GeneralVarData) – The pyomo var for which

the corresponding gurobi var attribute should be modified.

• attr (str) –

The attribute to be modified. Options are:
Start VarHintVal VarHintPri BranchPriority VBasis PStart

• val (any) – See gurobi documentation for acceptable values.

solve(model, timer: Optional[HierarchicalTimer] = None)→ Results
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

15.6. APPSI 349

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

Pyomo Documentation, Release 6.5.0

property symbol_map

update(timer: Optional[HierarchicalTimer] = None)

property update_config

update_params()

update_variables(variables: List[_GeneralVarData])

version()

Returns
version – A tuple representing the version

Return type
tuple

write(filename)
Write the model to a file (e.g., and lp file).

Parameters
filename (str) – Name of the file to which the model should be written.

Ipopt

class pyomo.contrib.appsi.solvers.ipopt.IpoptConfig(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: SolverConfig

class NoArgument

Bases: object

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

declare_from(other, skip=None)

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

350 Chapter 15. Library Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

import_argparse(parsed_args)

initialize_argparse(parser)

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

load_solution: bool

name(fully_qualified=False)

report_timing: bool

reset()

set_default_value(default)

set_domain(domain)

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

stream_solver: bool

symbolic_solver_labels: bool

time_limit: Optional[float]

unused_user_values()

user_values()

value(accessValue=True)

values()→ an object providing a view on D's values

class pyomo.contrib.appsi.solvers.ipopt.Ipopt(only_child_vars=True)
Bases: PersistentSolver

class Availability(value)
Bases: IntEnum

An enumeration.

15.6. APPSI 351

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.IntEnum

Pyomo Documentation, Release 6.5.0

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

add_block(block: _BlockData)

add_constraints(cons: List[_GeneralConstraintData])

add_params(params: List[_ParamData])

add_variables(variables: List[_GeneralVarData])

available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to
True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

property config

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

Return type
SolverConfig

get_duals(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)
Declare sign convention in docstring here.

Parameters
cons_to_load (list) – A list of the constraints whose duals should be loaded. If
cons_to_load is None, then the duals for all constraints will be loaded.

Returns
duals – Maps constraints to dual values

Return type
dict

352 Chapter 15. Library Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

get_primals(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

get_reduced_costs(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

Parameters
vars_to_load (list) – A list of the variables whose reduced cost should be loaded.
If vars_to_load is None, then all reduced costs will be loaded.

Returns
reduced_costs – Maps variable to reduced cost

Return type
ComponentMap

get_slacks(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)→
Dict[_GeneralConstraintData, float]

Parameters
cons_to_load (list) – A list of the constraints whose slacks should be loaded. If
cons_to_load is None, then the slacks for all constraints will be loaded.

Returns
slacks – Maps constraints to slack values

Return type
dict

property ipopt_options

A dictionary mapping solver options to values for those options. These are solver specific.
Returns

A dictionary mapping solver options to values for those options

Return type
dict

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

load_vars(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→ NoReturn
Load the solution of the primal variables into the value attribut of the variables.

Parameters
vars_to_load (list) – A list of the variables whose solution should be loaded. If
vars_to_load is None, then the solution to all primal variables will be loaded.

nl_filename()

options_filename()

remove_block(block: _BlockData)

remove_constraints(cons: List[_GeneralConstraintData])

remove_params(params: List[_ParamData])

remove_variables(variables: List[_GeneralVarData])

15.6. APPSI 353

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.NoReturn
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

set_instance(model)

set_objective(obj: _GeneralObjectiveData)

sol_filename()

solve(model, timer: Optional[HierarchicalTimer] = None)
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

property symbol_map

property update_config

update_params()

update_variables(variables: List[_GeneralVarData])

version()

Returns
version – A tuple representing the version

Return type
tuple

property writer

Cplex

class pyomo.contrib.appsi.solvers.cplex.CplexConfig(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: MIPSolverConfig

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

declare_from(other, skip=None)

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

354 Chapter 15. Library Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

import_argparse(parsed_args)

initialize_argparse(parser)

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

load_solution: bool

mip_gap: Optional[float]

name(fully_qualified=False)

relax_integrality: bool

report_timing: bool

reset()

set_default_value(default)

set_domain(domain)

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

stream_solver: bool

symbolic_solver_labels: bool

time_limit: Optional[float]

unused_user_values()

user_values()

15.6. APPSI 355

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

value(accessValue=True)

values()→ an object providing a view on D's values

class pyomo.contrib.appsi.solvers.cplex.CplexResults(solver)
Bases: Results

class pyomo.contrib.appsi.solvers.cplex.Cplex(only_child_vars=True)
Bases: PersistentSolver

class Availability(value)
Bases: IntEnum

An enumeration.

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

add_block(block: _BlockData)

add_constraints(cons: List[_GeneralConstraintData])

add_params(params: List[_ParamData])

add_variables(variables: List[_GeneralVarData])

available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to
True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

property config

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

356 Chapter 15. Library Reference

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

Return type
SolverConfig

property cplex_options

A dictionary mapping solver options to values for those options. These are solver specific.
Returns

A dictionary mapping solver options to values for those options

Return type
dict

get_duals(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)→
Dict[_GeneralConstraintData, float]

Declare sign convention in docstring here.
Parameters

cons_to_load (list) – A list of the constraints whose duals should be loaded. If
cons_to_load is None, then the duals for all constraints will be loaded.

Returns
duals – Maps constraints to dual values

Return type
dict

get_primals(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

get_reduced_costs(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

Parameters
vars_to_load (list) – A list of the variables whose reduced cost should be loaded.
If vars_to_load is None, then all reduced costs will be loaded.

Returns
reduced_costs – Maps variable to reduced cost

Return type
ComponentMap

get_slacks(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)→
Dict[_GeneralConstraintData, float]

Parameters
cons_to_load (list) – A list of the constraints whose slacks should be loaded. If
cons_to_load is None, then the slacks for all constraints will be loaded.

Returns
slacks – Maps constraints to slack values

Return type
dict

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

15.6. APPSI 357

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

load_vars(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→ NoReturn
Load the solution of the primal variables into the value attribut of the variables.

Parameters
vars_to_load (list) – A list of the variables whose solution should be loaded. If
vars_to_load is None, then the solution to all primal variables will be loaded.

log_filename()

lp_filename()

remove_block(block: _BlockData)

remove_constraints(cons: List[_GeneralConstraintData])

remove_params(params: List[_ParamData])

remove_variables(variables: List[_GeneralVarData])

set_instance(model)

set_objective(obj: _GeneralObjectiveData)

solve(model, timer: Optional[HierarchicalTimer] = None)
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

property symbol_map

property update_config

update_params()

update_variables(variables: List[_GeneralVarData])

version()

Returns
version – A tuple representing the version

Return type
tuple

property writer

358 Chapter 15. Library Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.NoReturn
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

Cbc

class pyomo.contrib.appsi.solvers.cbc.CbcConfig(description=None, doc=None, implicit=False,
implicit_domain=None, visibility=0)

Bases: SolverConfig

add(name, config)

content_filters = {'userdata', 'all', None}

declare(name, config)

declare_as_argument(*args, **kwds)
Map this Config item to an argparse argument.

Valid arguments include all valid arguments to argparse’s ArgumentParser.add_argument() with the excep-
tion of ‘default’. In addition, you may provide a group keyword argument to either pass in a pre-defined
option group or subparser, or else pass in the string name of a group, subparser, or (subparser, group).

declare_from(other, skip=None)

display(content_filter=None, indent_spacing=2, ostream=None, visibility=None)

domain_name()

generate_documentation(block_start=None, block_end=None, item_start=None, item_body=None,
item_end=None, indent_spacing=2, width=78, visibility=0, format='latex')

generate_yaml_template(indent_spacing=2, width=78, visibility=0)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

import_argparse(parsed_args)

initialize_argparse(parser)

items()→ a set-like object providing a view on D's items

iteritems()

DEPRECATED.

Deprecated since version 6.0: The iteritems method is deprecated. Use dict.keys().

iterkeys()

DEPRECATED.

Deprecated since version 6.0: The iterkeys method is deprecated. Use dict.keys().

itervalues()

DEPRECATED.

Deprecated since version 6.0: The itervalues method is deprecated. Use dict.keys().

keys()→ a set-like object providing a view on D's keys

load_solution: bool

name(fully_qualified=False)

report_timing: bool

15.6. APPSI 359

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

reset()

set_default_value(default)

set_domain(domain)

set_value(value, skip_implicit=False)

setdefault(key, default=NOTSET)

stream_solver: bool

symbolic_solver_labels: bool

time_limit: Optional[float]

unused_user_values()

user_values()

value(accessValue=True)

values()→ an object providing a view on D's values

class pyomo.contrib.appsi.solvers.cbc.Cbc(only_child_vars=True)
Bases: PersistentSolver

class Availability(value)
Bases: IntEnum

An enumeration.

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

add_block(block: _BlockData)

add_constraints(cons: List[_GeneralConstraintData])

add_params(params: List[_ParamData])

add_variables(variables: List[_GeneralVarData])

available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to

360 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

property cbc_options

A dictionary mapping solver options to values for those options. These are solver specific.
Returns

A dictionary mapping solver options to values for those options

Return type
dict

property config

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

Return type
SolverConfig

get_duals(cons_to_load=None)
Declare sign convention in docstring here.

Parameters
cons_to_load (list) – A list of the constraints whose duals should be loaded. If
cons_to_load is None, then the duals for all constraints will be loaded.

Returns
duals – Maps constraints to dual values

Return type
dict

get_primals(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

get_reduced_costs(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→
Mapping[_GeneralVarData, float]

Parameters
vars_to_load (list) – A list of the variables whose reduced cost should be loaded.
If vars_to_load is None, then all reduced costs will be loaded.

Returns
reduced_costs – Maps variable to reduced cost

Return type
ComponentMap

get_slacks(cons_to_load: Optional[Sequence[_GeneralConstraintData]] = None)→
Dict[_GeneralConstraintData, float]

Parameters
cons_to_load (list) – A list of the constraints whose slacks should be loaded. If
cons_to_load is None, then the slacks for all constraints will be loaded.

15.6. APPSI 361

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

Returns
slacks – Maps constraints to slack values

Return type
dict

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

load_vars(vars_to_load: Optional[Sequence[_GeneralVarData]] = None)→ NoReturn
Load the solution of the primal variables into the value attribut of the variables.

Parameters
vars_to_load (list) – A list of the variables whose solution should be loaded. If
vars_to_load is None, then the solution to all primal variables will be loaded.

log_filename()

lp_filename()

remove_block(block: _BlockData)

remove_constraints(cons: List[_GeneralConstraintData])

remove_params(params: List[_ParamData])

remove_variables(variables: List[_GeneralVarData])

set_instance(model)

set_objective(obj: _GeneralObjectiveData)

soln_filename()

solve(model, timer: Optional[HierarchicalTimer] = None)
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

property symbol_map

property update_config

update_params()

update_variables(variables: List[_GeneralVarData])

362 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.NoReturn
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

version()

Returns
version – A tuple representing the version

Return type
tuple

property writer

HiGHS

class pyomo.contrib.appsi.solvers.highs.HighsResults(solver)
Bases: Results

class pyomo.contrib.appsi.solvers.highs.Highs(only_child_vars=True)
Bases: PersistentBase, PersistentSolver

Interface to HiGHS

class Availability(value)
Bases: IntEnum

An enumeration.

BadLicense = -2

BadVersion = -1

FullLicense = 1

LimitedLicense = 2

NeedsCompiledExtension = -3

NotFound = 0

add_block(block)

add_constraints(cons: List[_GeneralConstraintData])

add_params(params: List[_ParamData])

add_sos_constraints(cons: List[_SOSConstraintData])

add_variables(variables: List[_GeneralVarData])

available()

Test if the solver is available on this system.

Nominally, this will return True if the solver interface is valid and can be used to solve problems and False
if it cannot.

Note that for licensed solvers there are a number of “levels” of available: depending on the license, the
solver may be available with limitations on problem size or runtime (e.g., ‘demo’ vs. ‘community’ vs.
‘full’). In these cases, the solver may return a subclass of enum.IntEnum, with members that resolve to
True if the solver is available (possibly with limitations). The Enum may also have multiple members
that all resolve to False indicating the reason why the interface is not available (not found, bad license,
unsupported version, etc).

15.6. APPSI 363

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Pyomo Documentation, Release 6.5.0

Returns
available – An enum that indicates “how available” the solver is. Note that the enum
can be cast to bool, which will be True if the solver is runable at all and False otherwise.

Return type
Solver.Availability

property config: HighsConfig

An object for configuring solve options.
Returns

An object for configuring pyomo solve options such as the time limit. These options
are mostly independent of the solver.

Return type
SolverConfig

get_duals(cons_to_load=None)
Declare sign convention in docstring here.

Parameters
cons_to_load (list) – A list of the constraints whose duals should be loaded. If
cons_to_load is None, then the duals for all constraints will be loaded.

Returns
duals – Maps constraints to dual values

Return type
dict

get_primals(vars_to_load=None, solution_number=0)

get_reduced_costs(vars_to_load=None)
Parameters

vars_to_load (list) – A list of the variables whose reduced cost should be loaded.
If vars_to_load is None, then all reduced costs will be loaded.

Returns
reduced_costs – Maps variable to reduced cost

Return type
ComponentMap

get_slacks(cons_to_load=None)
Parameters

cons_to_load (list) – A list of the constraints whose slacks should be loaded. If
cons_to_load is None, then the slacks for all constraints will be loaded.

Returns
slacks – Maps constraints to slack values

Return type
dict

property highs_options

A dictionary mapping solver options to values for those options. These are solver specific.
Returns

A dictionary mapping solver options to values for those options

Return type
dict

364 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

is_persistent()

Returns
is_persistent – True if the solver is a persistent solver.

Return type
bool

load_vars(vars_to_load=None)
Load the solution of the primal variables into the value attribut of the variables.

Parameters
vars_to_load (list) – A list of the variables whose solution should be loaded. If
vars_to_load is None, then the solution to all primal variables will be loaded.

remove_block(block)

remove_constraints(cons: List[_GeneralConstraintData])

remove_params(params: List[_ParamData])

remove_sos_constraints(cons: List[_SOSConstraintData])

remove_variables(variables: List[_GeneralVarData])

set_instance(model)

set_objective(obj: _GeneralObjectiveData)

solve(model, timer: Optional[HierarchicalTimer] = None)→ Results
Solve a Pyomo model.

Parameters
• model (_BlockData) – The Pyomo model to be solved

• timer (HierarchicalTimer) – An option timer for reporting timing

Returns
results – A results object

Return type
Results

property symbol_map

update(timer: Optional[HierarchicalTimer] = None)

property update_config

update_params()

update_variables(variables: List[_GeneralVarData])

version()

Returns
version – A tuple representing the version

Return type
tuple

APPSI solver interfaces are designed to work very similarly to most Pyomo solver interfaces but are very efficient for
resolving the same model with small changes. This is very beneficial for applications such as Benders’ Decomposition,
Optimization-Based Bounds Tightening, Progressive Hedging, Outer-Approximation, and many others. Here is an
example of using an APPSI solver interface.

15.6. APPSI 365

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple

Pyomo Documentation, Release 6.5.0

>>> import pyomo.environ as pe
>>> from pyomo.contrib import appsi
>>> import numpy as np
>>> from pyomo.common.timing import HierarchicalTimer
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.p = pe.Param(mutable=True)
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c1 = pe.Constraint(expr=m.y >= pe.exp(m.x))
>>> m.c2 = pe.Constraint(expr=m.y >= (m.x - m.p)**2)
>>> opt = appsi.solvers.Ipopt()
>>> timer = HierarchicalTimer()
>>> for p_val in np.linspace(1, 10, 100):
>>> m.p.value = float(p_val)
>>> res = opt.solve(m, timer=timer)
>>> assert res.termination_condition == appsi.base.TerminationCondition.optimal
>>> print(res.best_feasible_objective)
>>> print(timer)

Extra performance improvements can be made if you know exactly what changes will be made in your model. In the
example above, only parameter values are changed, so we can setup the UpdateConfig so that the solver does not
check for changes in variables or constraints.

>>> timer = HierarchicalTimer()
>>> opt.update_config.check_for_new_or_removed_constraints = False
>>> opt.update_config.check_for_new_or_removed_vars = False
>>> opt.update_config.update_constraints = False
>>> opt.update_config.update_vars = False
>>> for p_val in np.linspace(1, 10, 100):
>>> m.p.value = float(p_val)
>>> res = opt.solve(m, timer=timer)
>>> assert res.termination_condition == appsi.base.TerminationCondition.optimal
>>> print(res.best_feasible_objective)
>>> print(timer)

Solver independent options can be specified with the SolverConfig or derived classes. For example:

>>> opt.config.stream_solver = True

Solver specific options can be specified with the solver_options() attribute. For example:

>>> opt.solver_options['max_iter'] = 20

366 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

15.6.3 Installation

There are a few ways to install Appsi listed below.

Option1:

pyomo build-extensions

Option2:

cd pyomo/contrib/appsi/
python build.py

Option3:

python
>>> from pyomo.contrib.appsi.build import build_appsi
>>> build_appsi()

Pyomo is under active ongoing development. The following API documentation describes Beta functionality.

Warning: The pyomo.kernel API is still in the beta phase of development. It is fully tested and functional;
however, the interface may change as it becomes further integrated with the rest of Pyomo.

Warning: Models built with pyomo.kernel components are not yet compatible with pyomo extension modules
(e.g., PySP, pyomo.dae, pyomo.gdp).

15.7 The Kernel Library

The pyomo.kernel library is an experimental modeling interface designed to provide a better experience for users
doing concrete modeling and advanced application development with Pyomo. It includes the basic set of modeling
components necessary to build algebraic models, which have been redesigned from the ground up to make it easier for
users to customize and extend. For a side-by-side comparison of pyomo.kernel and pyomo.environ syntax, visit
the link below.

15.7. The Kernel Library 367

Pyomo Documentation, Release 6.5.0

368 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

15.7.1 Syntax Comparison Table (pyomo.kernel vs pyomo.environ)

pyomo.kernel pyomo.environ
Import

import pyomo.kernel as pmo import pyomo.environ as aml

Model1
def create(data):

instance = pmo.block()
... define instance .

→˓..
return instance

instance = create(data)

m = pmo.block()
m.b = pmo.block()

m = aml.AbstractModel()
... define model ...
instance = m.create_
→˓instance(datafile)

m = aml.ConcreteModel()
m.b = aml.Block()

Set2

m.s = [1, 2]

[0,1,2]
m.q = range(3)

m.s = aml.
→˓Set(initialize=[1, 2],␣
→˓ordered=True)

[1,2,3]
m.q = aml.RangeSet(1, 3)

Parameter3

m.p = pmo.parameter(0)

pd[1] = 0, pd[2] = 1
m.pd = pmo.parameter_dict()
for k, i in enumerate(m.s):

m.pd[i] = pmo.
→˓parameter(k)

uses 0-based indexing
pl[0] = 0, pl[0] = 1, ...
m.pl = pmo.parameter_list()
for j in m.q:

m.pl.append(pmo.
→˓parameter(j))

m.p = aml.
→˓Param(mutable=True,␣
→˓initialize=0)

pd[1] = 0, pd[2] = 1
def pd_(m, i):

return m.s.ord(i) - 1

m.pd = aml.Param(m.s,␣
→˓mutable=True, rule=pd_)

#
No ParamList exists
#

Variable
m.v = pmo.variable(value=1,
→˓ lb=1, ub=4)

m.vd = pmo.variable_dict()
for i in m.s:

m.vd[i] = pmo.
→˓variable(ub=9)

used 0-based indexing
m.vl = pmo.variable_list()
for j in m.q:

m.vl.append(pmo.
→˓variable(lb=i))

m.v = aml.Var(initialize=1.
→˓0, bounds=(1, 4))

m.vd = aml.Var(m.s,␣
→˓bounds=(None, 9))

used 1-based indexing
def vl_(m, i):

return (i, None)

m.vl = aml.
→˓VarList(bounds=vl_)
for j in m.q:

m.vl.add()

Constraint
m.c = pmo.constraint(sum(m.
→˓vd.values()) <= 9)

m.cd = pmo.constraint_
→˓dict()
for i in m.s:

for j in m.q:
m.cd[i, j] = pmo.

→˓constraint(body=m.vd[i],␣
→˓rhs=j)

uses 0-based indexing
m.cl = pmo.constraint_
→˓list()
for j in m.q:

m.cl.append(pmo.
→˓constraint(lb=-5, body=m.
→˓vl[j] - m.v, ub=5))

m.c = aml.
→˓Constraint(expr=sum(m.vd.
→˓values()) <= 9)

def cd_(m, i, j):
return m.vd[i] == j

m.cd = aml.Constraint(m.s,␣
→˓m.q, rule=cd_)

uses 1-based indexing
m.cl = aml.ConstraintList()
for j in m.q:

m.cl.add(aml.
→˓inequality(-5, m.vl[j] -␣
→˓m.v, 5))

Expression
m.e = pmo.expression(-m.v)

m.ed = pmo.expression_
→˓dict()
for i in m.s:

m.ed[i] = pmo.
→˓expression(-m.vd[i])

uses 0-based indexed
m.el = pmo.expression_
→˓list()
for j in m.q:

m.el.append(pmo.
→˓expression(-m.vl[j]))

m.e = aml.Expression(expr=-
→˓m.v)

def ed_(m, i):
return -m.vd[i]

m.ed = aml.Expression(m.s,␣
→˓rule=ed_)

#
No ExpressionList exists
#

Objective
m.o = pmo.objective(-m.v)

m.od = pmo.objective_dict()
for i in m.s:

m.od[i] = pmo.
→˓objective(-m.vd[i])

uses 0-based indexing
m.ol = pmo.objective_list()
for j in m.q:

m.ol.append(pmo.
→˓objective(-m.vl[j]))

m.o = aml.Objective(expr=-
→˓m.v)

def od_(m, i):
return -m.vd[i]

m.od = aml.Objective(m.s,␣
→˓rule=od_)

uses 1-based indexing
m.ol = aml.ObjectiveList()
for j in m.q:

m.ol.add(-m.vl[j])

SOS4

m.sos1 = pmo.sos1(m.vd.
→˓values())

m.sos2 = pmo.sos2(m.vl)

m.sd = pmo.sos_dict()
m.sd[1] = pmo.sos1(m.vd.
→˓values())
m.sd[2] = pmo.sos1(m.vl)

uses 0-based indexing
m.sl = pmo.sos_list()
for i in m.s:

m.sl.append(pmo.
→˓sos1([m.vl[i], m.vd[i]]))

m.sos1 = aml.
→˓SOSConstraint(var=m.vl,␣
→˓level=1)
m.sos2 = aml.
→˓SOSConstraint(var=m.vd,␣
→˓level=2)

def sd_(m, i):
if i == 1:

t = list(m.vd.
→˓values())
elif i == 2:

t = list(m.vl.
→˓values())
return t

m.sd = aml.
→˓SOSConstraint([1, 2],␣
→˓rule=sd_, level=1)

#
No SOSConstraintList␣
→˓exists
#

Suffix
m.dual = pmo.
→˓suffix(direction=pmo.
→˓suffix.IMPORT)

m.suffixes = pmo.suffix_
→˓dict()
m.suffixes['dual'] = pmo.
→˓suffix(direction=pmo.
→˓suffix.IMPORT)

m.dual = aml.
→˓Suffix(direction=aml.
→˓Suffix.IMPORT)

#
No SuffixDict exists
#

Piecewise5

breakpoints = [1, 2, 3, 4]
values = [1, 2, 1, 2]
m.f = pmo.variable()
m.pw = pmo.
→˓piecewise(breakpoints,␣
→˓values, input=m.v,␣
→˓output=m.f, bound='eq')

breakpoints = [1, 2, 3, 4]
values = [1, 2, 1, 2]
m.f = aml.Var()
m.pw = aml.Piecewise(m.f,␣
→˓m.v, pw_pts=breakpoints,␣
→˓f_rule=values, pw_constr_
→˓type='EQ')

15.7. The Kernel Library 369

Pyomo Documentation, Release 6.5.0

Models built from pyomo.kernel components are fully compatible with the standard solver interfaces included with
Pyomo. A minimal example script that defines and solves a model is shown below.

import pyomo.kernel as pmo

model = pmo.block()
model.x = pmo.variable()
model.c = pmo.constraint(model.x >= 1)
model.o = pmo.objective(model.x)

opt = pmo.SolverFactory("ipopt")

result = opt.solve(model)
assert str(result.solver.termination_condition) == "optimal"

15.7.2 Notable Improvements

More Control of Model Structure

Containers in pyomo.kernel are analogous to indexed components in pyomo.environ. However, pyomo.kernel
containers allow for additional layers of structure as they can be nested within each other as long as they have compatible
categories. The following example shows this using pyomo.kernel.variable containers.

vlist = pyomo.kernel.variable_list()
vlist.append(pyomo.kernel.variable_dict())
vlist[0]['x'] = pyomo.kernel.variable()

As the next section will show, the standard modeling component containers are also compatible with user-defined
classes that derive from the existing modeling components.

Sub-Classing

The existing components and containers in pyomo.kernel are designed to make sub-classing easy. User-defined
classes that derive from the standard modeling components and containers in pyomo.kernel are compatible with
existing containers of the same component category. As an example, in the following code we see that the pyomo.
kernel.block_list container can store both pyomo.kernel.block objects as well as a user-defined Widget object
that derives from pyomo.kernel.block. The Widget object can also be placed on another block object as an attribute
and treated itself as a block.

class Widget(pyomo.kernel.block):
...

model = pyomo.kernel.block()
model.blist = pyomo.kernel.block_list()
model.blist.append(Widget())

(continues on next page)

1 pyomo.kernel does not include an alternative to the AbstractModel component from pyomo.environ. All data necessary to build a model
must be imported by the user.

2 pyomo.kernel does not include an alternative to the Pyomo Set component from pyomo.environ.
3 pyomo.kernel.parameter objects are always mutable.
4 Special Ordered Sets
5 Both pyomo.kernel.piecewise and pyomo.kernel.piecewise_nd create objects that are sub-classes of pyomo.kernel.block. Thus,

these objects can be stored in containers such as pyomo.kernel.block_dict and pyomo.kernel.block_list.

370 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

(continued from previous page)

model.blist.append(pyomo.kernel.block())
model.w = Widget()
model.w.x = pyomo.kernel.variable()

The next series of examples goes into more detail on how to implement derived components or containers.

The following code block shows a class definition for a non-negative variable, starting from pyomo.kernel.variable
as a base class.

class NonNegativeVariable(pyomo.kernel.variable):
"""A non-negative variable."""

__slots__ = ()

def __init__(self, **kwds):
if 'lb' not in kwds:

kwds['lb'] = 0
if kwds['lb'] < 0:

raise ValueError("lower bound must be non-negative")
super(NonNegativeVariable, self).__init__(**kwds)

#
restrict assignments to x.lb to non-negative numbers
#
@property
def lb(self):

calls the base class property getter
return pyomo.kernel.variable.lb.fget(self)

@lb.setter
def lb(self, lb):

if lb < 0:
raise ValueError("lower bound must be non-negative")

calls the base class property setter
pyomo.kernel.variable.lb.fset(self, lb)

The NonNegativeVariable class prevents negative values from being stored into its lower bound during initializa-
tion or later on through assignment statements (e.g, x.lb = -1 fails). Note that the __slots__ == () line at the
beginning of the class definition is optional, but it is recommended if no additional data members are necessary as it
reduces the memory requirement of the new variable type.

The next code block defines a custom variable container called Point that represents a 3-dimensional point
in Cartesian space. The new type derives from the pyomo.kernel.variable_tuple container and uses the
NonNegativeVariable type we defined previously in the z coordinate.

class Point(pyomo.kernel.variable_tuple):
"""A 3-dimensional point in Cartesian space with the
z coordinate restricted to non-negative values."""

__slots__ = ()

(continues on next page)

15.7. The Kernel Library 371

Pyomo Documentation, Release 6.5.0

(continued from previous page)

def __init__(self):
super(Point, self).__init__(

(pyomo.kernel.variable(), pyomo.kernel.variable(), NonNegativeVariable())
)

@property
def x(self):

return self[0]

@property
def y(self):

return self[1]

@property
def z(self):

return self[2]

The Point class can be treated like a tuple storing three variables, and it can be placed inside of other variable containers
or added as attributes to blocks. The property methods included in the class definition provide an additional syntax for
accessing the three variables it stores, as the next code example will show.

The following code defines a class for building a convex second-order cone constraint from a Point object. It derives
from the pyomo.kernel.constraint class, overriding the constructor to build the constraint expression and utilizing
the property methods on the point class to increase readability.

class SOC(pyomo.kernel.constraint):
"""A convex second-order cone constraint"""

__slots__ = ()

def __init__(self, point):
assert isinstance(point.z, NonNegativeVariable)
super(SOC, self).__init__(point.x**2 + point.y**2 <= point.z**2)

Reduced Memory Usage

The pyomo.kernel library offers significant opportunities to reduce memory requirements for highly structured mod-
els. The situation where this is most apparent is when expressing a model in terms of many small blocks consisting of
singleton components. As an example, consider expressing a model consisting of a large number of voltage transform-
ers. One option for doing so might be to define a Transformer component as a subclass of pyomo.kernel.block.
The example below defines such a component, including some helper methods for connecting input and output voltage
variables and updating the transformer ratio.

class Transformer(pyomo.kernel.block):
def __init__(self):

super(Transformer, self).__init__()
self._a = pyomo.kernel.parameter()
self._v_in = pyomo.kernel.expression()

(continues on next page)

372 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

(continued from previous page)

self._v_out = pyomo.kernel.expression()
self._c = pyomo.kernel.constraint(self._a * self._v_out == self._v_in)

def set_ratio(self, a):
assert a > 0
self._a.value = a

def connect_v_in(self, v_in):
self._v_in.expr = v_in

def connect_v_out(self, v_out):
self._v_out.expr = v_out

A simplified version of this using pyomo.environ components might look like what is below.

def Transformer():
b = pyomo.environ.Block(concrete=True)
b._a = pyomo.environ.Param(mutable=True)
b._v_in = pyomo.environ.Expression()
b._v_out = pyomo.environ.Expression()
b._c = pyomo.environ.Constraint(expr=b._a * b._v_out == b._v_in)
return b

The transformer expressed using pyomo.kernel components requires roughly 2 KB of memory, whereas the pyomo.
environ version requires roughly 8.4 KB of memory (an increase of more than 4x). Additionally, the pyomo.kernel
transformer is fully compatible with all existing pyomo.kernel block containers.

Direct Support For Conic Constraints with Mosek

Pyomo 5.6.3 introduced support into pyomo.kernel for six conic constraint forms that are directly recognized by the
new Mosek solver interface. These are

• conic.quadratic:∑︀
𝑖 𝑥

2
𝑖 ≤ 𝑟2, 𝑟 ≥ 0

• conic.rotated_quadratic:∑︀
𝑖 𝑥

2
𝑖 ≤ 2𝑟1𝑟2, 𝑟1, 𝑟2 ≥ 0

• conic.primal_exponential:

𝑥1 exp(𝑥2/𝑥1) ≤ 𝑟, 𝑥1, 𝑟 ≥ 0

• conic.primal_power (𝛼 is a constant):

||𝑥||2 ≤ 𝑟𝛼1 𝑟
1−𝛼
2 , 𝑟1, 𝑟2 ≥ 0, 0 < 𝛼 < 1

• conic.dual_exponential:

−𝑥2 exp((𝑥1/𝑥2) − 1) ≤ 𝑟, 𝑥2 ≤ 0, 𝑟 ≥ 0

• conic.dual_power (𝛼 is a constant):

15.7. The Kernel Library 373

Pyomo Documentation, Release 6.5.0

||𝑥||2 ≤ (𝑟1/𝛼)𝛼(𝑟2/(1 − 𝛼))1−𝛼, 𝑟1, 𝑟2 ≥ 0, 0 < 𝛼 < 1

Other solver interfaces will treat these objects as general nonlinear or quadratic constraints, and may or may not have the
ability to identify their convexity. For instance, Gurobi will recognize the expressions produced by the quadratic and
rotated_quadratic objects as representing convex domains as long as the variables involved satisfy the convexity
conditions. However, other solvers may not include this functionality.

Each of these conic constraint classes are of the same category type as standard pyomo.kernel.constraint ob-
ject, and, thus, are directly supported by the standard constraint containers (constraint_tuple, constraint_list,
constraint_dict).

Each conic constraint class supports two methods of instantiation. The first method is to directly instantiate a conic
constraint object, providing all necessary input variables:

import pyomo.kernel as pmo

m = pmo.block()
m.x1 = pmo.variable(lb=0)
m.x2 = pmo.variable()
m.r = pmo.variable(lb=0)
m.q = pmo.conic.primal_exponential(x1=m.x1, x2=m.x2, r=m.r)

This method may be limiting if utilizing the Mosek solver as the user must ensure that additional conic constraints do
not use variables that are directly involved in any existing conic constraints (this is a limitation the Mosek solver itself).

To overcome this limitation, and to provide a more general way of defining conic domains, each conic constraint class
provides the as_domain class method. This alternate constructor has the same argument signature as the class, but
in place of each variable, one can optionally provide a constant, a linear expression, or None. The as_domain class
method returns a block object that includes the core conic constraint, auxiliary variables used to express the conic
constraint, as well as auxiliary constraints that link the inputs (that are not None) to the auxiliary variables. Example:

import pyomo.kernel as pmo
import math

m = pmo.block()
m.x = pmo.variable(lb=0)
m.y = pmo.variable(lb=0)
m.b = pmo.conic.primal_exponential.as_domain(

x1=math.sqrt(2) * m.x, x2=2.0, r=2 * (m.x + m.y)
)

15.7.3 Reference

Modeling Components:

Blocks

374 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

Summary

pyomo.core.kernel.block.block() A generalized container for defining hierarchical models
by adding modeling components as attributes.

pyomo.core.kernel.block.block_tuple(*args,
...)

A tuple-style container for objects with category type
IBlock

pyomo.core.kernel.block.block_list(*args,
**kwds)

A list-style container for objects with category type
IBlock

pyomo.core.kernel.block.block_dict(*args,
**kwds)

A dict-style container for objects with category type
IBlock

Member Documentation

class pyomo.core.kernel.block.block

Bases: IBlock

A generalized container for defining hierarchical models by adding modeling components as attributes.

Examples

>>> import pyomo.kernel as pmo
>>> model = pmo.block()
>>> model.x = pmo.variable()
>>> model.c = pmo.constraint(model.x >= 1)
>>> model.o = pmo.objective(model.x)

child_ctypes()

Returns the set of child object category types stored in this container.

children(ctype=<class 'pyomo.core.kernel.base._no_ctype'>)
Iterate over the children of this block.

Parameters
ctype – Indicates the category of children to include. The default value indicates that
all categories should be included.

Returns
iterator of child objects

load_solution(solution, allow_consistent_values_for_fixed_vars=False,
comparison_tolerance_for_fixed_vars=1e-05)

Load a solution.
Parameters

• solution – A pyomo.opt.Solution object with a symbol map. Optionally, the
solution can be tagged with a default variable value (e.g., 0) that will be applied
to those variables in the symbol map that do not have a value in the solution.

• allow_consistent_values_for_fixed_vars – Indicates whether a solution
can specify consistent values for variables that are fixed.

• comparison_tolerance_for_fixed_vars – The tolerance used to define
whether or not a value in the solution is consistent with the value of a fixed vari-
able.

15.7. The Kernel Library 375

Pyomo Documentation, Release 6.5.0

write(filename, format=None, _solver_capability=None, _called_by_solver=False, **kwds)
Write the model to a file, with a given format.

Parameters
• filename (str) – The name of the file to write.

• format – The file format to use. If this is not specified, the file format will be
inferred from the filename suffix.

• **kwds – Additional keyword options passed to the model writer.

Returns
a SymbolMap

class pyomo.core.kernel.block.block_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type IBlock

class pyomo.core.kernel.block.block_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type IBlock

class pyomo.core.kernel.block.block_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type IBlock

Variables

Summary

pyomo.core.kernel.variable.variable([...]) A decision variable
pyomo.core.kernel.variable.
variable_tuple(...)

A tuple-style container for objects with category type
IVariable

pyomo.core.kernel.variable.
variable_list(...)

A list-style container for objects with category type
IVariable

pyomo.core.kernel.variable.
variable_dict(...)

A dict-style container for objects with category type
IVariable

Member Documentation

class pyomo.core.kernel.variable.variable(domain_type=None, domain=None, lb=None, ub=None,
value=None, fixed=False)

Bases: IVariable

A decision variable

Decision variables are used in objectives and constraints to define an optimization problem.
Parameters

• domain_type – Sets the domain type of the variable. Must be one of RealSet or
IntegerSet. Can be updated later by assigning to the domain_type property. The
default value of None is equivalent to RealSet, unless the domain keyword is used.

376 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

• domain – Sets the domain of the variable. This updates the domain_type, lb, and
ub properties of the variable. The default value of None implies that this keyword is
ignored. This keyword can not be used in combination with the domain_type keyword.

• lb – Sets the lower bound of the variable. Can be updated later by assigning to the lb
property on the variable. Default is None, which is equivalent to -inf.

• ub – Sets the upper bound of the variable. Can be updated later by assigning to the ub
property on the variable. Default is None, which is equivalent to +inf.

• value – Sets the value of the variable. Can be updated later by assigning to the value
property on the variable. Default is None.

• fixed (bool) – Sets the fixed status of the variable. Can be updated later by assigning
to the fixed property or by calling the fix() method. Default is False.

Examples

>>> import pyomo.kernel as pmo
>>> # A continuous variable with infinite bounds
>>> x = pmo.variable()
>>> # A binary variable
>>> x = pmo.variable(domain=pmo.Binary)
>>> # Also a binary variable
>>> x = pmo.variable(domain_type=pmo.IntegerSet, lb=0, ub=1)

property domain

Set the domain of the variable. This method updates the domain_type property and overwrites the lb
and ub properties with the domain bounds.

property domain_type

The domain type of the variable (RealSet or IntegerSet)

property fixed

The fixed status of the variable

property lower

The lower bound of the variable

property stale

The stale status of the variable

property upper

The upper bound of the variable

property value

The value of the variable

class pyomo.core.kernel.variable.variable_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type IVariable

class pyomo.core.kernel.variable.variable_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type IVariable

15.7. The Kernel Library 377

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

class pyomo.core.kernel.variable.variable_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type IVariable

Constraints

Summary

pyomo.core.kernel.constraint.
constraint([...])

A general algebraic constraint

pyomo.core.kernel.constraint.
linear_constraint([...])

A linear constraint

pyomo.core.kernel.constraint.
constraint_tuple(...)

A tuple-style container for objects with category type
IConstraint

pyomo.core.kernel.constraint.
constraint_list(...)

A list-style container for objects with category type
IConstraint

pyomo.core.kernel.constraint.
constraint_dict(...)

A dict-style container for objects with category type
IConstraint

pyomo.core.kernel.matrix_constraint.
matrix_constraint(A)

A container for constraints of the form lb <= Ax <= ub.

Member Documentation

class pyomo.core.kernel.constraint.constraint(expr=None, body=None, lb=None, ub=None,
rhs=None)

Bases: _MutableBoundsConstraintMixin, IConstraint

A general algebraic constraint

Algebraic constraints store relational expressions composed of linear or nonlinear functions involving decision
variables.

Parameters
• expr – Sets the relational expression for the constraint. Can be updated later by assign-

ing to the expr property on the constraint. When this keyword is used, values for the
body, lb, ub, and rhs attributes are automatically determined based on the relational
expression type. Default value is None.

• body – Sets the body of the constraint. Can be updated later by assigning to the body
property on the constraint. Default is None. This keyword should not be used in com-
bination with the expr keyword.

• lb – Sets the lower bound of the constraint. Can be updated later by assigning to the lb
property on the constraint. Default is None, which is equivalent to -inf. This keyword
should not be used in combination with the expr keyword.

• ub – Sets the upper bound of the constraint. Can be updated later by assigning to the ub
property on the constraint. Default is None, which is equivalent to +inf. This keyword
should not be used in combination with the expr keyword.

• rhs – Sets the right-hand side of the constraint. Can be updated later by assigning to
the rhs property on the constraint. The default value of None implies that this keyword

378 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

is ignored. Otherwise, use of this keyword implies that the equality property is set to
True. This keyword should not be used in combination with the expr keyword.

Examples

>>> import pyomo.kernel as pmo
>>> # A decision variable used to define constraints
>>> x = pmo.variable()
>>> # An upper bound constraint
>>> c = pmo.constraint(0.5*x <= 1)
>>> # (equivalent form)
>>> c = pmo.constraint(body=0.5*x, ub=1)
>>> # A range constraint
>>> c = pmo.constraint(lb=-1, body=0.5*x, ub=1)
>>> # An nonlinear equality constraint
>>> c = pmo.constraint(x**2 == 1)
>>> # (equivalent form)
>>> c = pmo.constraint(body=x**2, rhs=1)

property body

The body of the constraint

property expr

Get or set the expression on this constraint.

class pyomo.core.kernel.constraint.linear_constraint(variables=None, coefficients=None,
terms=None, lb=None, ub=None, rhs=None)

Bases: _MutableBoundsConstraintMixin, IConstraint

A linear constraint

A linear constraint stores a linear relational expression defined by a list of variables and coefficients. This class
can be used to reduce build time and memory for an optimization model. It also increases the speed at which the
model can be output to a solver.

Parameters
• variables (list) – Sets the list of variables in the linear expression defining the body

of the constraint. Can be updated later by assigning to the variables property on the
constraint.

• coefficients (list) – Sets the list of coefficients for the variables in the linear ex-
pression defining the body of the constraint. Can be updated later by assigning to the
coefficients property on the constraint.

• terms (list) – An alternative way of initializing the variables and coefficients
lists using an iterable of (variable, coefficient) tuples. Can be updated later by assigning
to the terms property on the constraint. This keyword should not be used in combina-
tion with the variables or coefficients keywords.

• lb – Sets the lower bound of the constraint. Can be updated later by assigning to the
lb property on the constraint. Default is None, which is equivalent to -inf.

• ub – Sets the upper bound of the constraint. Can be updated later by assigning to the
ub property on the constraint. Default is None, which is equivalent to +inf.

• rhs – Sets the right-hand side of the constraint. Can be updated later by assigning to
the rhs property on the constraint. The default value of None implies that this keyword

15.7. The Kernel Library 379

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

is ignored. Otherwise, use of this keyword implies that the equality property is set to
True.

Examples

>>> import pyomo.kernel as pmo
>>> # Decision variables used to define constraints
>>> x = pmo.variable()
>>> y = pmo.variable()
>>> # An upper bound constraint
>>> c = pmo.linear_constraint(variables=[x,y], coefficients=[1,2], ub=1)
>>> # (equivalent form)
>>> c = pmo.linear_constraint(terms=[(x,1), (y,2)], ub=1)
>>> # (equivalent form using a general constraint)
>>> c = pmo.constraint(x + 2*y <= 1)

property body

The body of the constraint

canonical_form(compute_values=True)
Build a canonical representation of the body of this constraints

property terms

An iterator over the terms in the body of this constraint as (variable, coefficient) tuples

class pyomo.core.kernel.constraint.constraint_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type IConstraint

class pyomo.core.kernel.constraint.constraint_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type IConstraint

class pyomo.core.kernel.constraint.constraint_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type IConstraint

class pyomo.core.kernel.matrix_constraint.matrix_constraint(A, lb=None, ub=None, rhs=None,
x=None, sparse=True)

Bases: constraint_tuple

A container for constraints of the form lb <= Ax <= ub.
Parameters

• A – A scipy sparse matrix or 2D numpy array (always copied)

• lb – A scalar or array with the same number of rows as A that defines the lower bound
of the constraints

• ub – A scalar or array with the same number of rows as A that defines the upper bound
of the constraints

• rhs – A scalar or array with the same number of rows as A that defines the right-hand
side of the constraints (implies equality constraints)

380 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

• x – A list with the same number of columns as A that stores the variable associated with
each column

• sparse – Indicates whether or not sparse storage (CSR format) should be used to store
A. Default is True.

property A

A read-only view of the constraint matrix

property equality

The array of boolean entries indicating the indices that are equality constraints

property lb

The array of constraint lower bounds

property lslack

Lower slack (body - lb)

property rhs

The array of constraint right-hand sides. Can be set to a scalar or a numpy array of the same dimension.
This property can only be read when the equality property is True on every index. Assigning to this
property implicitly sets the equality property to True on every index.

property slack

min(lslack, uslack)

property sparse

Boolean indicating whether or not the underlying matrix uses sparse storage

property ub

The array of constraint upper bounds

property uslack

Upper slack (ub - body)

property x

The list of variables associated with the columns of the constraint matrix

Parameters

Summary

pyomo.core.kernel.parameter.
parameter([value])

A object for storing a mutable, numeric value that can be
used to build a symbolic expression.

pyomo.core.kernel.parameter.
functional_value([fn])

An object for storing a numeric function that can be used
in a symbolic expression.

pyomo.core.kernel.parameter.
parameter_tuple(...)

A tuple-style container for objects with category type
IParameter

pyomo.core.kernel.parameter.
parameter_list(...)

A list-style container for objects with category type IPa-
rameter

pyomo.core.kernel.parameter.
parameter_dict(...)

A dict-style container for objects with category type IPa-
rameter

15.7. The Kernel Library 381

Pyomo Documentation, Release 6.5.0

Member Documentation

class pyomo.core.kernel.parameter.parameter(value=None)
Bases: IParameter

A object for storing a mutable, numeric value that can be used to build a symbolic expression.

property value

The value of the paramater

class pyomo.core.kernel.parameter.functional_value(fn=None)
Bases: IParameter

An object for storing a numeric function that can be used in a symbolic expression.

Note that models making use of this object may require the dill module for serialization.

property fn

The function stored with this object

class pyomo.core.kernel.parameter.parameter_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type IParameter

class pyomo.core.kernel.parameter.parameter_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type IParameter

class pyomo.core.kernel.parameter.parameter_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type IParameter

Objectives

Summary

pyomo.core.kernel.objective.objective([...]) An optimization objective.
pyomo.core.kernel.objective.
objective_tuple(...)

A tuple-style container for objects with category type
IObjective

pyomo.core.kernel.objective.
objective_list(...)

A list-style container for objects with category type IOb-
jective

pyomo.core.kernel.objective.
objective_dict(...)

A dict-style container for objects with category type IOb-
jective

382 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

Member Documentation

class pyomo.core.kernel.objective.objective(expr=None, sense=1)
Bases: IObjective

An optimization objective.

property expr

The stored expression

property sense

The optimization direction for the objective (minimize or maximize)

class pyomo.core.kernel.objective.objective_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type IObjective

class pyomo.core.kernel.objective.objective_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type IObjective

class pyomo.core.kernel.objective.objective_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type IObjective

Expressions

Summary

pyomo.core.kernel.expression.
expression([expr])

A named, mutable expression.

pyomo.core.kernel.expression.
expression_tuple(...)

A tuple-style container for objects with category type
IExpression

pyomo.core.kernel.expression.
expression_list(...)

A list-style container for objects with category type IEx-
pression

pyomo.core.kernel.expression.
expression_dict(...)

A dict-style container for objects with category type IEx-
pression

Member Documentation

class pyomo.core.kernel.expression.expression(expr=None)
Bases: IExpression

A named, mutable expression.

property expr

The stored expression

15.7. The Kernel Library 383

Pyomo Documentation, Release 6.5.0

class pyomo.core.kernel.expression.expression_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type IExpression

class pyomo.core.kernel.expression.expression_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type IExpression

class pyomo.core.kernel.expression.expression_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type IExpression

Special Ordered Sets

Summary

pyomo.core.kernel.sos.sos(variables[, ...]) A Special Ordered Set of type n.
pyomo.core.kernel.sos.sos1(variables[, weights]) A Special Ordered Set of type 1.
pyomo.core.kernel.sos.sos2(variables[, weights]) A Special Ordered Set of type 2.
pyomo.core.kernel.sos.sos_tuple(*args,
**kwds)

A tuple-style container for objects with category type
ISOS

pyomo.core.kernel.sos.sos_list(*args, **kwds) A list-style container for objects with category type ISOS
pyomo.core.kernel.sos.sos_dict(*args, **kwds) A dict-style container for objects with category type

ISOS

Member Documentation

class pyomo.core.kernel.sos.sos(variables, weights=None, level=1)
Bases: ISOS

A Special Ordered Set of type n.

property level

The sos level (e.g., 1,2,. . .)

property variables

The sos variables

property weights

The sos variables

pyomo.core.kernel.sos.sos1(variables, weights=None)
A Special Ordered Set of type 1.

This is an alias for sos(. . . , level=1)

pyomo.core.kernel.sos.sos2(variables, weights=None)
A Special Ordered Set of type 2.

This is an alias for sos(. . . , level=2).

384 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

class pyomo.core.kernel.sos.sos_tuple(*args, **kwds)
Bases: TupleContainer

A tuple-style container for objects with category type ISOS

class pyomo.core.kernel.sos.sos_list(*args, **kwds)
Bases: ListContainer

A list-style container for objects with category type ISOS

class pyomo.core.kernel.sos.sos_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type ISOS

Suffixes

class pyomo.core.kernel.suffix.ISuffix(*args, **kwds)
Bases: ComponentMap, ICategorizedObject

The interface for suffixes.

property datatype

The suffix datatype

property direction

The suffix direction

pyomo.core.kernel.suffix.export_suffix_generator(blk, datatype=<object object>, active=True,
descend_into=True)

Generates an efficient traversal of all suffixes that have been declared for exporting data.
Parameters

• blk – A block object.

• datatype – Restricts the suffixes included in the returned generator to those matching
the provided suffix datatype.

• active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a het-
erogeneous container. Default is True, which is equivalent to lambda x: True, meaning
all heterogeneous containers will be descended into.

Returns
iterator of suffixes

pyomo.core.kernel.suffix.import_suffix_generator(blk, datatype=<object object>, active=True,
descend_into=True)

Generates an efficient traversal of all suffixes that have been declared for importing data.
Parameters

• blk – A block object.

• datatype – Restricts the suffixes included in the returned generator to those matching
the provided suffix datatype.

15.7. The Kernel Library 385

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a het-
erogeneous container. Default is True, which is equivalent to lambda x: True, meaning
all heterogeneous containers will be descended into.

Returns
iterator of suffixes

pyomo.core.kernel.suffix.local_suffix_generator(blk, datatype=<object object>, active=True,
descend_into=True)

Generates an efficient traversal of all suffixes that have been declared local data storage.
Parameters

• blk – A block object.

• datatype – Restricts the suffixes included in the returned generator to those matching
the provided suffix datatype.

• active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a het-
erogeneous container. Default is True, which is equivalent to lambda x: True, meaning
all heterogeneous containers will be descended into.

Returns
iterator of suffixes

class pyomo.core.kernel.suffix.suffix(*args, **kwds)
Bases: ISuffix

A container for storing extraneous model data that can be imported to or exported from a solver.

clear_all_values()

DEPRECATED.

Deprecated since version 5.3: suffix.clear_all_values is replaced with suffix.clear

clear_value(component)
DEPRECATED.

Deprecated since version 5.3: suffix.clear_value will be removed in the future. Use ‘del suffix[key]’ in-
stead.

property datatype

Return the suffix datatype.

property direction

Return the suffix direction.

property export_enabled

Returns True when this suffix is enabled for export to solvers.

get_datatype()

DEPRECATED.

Deprecated since version 5.3: suffix.get_datatype is replaced with the property suffix.datatype

386 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

get_direction()

DEPRECATED.

Deprecated since version 5.3: suffix.get_direction is replaced with the property suffix.direction

property import_enabled

Returns True when this suffix is enabled for import from solutions.

set_all_values(value)
DEPRECATED.

Deprecated since version 5.3: suffix.set_all_values will be removed in the future.

set_datatype(datatype)
DEPRECATED.

Deprecated since version 5.3: suffix.set_datatype is replaced with the property setter suffix.datatype

set_direction(direction)
DEPRECATED.

Deprecated since version 5.3: suffix.set_direction is replaced with the property setter suffix.direction

class pyomo.core.kernel.suffix.suffix_dict(*args, **kwds)
Bases: DictContainer

A dict-style container for objects with category type ISuffix

pyomo.core.kernel.suffix.suffix_generator(blk, datatype=<object object>, active=True,
descend_into=True)

Generates an efficient traversal of all suffixes that have been declared.
Parameters

• blk – A block object.

• datatype – Restricts the suffixes included in the returned generator to those matching
the provided suffix datatype.

• active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a het-
erogeneous container. Default is True, which is equivalent to lambda x: True, meaning
all heterogeneous containers will be descended into.

Returns
iterator of suffixes

Piecewise Function Library

Modules

15.7. The Kernel Library 387

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Single-variate Piecewise Functions

Summary

pyomo.core.kernel.piecewise_library.
transforms.piecewise(...)

Models a single-variate piecewise linear function.

pyomo.core.kernel.piecewise_library.
transforms.PiecewiseLinearFunction(...)

A piecewise linear function

pyomo.core.kernel.
piecewise_library.transforms.
TransformedPiecewiseLinearFunction(f)

Base class for transformed piecewise linear functions

pyomo.core.kernel.piecewise_library.
transforms.piecewise_convex(...)

Simple convex piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_sos2(...)

Discrete SOS2 piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_dcc(...)

Discrete DCC piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_cc(...)

Discrete CC piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_mc(...)

Discrete MC piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_inc(...)

Discrete INC piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_dlog(...)

Discrete DLOG piecewise representation

pyomo.core.kernel.piecewise_library.
transforms.piecewise_log(...)

Discrete LOG piecewise representation

Member Documentation

pyomo.core.kernel.piecewise_library.transforms.piecewise(breakpoints, values, input=None,
output=None, bound='eq', repn='sos2',
validate=True, simplify=True,
equal_slopes_tolerance=1e-06,
require_bounded_input_variable=True,
re-
quire_variable_domain_coverage=True)

Models a single-variate piecewise linear function.

This function takes a list breakpoints and function values describing a piecewise linear function and transforms
this input data into a block of variables and constraints that enforce a piecewise linear relationship between an
input variable and an output variable. In the general case, this transformation requires the use of discrete decision
variables.

Parameters
• breakpoints (list) – The list of breakpoints of the piecewise linear function. This

can be a list of numbers or a list of objects that store mutable data (e.g., mutable pa-
rameters). If mutable data is used validation might need to be disabled by setting the
validate keyword to False. The list of breakpoints must be in non-decreasing order.

• values (list) – The values of the piecewise linear function corresponding to the
breakpoints.

388 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• input – The variable constrained to be the input of the piecewise linear function.

• output – The variable constrained to be the output of the piecewise linear function.

• bound (str) – The type of bound to impose on the output expression. Can be one of:

– ’lb’: y <= f(x)

– ’eq’: y = f(x)

– ’ub’: y >= f(x)

• repn (str) – The type of piecewise representation to use. Choices are shown below (+
means step functions are supported)

– ’sos2’: standard representation using sos2 constraints (+)

– ’dcc’: disaggregated convex combination (+)

– ’dlog’: logarithmic disaggregated convex combination (+)

– ’cc’: convex combination (+)

– ’log’: logarithmic branching convex combination (+)

– ’mc’: multiple choice

– ’inc’: incremental method (+)

• validate (bool) – Indicates whether or not to perform validation of the input data.
The default is True. Validation can be performed manually after the piecewise object is
created by calling the validate() method. Validation should be performed any time
the inputs are changed (e.g., when using mutable parameters in the breakpoints list or
when the input variable changes).

• simplify (bool) – Indicates whether or not to attempt to simplify the piecewise rep-
resentation to avoid using discrete variables. This can be done when the feasible region
for the output variable, with respect to the piecewise function and the bound type, is a
convex set. Default is True. Validation is required to perform simplification, so this
keyword is ignored when the validate keyword is False.

• equal_slopes_tolerance (float) – Tolerance used check if consecutive slopes are
nearly equal. If any are found, validation will fail. Default is 1e-6. This keyword is
ignored when the validate keyword is False.

• require_bounded_input_variable (bool) – Indicates if the input variable is re-
quired to have finite upper and lower bounds. Default is True. Setting this keyword
to False can be used to allow general expressions to be used as the input in place of a
variable. This keyword is ignored when the validate keyword is False.

• require_variable_domain_coverage (bool) – Indicates if the function domain
(defined by the endpoints of the breakpoints list) needs to cover the entire domain of
the input variable. Default is True. Ignored for any bounds of variables that are not
finite, or when the input is not assigned a variable. This keyword is ignored when the
validate keyword is False.

Returns
a block that stores any new variables, constraints, and other modeling objects used by the
piecewise representation

Return type
TransformedPiecewiseLinearFunction

15.7. The Kernel Library 389

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

class pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction(breakpoints,
values,
validate=True,
**kwds)

Bases: object

A piecewise linear function

Piecewise linear functions are defined by a list of breakpoints and a list function values corresponding to each
breakpoint. The function value between breakpoints is implied through linear interpolation.

Parameters
• breakpoints (list) – The list of function breakpoints.

• values (list) – The list of function values (one for each breakpoint).

• validate (bool) – Indicates whether or not to perform validation of the input data.
The default is True. Validation can be performed manually after the piecewise object is
created by calling the validate() method. Validation should be performed any time
the inputs are changed (e.g., when using mutable parameters in the breakpoints list).

• **kwds – Additional keywords are passed to the validate() method when the
validate keyword is True; otherwise, they are ignored.

__call__(x)
Evaluates the piecewise linear function at the given point using interpolation. Note that step functions are
assumed lower-semicontinuous.

property breakpoints

The set of breakpoints used to defined this function

validate(equal_slopes_tolerance=1e-06)
Validate this piecewise linear function by verifying various properties of the breakpoints and values lists
(e.g., that the list of breakpoints is nondecreasing).

Parameters
equal_slopes_tolerance (float) – Tolerance used check if consecutive slopes are
nearly equal. If any are found, validation will fail. Default is 1e-6.

Returns
a function characterization code (see util.characterize_function())

Return type
int

Raises
PiecewiseValidationError – if validation fails

property values

The set of values used to defined this function

class pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction(f,
in-
put=None,
out-
put=None,
bound='eq',
val-
i-
date=True,
**kwds)

390 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Bases: block

Base class for transformed piecewise linear functions

A transformed piecewise linear functions is a block of variables and constraints that enforce a piecewise linear
relationship between an input variable and an output variable.

Parameters
• f (PiecewiseLinearFunction) – The piecewise linear function to transform.

• input – The variable constrained to be the input of the piecewise linear function.

• output – The variable constrained to be the output of the piecewise linear function.

• bound (str) – The type of bound to impose on the output expression. Can be one of:

– ’lb’: y <= f(x)

– ’eq’: y = f(x)

– ’ub’: y >= f(x)

• validate (bool) – Indicates whether or not to perform validation of the input data.
The default is True. Validation can be performed manually after the piecewise object is
created by calling the validate() method. Validation should be performed any time
the inputs are changed (e.g., when using mutable parameters in the breakpoints list or
when the input variable changes).

• **kwds – Additional keywords are passed to the validate() method when the
validate keyword is True; otherwise, they are ignored.

__call__(x)
Evaluates the piecewise linear function at the given point using interpolation

property bound

The bound type assigned to the piecewise relationship (‘lb’,’ub’,’eq’).

property breakpoints

The set of breakpoints used to defined this function

property input

The expression that stores the input to the piecewise function. The returned object can be updated by
assigning to its expr attribute.

property output

The expression that stores the output of the piecewise function. The returned object can be updated by
assigning to its expr attribute.

validate(equal_slopes_tolerance=1e-06, require_bounded_input_variable=True,
require_variable_domain_coverage=True)

Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

Parameters
• equal_slopes_tolerance (float) – Tolerance used check if consecutive

slopes are nearly equal. If any are found, validation will fail. Default is 1e-6.

• require_bounded_input_variable (bool) – Indicates if the input variable
is required to have finite upper and lower bounds. Default is True. Setting this
keyword to False can be used to allow general expressions to be used as the input
in place of a variable.

15.7. The Kernel Library 391

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• require_variable_domain_coverage (bool) – Indicates if the function do-
main (defined by the endpoints of the breakpoints list) needs to cover the entire
domain of the input variable. Default is True. Ignored for any bounds of variables
that are not finite, or when the input is not assigned a variable.

Returns
a function characterization code (see util.characterize_function())

Return type
int

Raises
PiecewiseValidationError – if validation fails

property values

The set of values used to defined this function

class pyomo.core.kernel.piecewise_library.transforms.piecewise_convex(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Simple convex piecewise representation

Expresses a piecewise linear function with a convex feasible region for the output variable using a simple col-
lection of linear constraints.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_sos2(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete SOS2 piecewise representation

Expresses a piecewise linear function using the SOS2 formulation.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_dcc(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete DCC piecewise representation

Expresses a piecewise linear function using the DCC formulation.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_cc(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete CC piecewise representation

Expresses a piecewise linear function using the CC formulation.

392 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_mc(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete MC piecewise representation

Expresses a piecewise linear function using the MC formulation.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_inc(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete INC piecewise representation

Expresses a piecewise linear function using the INC formulation.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_dlog(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete DLOG piecewise representation

Expresses a piecewise linear function using the DLOG formulation. This formulation uses logarithmic number
of discrete variables in terms of number of breakpoints.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_log(*args, **kwds)
Bases: TransformedPiecewiseLinearFunction

Discrete LOG piecewise representation

Expresses a piecewise linear function using the LOG formulation. This formulation uses logarithmic number of
discrete variables in terms of number of breakpoints.

validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input
variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

15.7. The Kernel Library 393

Pyomo Documentation, Release 6.5.0

Multi-variate Piecewise Functions

Summary

pyomo.core.kernel.piecewise_library.
transforms_nd.piecewise_nd(...)

Models a multi-variate piecewise linear function.

pyomo.core.kernel.piecewise_library.
transforms_nd.PiecewiseLinearFunctionND(...)

A multi-variate piecewise linear function

pyomo.core.kernel.
piecewise_library.transforms_nd.
TransformedPiecewiseLinearFunctionND(f)

Base class for transformed multi-variate piecewise linear
functions

pyomo.core.kernel.piecewise_library.
transforms_nd.piecewise_nd_cc(...)

Discrete CC multi-variate piecewise representation

Member Documentation

pyomo.core.kernel.piecewise_library.transforms_nd.piecewise_nd(tri, values, input=None,
output=None, bound='eq',
repn='cc')

Models a multi-variate piecewise linear function.

This function takes a D-dimensional triangulation and a list of function values associated with the points of the
triangulation and transforms this input data into a block of variables and constraints that enforce a piecewise
linear relationship between an D-dimensional vector of input variable and a single output variable. In the general
case, this transformation requires the use of discrete decision variables.

Parameters
• tri (scipy.spatial.Delaunay) – A triangulation over the discretized variable do-

main. Can be generated using a list of variables using the utility function util.
generate_delaunay(). Required attributes:

– points: An (npoints, D) shaped array listing the D-dimensional coordinates of the
discretization points.

– simplices: An (nsimplices, D+1) shaped array of integers specifying the D+1 in-
dices of the points vector that define each simplex of the triangulation.

• values (numpy.array) – An (npoints,) shaped array of the values of the piecewise
function at each of coordinates in the triangulation points array.

• input – A D-length list of variables or expressions bound as the inputs of the piecewise
function.

• output – The variable constrained to be the output of the piecewise linear function.

• bound (str) – The type of bound to impose on the output expression. Can be one of:

– ’lb’: y <= f(x)

– ’eq’: y = f(x)

– ’ub’: y >= f(x)

• repn (str) – The type of piecewise representation to use. Can be one of:

– ’cc’: convex combination

394 Chapter 15. Library Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html#scipy.spatial.Delaunay
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Returns
a block containing any new variables, constraints, and other components used by the piecewise
representation

Return type
TransformedPiecewiseLinearFunctionND

class pyomo.core.kernel.piecewise_library.transforms_nd.PiecewiseLinearFunctionND(tri,
values,
vali-
date=True,
**kwds)

Bases: object

A multi-variate piecewise linear function

Multi-varite piecewise linear functions are defined by a triangulation over a finite domain and a list of function
values associated with the points of the triangulation. The function value between points in the triangulation is
implied through linear interpolation.

Parameters
• tri (scipy.spatial.Delaunay) – A triangulation over the discretized variable do-

main. Can be generated using a list of variables using the utility function util.
generate_delaunay(). Required attributes:

– points: An (npoints, D) shaped array listing the D-dimensional coordinates of the
discretization points.

– simplices: An (nsimplices, D+1) shaped array of integers specifying the D+1 in-
dices of the points vector that define each simplex of the triangulation.

• values (numpy.array) – An (npoints,) shaped array of the values of the piecewise
function at each of coordinates in the triangulation points array.

__call__(x)
Evaluates the piecewise linear function using interpolation. This method supports vectorized function
calls as the interpolation process can be expensive for high dimensional data.

For the case when a single point is provided, the argument x should be a (D,) shaped numpy array or list,
where D is the dimension of points in the triangulation.

For the vectorized case, the argument x should be a (n,D)-shaped numpy array.

property triangulation

The triangulation over the domain of this function

property values

The set of values used to defined this function

class pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND(f,
in-
put=None,
out-
put=None,
bound='eq')

Bases: block

Base class for transformed multi-variate piecewise linear functions

A transformed multi-variate piecewise linear functions is a block of variables and constraints that enforce a
piecewise linear relationship between an vector input variables and a single output variable.

Parameters

15.7. The Kernel Library 395

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html#scipy.spatial.Delaunay

Pyomo Documentation, Release 6.5.0

• f (PiecewiseLinearFunctionND) – The multi-variate piecewise linear function to
transform.

• input – The variable constrained to be the input of the piecewise linear function.

• output – The variable constrained to be the output of the piecewise linear function.

• bound (str) – The type of bound to impose on the output expression. Can be one of:

– ’lb’: y <= f(x)

– ’eq’: y = f(x)

– ’ub’: y >= f(x)
__call__(x)

Evaluates the piecewise linear function using interpolation. This method supports vectorized function
calls as the interpolation process can be expensive for high dimensional data.

For the case when a single point is provided, the argument x should be a (D,) shaped numpy array or list,
where D is the dimension of points in the triangulation.

For the vectorized case, the argument x should be a (n,D)-shaped numpy array.

property bound

The bound type assigned to the piecewise relationship (‘lb’,’ub’,’eq’).

property input

The tuple of expressions that store the inputs to the piecewise function. The returned objects can be updated
by assigning to their expr attribute.

property output

The expression that stores the output of the piecewise function. The returned object can be updated by
assigning to its expr attribute.

property triangulation

The triangulation over the domain of this function

property values

The set of values used to defined this function

class pyomo.core.kernel.piecewise_library.transforms_nd.piecewise_nd_cc(*args, **kwds)
Bases: TransformedPiecewiseLinearFunctionND

Discrete CC multi-variate piecewise representation

Expresses a multi-variate piecewise linear function using the CC formulation.

Utilities for Piecewise Functions

exception pyomo.core.kernel.piecewise_library.util.PiecewiseValidationError

Bases: Exception

An exception raised when validation of piecewise linear functions fail.

pyomo.core.kernel.piecewise_library.util.characterize_function(breakpoints, values)
Characterizes a piecewise linear function described by a list of breakpoints and function values.

Parameters
• breakpoints (list) – The list of breakpoints of the piecewise linear function. It is

assumed that the list of breakpoints is in non-decreasing order.

396 Chapter 15. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• values (list) – The values of the piecewise linear function corresponding to the
breakpoints.

Returns
a function characterization code and the list of slopes.

Return type
(int, list)

Note: The function characterization codes are
• 1: affine
• 2: convex
• 3: concave
• 4: step
• 5: other

If the function has step points, some of the slopes may be None.

pyomo.core.kernel.piecewise_library.util.generate_delaunay(variables, num=10, **kwds)
Generate a Delaunay triangulation of the D-dimensional bounded variable domain given a list of D variables.

Requires numpy and scipy.
Parameters

• variables – A list of variables, each having a finite upper and lower bound.

• num (int) – The number of grid points to generate for each variable (default=10).

• **kwds – All additional keywords are passed to the scipy.spatial.Delaunay constructor.
Returns

A scipy.spatial.Delaunay object.

pyomo.core.kernel.piecewise_library.util.generate_gray_code(nbits)
Generates a Gray code of nbits as list of lists

pyomo.core.kernel.piecewise_library.util.is_constant(vals)
Checks if a list of points is constant

pyomo.core.kernel.piecewise_library.util.is_nondecreasing(vals)
Checks if a list of points is nondecreasing

pyomo.core.kernel.piecewise_library.util.is_nonincreasing(vals)
Checks if a list of points is nonincreasing

pyomo.core.kernel.piecewise_library.util.is_positive_power_of_two(x)
Checks if a number is a nonzero and positive power of 2

pyomo.core.kernel.piecewise_library.util.log2floor(n)
Computes the exact value of floor(log2(n)) without using floating point calculations. Input argument must be a
positive integer.

15.7. The Kernel Library 397

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Conic Constraints

A collection of classes that provide an easy and performant way to declare conic constraints. The Mosek solver interface
includes special handling of these objects that recognizes them as convex constraints. Other solver interfaces will
treat these objects as general nonlinear or quadratic expressions, and may or may not have the ability to identify their
convexity.

Summary

pyomo.core.kernel.conic.quadratic(r, x) A quadratic conic constraint of the form:
pyomo.core.kernel.conic.
rotated_quadratic(r1, ...)

A rotated quadratic conic constraint of the form:

pyomo.core.kernel.conic.
primal_exponential(r, ...)

A primal exponential conic constraint of the form:

pyomo.core.kernel.conic.primal_power(r1, r2,
...)

A primal power conic constraint of the form:

pyomo.core.kernel.conic.dual_exponential(r,
...)

A dual exponential conic constraint of the form:

pyomo.core.kernel.conic.dual_power(r1, r2, ...) A dual power conic constraint of the form:

Member Documentation

class pyomo.core.kernel.conic.quadratic(r, x)
Bases: _ConicBase

A quadratic conic constraint of the form:
x[0]^2 + . . . + x[n-1]^2 <= r^2,

which is recognized as convex for r >= 0.
Parameters

• r (variable) – A variable.

• x (list[variable]) – An iterable of variables.
classmethod as_domain(r, x)

Builds a conic domain. Input arguments take the same form as those of the conic constraint, but in place
of each variable, one can optionally supply a constant, linear expression, or None.

Returns
A block object with the core conic constraint (block.q) expressed using auxiliary vari-
ables (block.r, block.x) linked to the input arguments through auxiliary constraints
(block.c).

Return type
block

check_convexity_conditions(relax=False)
Returns True if all convexity conditions for the conic constraint are satisfied. If relax is True, then variable
domains are ignored and it is assumed that all variables are continuous.

class pyomo.core.kernel.conic.rotated_quadratic(r1, r2, x)
Bases: _ConicBase

A rotated quadratic conic constraint of the form:
x[0]^2 + . . . + x[n-1]^2 <= 2*r1*r2,

398 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

which is recognized as convex for r1,r2 >= 0.
Parameters

• r1 (variable) – A variable.

• r2 (variable) – A variable.

• x (list[variable]) – An iterable of variables.
classmethod as_domain(r1, r2, x)

Builds a conic domain. Input arguments take the same form as those of the conic constraint, but in place
of each variable, one can optionally supply a constant, linear expression, or None.

Returns
A block object with the core conic constraint (block.q) expressed using auxiliary vari-
ables (block.r1, block.r2, block.x) linked to the input arguments through auxiliary con-
straints (block.c).

Return type
block

check_convexity_conditions(relax=False)
Returns True if all convexity conditions for the conic constraint are satisfied. If relax is True, then variable
domains are ignored and it is assumed that all variables are continuous.

class pyomo.core.kernel.conic.primal_exponential(r, x1, x2)
Bases: _ConicBase

A primal exponential conic constraint of the form:
x1*exp(x2/x1) <= r,

which is recognized as convex for x1,r >= 0.
Parameters

• r (variable) – A variable.

• x1 (variable) – A variable.

• x2 (variable) – A variable.
classmethod as_domain(r, x1, x2)

Builds a conic domain. Input arguments take the same form as those of the conic constraint, but in place
of each variable, one can optionally supply a constant, linear expression, or None.

Returns
A block object with the core conic constraint (block.q) expressed using auxiliary vari-
ables (block.r, block.x1, block.x2) linked to the input arguments through auxiliary con-
straints (block.c).

Return type
block

check_convexity_conditions(relax=False)
Returns True if all convexity conditions for the conic constraint are satisfied. If relax is True, then variable
domains are ignored and it is assumed that all variables are continuous.

class pyomo.core.kernel.conic.primal_power(r1, r2, x, alpha)
Bases: _ConicBase
A primal power conic constraint of the form:

sqrt(x[0]^2 + . . . + x[n-1]^2) <= (r1^alpha)*(r2^(1-alpha))
which is recognized as convex for r1,r2 >= 0 and 0 < alpha < 1.

Parameters
• r1 (variable) – A variable.

15.7. The Kernel Library 399

Pyomo Documentation, Release 6.5.0

• r2 (variable) – A variable.

• x (list[variable]) – An iterable of variables.

• alpha (float, parameter, etc.) – A constant term.
classmethod as_domain(r1, r2, x, alpha)

Builds a conic domain. Input arguments take the same form as those of the conic constraint, but in place
of each variable, one can optionally supply a constant, linear expression, or None.

Returns
A block object with the core conic constraint (block.q) expressed using auxiliary vari-
ables (block.r1, block.r2, block.x) linked to the input arguments through auxiliary con-
straints (block.c).

Return type
block

check_convexity_conditions(relax=False)
Returns True if all convexity conditions for the conic constraint are satisfied. If relax is True, then variable
domains are ignored and it is assumed that all variables are continuous.

class pyomo.core.kernel.conic.dual_exponential(r, x1, x2)
Bases: _ConicBase

A dual exponential conic constraint of the form:
-x2*exp((x1/x2)-1) <= r

which is recognized as convex for x2 <= 0 and r >= 0.
Parameters

• r (variable) – A variable.

• x1 (variable) – A variable.

• x2 (variable) – A variable.
classmethod as_domain(r, x1, x2)

Builds a conic domain. Input arguments take the same form as those of the conic constraint, but in place
of each variable, one can optionally supply a constant, linear expression, or None.

Returns
A block object with the core conic constraint (block.q) expressed using auxiliary vari-
ables (block.r, block.x1, block.x2) linked to the input arguments through auxiliary con-
straints (block.c).

Return type
block

check_convexity_conditions(relax=False)
Returns True if all convexity conditions for the conic constraint are satisfied. If relax is True, then variable
domains are ignored and it is assumed that all variables are continuous.

class pyomo.core.kernel.conic.dual_power(r1, r2, x, alpha)
Bases: _ConicBase

A dual power conic constraint of the form:
sqrt(x[0]^2 + . . . + x[n-1]^2) <= ((r1/alpha)^alpha) * ((r2/(1-alpha))^(1-alpha))

which is recognized as convex for r1,r2 >= 0 and 0 < alpha < 1.
Parameters

• r1 (variable) – A variable.

• r2 (variable) – A variable.

• x (list[variable]) – An iterable of variables.

400 Chapter 15. Library Reference

Pyomo Documentation, Release 6.5.0

• alpha (float, parameter, etc.) – A constant term.
classmethod as_domain(r1, r2, x, alpha)

Builds a conic domain. Input arguments take the same form as those of the conic constraint, but in place
of each variable, one can optionally supply a constant, linear expression, or None.

Returns
A block object with the core conic constraint (block.q) expressed using auxiliary vari-
ables (block.r1, block.r2, block.x) linked to the input arguments through auxiliary con-
straints (block.c).

Return type
block

check_convexity_conditions(relax=False)
Returns True if all convexity conditions for the conic constraint are satisfied. If relax is True, then variable
domains are ignored and it is assumed that all variables are continuous.

Base API:

Base Object Storage Interface

class pyomo.core.kernel.base.ICategorizedObject

Bases: Mixin

Interface for objects that maintain a weak reference to a parent storage object and have a category type.

This class is abstract. It assumes any derived class declares the attributes below with or without slots:

_ctype

Stores the object’s category type, which should be some class derived from ICategorizedObject. This
attribute may be declared at the class level.

_parent

Stores a weak reference to the object’s parent container or None.

_storage_key

Stores key this object can be accessed with through its parent container.

_active

Stores the active status of this object.
Type

bool

activate()

Activate this object.

property active

The active status of this object.

clone()

Returns a copy of this object with the parent pointer set to None.

A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendents of this object will reference the same object on the clone.

property ctype

The object’s category type.

15.7. The Kernel Library 401

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

deactivate()

Deactivate this object.

getname(fully_qualified=False, name_buffer={}, convert=<class 'str'>, relative_to=None)
Dynamically generates a name for this object.

Parameters
• fully_qualified (bool) – Generate a full name by iterating through all ansces-

tor containers. Default is False.

• convert (function) – A function that converts a storage key into a string rep-
resentation. Default is the built-in function str.

• relative_to (object) – When generating a fully qualified name, generate the
name relative to this block.

Returns
If a parent exists, this method returns a string representing the name of the object in the
context of its parent; otherwise (if no parent exists), this method returns None.

property local_name

The object’s local name within the context of its parent. Alias for obj.getname(fully_qualified=False).

property name

The object’s fully qualified name. Alias for obj.getname(fully_qualified=True).

property parent

The object’s parent (possibly None).

property storage_key

The object’s storage key within its parent

class pyomo.core.kernel.base.ICategorizedObjectContainer

Bases: ICategorizedObject

Interface for categorized containers of categorized objects.

activate(shallow=True)
Activate this container.

child(*args, **kwds)
Returns a child of this container given a storage key.

children(*args, **kwds)
A generator over the children of this container.

components(*args, **kwds)
A generator over the set of components stored under this container.

deactivate(shallow=True)
Deactivate this container.

402 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

Homogeneous Object Containers

class pyomo.core.kernel.homogeneous_container.IHomogeneousContainer

Bases: ICategorizedObjectContainer

A partial implementation of the ICategorizedObjectContainer interface for implementations that store a single
category of objects and that uses the same category as the objects it stores.

Complete implementations need to set the _ctype attribute and declare the remaining required abstract properties
of the ICategorizedObjectContainer base class.

Note that this implementation allows nested storage of other ICategorizedObjectContainer implementa-
tions that are defined with the same ctype.

components(active=True)
Generates an efficient traversal of all components stored under this container. Components are categorized
objects that are either (1) not containers, or (2) are heterogeneous containers.

Parameters
active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

Returns
iterator of components in the storage tree

Heterogeneous Object Containers

class pyomo.core.kernel.heterogeneous_container.IHeterogeneousContainer

Bases: ICategorizedObjectContainer

A partial implementation of the ICategorizedObjectContainer interface for implementations that store multiple
categories of objects.

Complete implementations need to set the _ctype attribute and declare the remaining required abstract properties
of the ICategorizedObjectContainer base class.

child_ctypes(*args, **kwds)
Returns the set of child object category types stored in this container.

collect_ctypes(active=True, descend_into=True)
Returns the set of object category types that can be found under this container.

Parameters
• active (True/None) – Controls whether or not to filter the iteration to include

only the active part of the storage tree. The default is True. Setting this keyword
to None causes the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a
heterogeneous container. Default is True, which is equivalent to lambda x: True,
meaning all heterogeneous containers will be descended into.

Returns
A set of object category types

components(ctype=<class 'pyomo.core.kernel.base._no_ctype'>, active=True, descend_into=True)
Generates an efficient traversal of all components stored under this container. Components are categorized
objects that are either (1) not containers, or (2) are heterogeneous containers.

Parameters

15.7. The Kernel Library 403

https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• ctype – Indicates the category of components to include. The default value indi-
cates that all categories should be included.

• active (True/None) – Controls whether or not to filter the iteration to include
only the active part of the storage tree. The default is True. Setting this keyword
to None causes the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a
heterogeneous container. Default is True, which is equivalent to lambda x: True,
meaning all heterogeneous containers will be descended into.

Returns
iterator of components in the storage tree

pyomo.core.kernel.heterogeneous_container.heterogeneous_containers(node, ctype=<class 'py-
omo.core.kernel.base._no_ctype'>,
active=True,
descend_into=True)

A generator that yields all heterogeneous containers included in an object storage tree, including the root object.
Heterogeneous containers are categorized objects with a category type different from their children.

Parameters
• node – The root object.

• ctype – Indicates the category of objects to include. The default value indicates that
all categories should be included.

• active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

• descend_into (bool, function) – Indicates whether or not to descend into a het-
erogeneous container. Default is True, which is equivalent to lambda x: True, meaning
all heterogeneous containers will be descended into.

Returns
iterator of heterogeneous containers in the storage tree, include the root object.

Containers:

Tuple-like Object Storage

class pyomo.core.kernel.tuple_container.TupleContainer(*args)
Bases: IHomogeneousContainer, Sequence

A partial implementation of the IHomogeneousContainer interface that provides tuple-like storage functionality.

Complete implementations need to set the _ctype property at the class level and initialize the remaining ICate-
gorizedObject attributes during object creation. If using __slots__, a slot named “_data” must be included.

Note that this implementation allows nested storage of other ICategorizedObjectContainer implementations that
are defined with the same ctype.

__deepcopy__(memo)
Default implementation of __deepcopy__ based on __getstate__

This defines a default implementation of __deepcopy__ that leverages __getstate__() and
__setstate__() to duplicate an object. Having a default __deepcopy__ implementation shortcuts sig-
nificant logic in copy.deepcopy(), thereby speeding up deepcopy operations.

404 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/copy.html#copy.deepcopy

Pyomo Documentation, Release 6.5.0

__eq__(other)
Return self==value.

__getstate__()

Generic implementation of __getstate__

This implementation will collect the slots (in order) and then the __dict__ (if necessary) and place every-
thing into a list. This standard format is significantly faster to generate and deepcopy (when compared to
a dict), although it can be more fragile (changing the number of slots can cause a pickle to no longer be
loadable)

Derived classes should not overload this method to provide special handling for fields (e.g., to resolve
weak references). Instead, special field handlers should be declared via the __autoslot_mappers__ class
attribute (see AutoSlots)

__hash__ = None

__init__(*args)

classmethod __init_subclass__(**kwds)
Automatically define __auto_slots__ on derived subclasses

This accomplishes the same thing as the AutoSlots metaclass without incurring the overhead / runtime
penalty of using a metaclass.

__ne__(other)
Return self!=value.

__setstate__(state)
Generic implementation of __setstate__

Restore the state generated by __getstate__()

Derived classes should not overload this method to provide special handling for fields (e.g., to restore weak
references). Instead, special field handlers should be declared via the __autoslot_mappers__ class attribute
(see AutoSlots)

__str__()

Convert this object to a string by first attempting to generate its fully qualified name. If the object does not
have a name (because it does not have a parent, then a string containing the class name is returned.

classmethod __subclasshook__(C)
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

activate(shallow=True)
Activate this container.

property active

The active status of this object.

child(key)
Get the child object associated with a given storage key for this container.

Raises
KeyError – if the argument is not a storage key for any children of this container

15.7. The Kernel Library 405

https://docs.python.org/3/library/exceptions.html#KeyError

Pyomo Documentation, Release 6.5.0

children()

A generator over the children of this container.

clone()

Returns a copy of this object with the parent pointer set to None.

A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendents of this object will reference the same object on the clone.

components(active=True)
Generates an efficient traversal of all components stored under this container. Components are categorized
objects that are either (1) not containers, or (2) are heterogeneous containers.

Parameters
active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

Returns
iterator of components in the storage tree

count(value)→ integer -- return number of occurrences of value

property ctype

The object’s category type.

deactivate(shallow=True)
Deactivate this container.

getname(fully_qualified=False, name_buffer={}, convert=<class 'str'>, relative_to=None)
Dynamically generates a name for this object.

Parameters
• fully_qualified (bool) – Generate a full name by iterating through all ansces-

tor containers. Default is False.

• convert (function) – A function that converts a storage key into a string rep-
resentation. Default is the built-in function str.

• relative_to (object) – When generating a fully qualified name, generate the
name relative to this block.

Returns
If a parent exists, this method returns a string representing the name of the object in the
context of its parent; otherwise (if no parent exists), this method returns None.

index(value[, start[, stop]])→ integer -- return first index of value.
Raises ValueError if the value is not present.

property local_name

The object’s local name within the context of its parent. Alias for obj.getname(fully_qualified=False).

property name

The object’s fully qualified name. Alias for obj.getname(fully_qualified=True).

property parent

The object’s parent (possibly None).

property storage_key

The object’s storage key within its parent

406 Chapter 15. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

List-like Object Storage

class pyomo.core.kernel.list_container.ListContainer(*args)
Bases: TupleContainer, MutableSequence

A partial implementation of the IHomogeneousContainer interface that provides list-like storage functionality.

Complete implementations need to set the _ctype property at the class level and initialize the remaining ICate-
gorizedObject attributes during object creation. If using __slots__, a slot named “_data” must be included.

Note that this implementation allows nested storage of other ICategorizedObjectContainer implementations that
are defined with the same ctype.

__deepcopy__(memo)
Default implementation of __deepcopy__ based on __getstate__

This defines a default implementation of __deepcopy__ that leverages __getstate__() and
__setstate__() to duplicate an object. Having a default __deepcopy__ implementation shortcuts sig-
nificant logic in copy.deepcopy(), thereby speeding up deepcopy operations.

__eq__(other)
Return self==value.

__getstate__()

Generic implementation of __getstate__

This implementation will collect the slots (in order) and then the __dict__ (if necessary) and place every-
thing into a list. This standard format is significantly faster to generate and deepcopy (when compared to
a dict), although it can be more fragile (changing the number of slots can cause a pickle to no longer be
loadable)

Derived classes should not overload this method to provide special handling for fields (e.g., to resolve
weak references). Instead, special field handlers should be declared via the __autoslot_mappers__ class
attribute (see AutoSlots)

__hash__ = None

__init__(*args)

classmethod __init_subclass__(**kwds)
Automatically define __auto_slots__ on derived subclasses

This accomplishes the same thing as the AutoSlots metaclass without incurring the overhead / runtime
penalty of using a metaclass.

__ne__(other)
Return self!=value.

__setstate__(state)
Generic implementation of __setstate__

Restore the state generated by __getstate__()

Derived classes should not overload this method to provide special handling for fields (e.g., to restore weak
references). Instead, special field handlers should be declared via the __autoslot_mappers__ class attribute
(see AutoSlots)

__str__()

Convert this object to a string by first attempting to generate its fully qualified name. If the object does not
have a name (because it does not have a parent, then a string containing the class name is returned.

15.7. The Kernel Library 407

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence
https://docs.python.org/3/library/copy.html#copy.deepcopy

Pyomo Documentation, Release 6.5.0

classmethod __subclasshook__(C)
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

activate(shallow=True)
Activate this container.

property active

The active status of this object.

append(value)
S.append(value) – append value to the end of the sequence

child(key)
Get the child object associated with a given storage key for this container.

Raises
KeyError – if the argument is not a storage key for any children of this container

children()

A generator over the children of this container.

clear()→ None -- remove all items from S

clone()

Returns a copy of this object with the parent pointer set to None.

A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendents of this object will reference the same object on the clone.

components(active=True)
Generates an efficient traversal of all components stored under this container. Components are categorized
objects that are either (1) not containers, or (2) are heterogeneous containers.

Parameters
active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

Returns
iterator of components in the storage tree

count(value)→ integer -- return number of occurrences of value

property ctype

The object’s category type.

deactivate(shallow=True)
Deactivate this container.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

getname(fully_qualified=False, name_buffer={}, convert=<class 'str'>, relative_to=None)
Dynamically generates a name for this object.

Parameters

408 Chapter 15. Library Reference

https://docs.python.org/3/library/exceptions.html#KeyError

Pyomo Documentation, Release 6.5.0

• fully_qualified (bool) – Generate a full name by iterating through all ansces-
tor containers. Default is False.

• convert (function) – A function that converts a storage key into a string rep-
resentation. Default is the built-in function str.

• relative_to (object) – When generating a fully qualified name, generate the
name relative to this block.

Returns
If a parent exists, this method returns a string representing the name of the object in the
context of its parent; otherwise (if no parent exists), this method returns None.

index(value[, start[, stop]])→ integer -- return first index of value.
Raises ValueError if the value is not present.

insert(i, item)

S.insert(index, object) – insert object before index

property local_name

The object’s local name within the context of its parent. Alias for obj.getname(fully_qualified=False).

property name

The object’s fully qualified name. Alias for obj.getname(fully_qualified=True).

property parent

The object’s parent (possibly None).

pop([index])→ item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()

S.reverse() – reverse IN PLACE

property storage_key

The object’s storage key within its parent

Dict-like Object Storage

class pyomo.core.kernel.dict_container.DictContainer(*args, **kwds)
Bases: IHomogeneousContainer, MutableMapping

A partial implementation of the IHomogeneousContainer interface that provides dict-like storage functionality.

Complete implementations need to set the _ctype property at the class level and initialize the remaining ICate-
gorizedObject attributes during object creation. If using __slots__, a slot named “_data” must be included.

Note that this implementation allows nested storage of other ICategorizedObjectContainer implementations that
are defined with the same ctype.

__deepcopy__(memo)
Default implementation of __deepcopy__ based on __getstate__

This defines a default implementation of __deepcopy__ that leverages __getstate__() and
__setstate__() to duplicate an object. Having a default __deepcopy__ implementation shortcuts sig-
nificant logic in copy.deepcopy(), thereby speeding up deepcopy operations.

15.7. The Kernel Library 409

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/copy.html#copy.deepcopy

Pyomo Documentation, Release 6.5.0

__eq__(other)
Return self==value.

__getstate__()

Generic implementation of __getstate__

This implementation will collect the slots (in order) and then the __dict__ (if necessary) and place every-
thing into a list. This standard format is significantly faster to generate and deepcopy (when compared to
a dict), although it can be more fragile (changing the number of slots can cause a pickle to no longer be
loadable)

Derived classes should not overload this method to provide special handling for fields (e.g., to resolve
weak references). Instead, special field handlers should be declared via the __autoslot_mappers__ class
attribute (see AutoSlots)

__hash__ = None

__init__(*args, **kwds)

classmethod __init_subclass__(**kwds)
Automatically define __auto_slots__ on derived subclasses

This accomplishes the same thing as the AutoSlots metaclass without incurring the overhead / runtime
penalty of using a metaclass.

__ne__(other)
Return self!=value.

__setstate__(state)
Generic implementation of __setstate__

Restore the state generated by __getstate__()

Derived classes should not overload this method to provide special handling for fields (e.g., to restore weak
references). Instead, special field handlers should be declared via the __autoslot_mappers__ class attribute
(see AutoSlots)

__str__()

Convert this object to a string by first attempting to generate its fully qualified name. If the object does not
have a name (because it does not have a parent, then a string containing the class name is returned.

classmethod __subclasshook__(C)
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

activate(shallow=True)
Activate this container.

property active

The active status of this object.

child(key)
Get the child object associated with a given storage key for this container.

Raises
KeyError – if the argument is not a storage key for any children of this container

410 Chapter 15. Library Reference

https://docs.python.org/3/library/exceptions.html#KeyError

Pyomo Documentation, Release 6.5.0

children()

A generator over the children of this container.

clear()→ None. Remove all items from D.

clone()

Returns a copy of this object with the parent pointer set to None.

A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendents of this object will reference the same object on the clone.

components(active=True)
Generates an efficient traversal of all components stored under this container. Components are categorized
objects that are either (1) not containers, or (2) are heterogeneous containers.

Parameters
active (True/None) – Controls whether or not to filter the iteration to include only the
active part of the storage tree. The default is True. Setting this keyword to None causes
the active status of objects to be ignored.

Returns
iterator of components in the storage tree

property ctype

The object’s category type.

deactivate(shallow=True)
Deactivate this container.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

getname(fully_qualified=False, name_buffer={}, convert=<class 'str'>, relative_to=None)
Dynamically generates a name for this object.

Parameters
• fully_qualified (bool) – Generate a full name by iterating through all ansces-

tor containers. Default is False.

• convert (function) – A function that converts a storage key into a string rep-
resentation. Default is the built-in function str.

• relative_to (object) – When generating a fully qualified name, generate the
name relative to this block.

Returns
If a parent exists, this method returns a string representing the name of the object in the
context of its parent; otherwise (if no parent exists), this method returns None.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

property local_name

The object’s local name within the context of its parent. Alias for obj.getname(fully_qualified=False).

property name

The object’s fully qualified name. Alias for obj.getname(fully_qualified=True).

property parent

The object’s parent (possibly None).

15.7. The Kernel Library 411

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

property storage_key

The object’s storage key within its parent

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

412 Chapter 15. Library Reference

CHAPTER

SIXTEEN

CONTRIBUTING TO PYOMO

We welcome all contributions including bug fixes, feature enhancements, and documentation improvements. Pyomo
manages source code contributions via GitHub pull requests (PRs).

16.1 Contribution Requirements

A PR should be 1 set of related changes. PRs for large-scale non-functional changes (i.e. PEP8, comments) should
be separated from functional changes. This simplifies the review process and ensures that functional changes aren’t
obscured by large amounts of non-functional changes.

We do not squash and merge PRs so all commits in your branch will appear in the main history. In addition to well-
documented PR descriptions, we encourage modular/targeted commits with descriptive commit messages.

16.1.1 Coding Standards

• Required: 4 space indentation (no tabs)

• Desired: PEP8

• No use of __author__

• Inside pyomo.contrib: Contact information for the contribution maintainer (such as a Github ID) should be
included in the Sphinx documentation

Online Pyomo documentation is generated using Sphinx with the napoleon extension enabled. For API documentation
we use of one of these supported styles for docstrings, but we prefer the NumPy standard. Whichever you choose, we
require compliant docstrings for:

• Modules

• Public and Private Classes

• Public and Private Functions

We also encourage you to include examples, especially for new features and contributions to pyomo.contrib.

413

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html

Pyomo Documentation, Release 6.5.0

16.1.2 Testing

Pyomo uses unittest, pytest, GitHub Actions, and Jenkins for testing and continuous integration. Submitted code should
include tests to establish the validity of its results and/or effects. Unit tests are preferred but we also accept integration
tests. We require at least 70% coverage of the lines modified in the PR and prefer coverage closer to 90%. We also
require that all tests pass before a PR will be merged.

The Pyomo main branch provides a Github Actions workflow (configured in the .github/ directory) that will test any
changes pushed to a branch with a subset of the complete test harness that includes multiple virtual machines (ubuntu,
mac-os, windows) and multiple Python versions. For existing forks, fetch and merge your fork (and branches) with
Pyomo’s main. For new forks, you will need to enable GitHub Actions in the ‘Actions’ tab on your fork. This will
enable the tests to run automatically with each push to your fork.

At any point in the development cycle, a “work in progress” pull request may be opened by including ‘[WIP]’ at the
beginning of the PR title. This allows your code changes to be tested by the full suite of Pyomo’s automatic testing
infrastructure. Any pull requests marked ‘[WIP]’ will not be reviewed or merged by the core development team. In
addition, any ‘[WIP]’ pull request left open for an extended period of time without active development may be marked
‘stale’ and closed.

16.1.3 Python Version Support

By policy, Pyomo supports and tests the currently supported Python versions, as can be seen on Status of Python
Versions. It is expected that tests will pass for all of the supported and tested versions of Python, unless otherwise
stated.

At the time of the first Pyomo release after the end-of-life of a minor Python version, we will remove testing and support
for that Python version.

This will also result in a bump in the minor Pyomo version.

For example, assume Python 3.A is declared end-of-life while Pyomo is on version 6.3.Y. After the release of Pyomo
6.3.(Y+1), Python 3.A will be removed, and the next Pyomo release will be 6.4.0.

16.2 Working on Forks and Branches

All Pyomo development should be done on forks of the Pyomo repository. In order to fork the Pyomo repository, visit
https://github.com/Pyomo/pyomo, click the “Fork” button in the upper right corner, and follow the instructions.

This section discusses two recommended workflows for contributing pull-requests to Pyomo. The first workflow, la-
beled Working with my fork and the GitHub Online UI , does not require the use of ‘remotes’, and suggests updating
your fork using the GitHub online UI. The second workflow, labeled Working with remotes and the git command-line,
outlines a process that defines separate remotes for your fork and the main Pyomo repository.

More information on git can be found at https://git-scm.com/book/en/v2. Section 2.5 has information on working with
remotes.

414 Chapter 16. Contributing to Pyomo

https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/
https://docs.github.com/en/free-pro-team@latest/actions
https://devguide.python.org/versions/
https://devguide.python.org/versions/
https://github.com/Pyomo/pyomo
https://git-scm.com/book/en/v2

Pyomo Documentation, Release 6.5.0

16.2.1 Working with my fork and the GitHub Online UI

After creating your fork (per the instructions above), you can then clone your fork of the repository with

git clone https://github.com/<username>/pyomo.git

For new development, we strongly recommend working on feature branches. When you have a new feature to imple-
ment, create the branch with the following.

cd pyomo/ # to make sure you are in the folder managed by git
git branch <branch_name>
git checkout <branch_name>

Development can now be performed. When you are ready, commit any changes you make to your local repository. This
can be done multiple times with informative commit messages for different tasks in the feature development.

git add <filename>
git status # to check that you have added the correct files
git commit -m 'informative commit message to describe changes'

In order to push the changes in your local branch to a branch on your fork, use

git push origin <branch_name>

When you have completed all the changes and are ready for a pull request, make sure all the changes have been pushed
to the branch <branch_name> on your fork.

• visit https://github.com/<username>/pyomo.

• Just above the list of files and directories in the repository, you should see a button that says “Branch: main”.
Click on this button, and choose the correct branch.

• Click the “New pull request” button just to the right of the “Branch: <branch_name>” button.

• Fill out the pull request template and click the green “Create pull request” button.

At times during your development, you may want to merge changes from the Pyomo main development branch into the
feature branch on your fork and in your local clone of the repository.

Using GitHub UI to merge Pyomo main into a branch on your fork

To update your fork, you will actually be merging a pull-request from the head Pyomo repository into your fork.

• Visit https://github.com/Pyomo/pyomo.

• Click on the “New pull request” button just above the list of files and directories.

• You will see the title “Compare changes” with some small text below it which says “Compare changes across
branches, commits, tags, and more below. If you need to, you can also compare across forks.” Click the last part
of this: “compare across forks”.

• You should now see four buttons just below this: “base repository: Pyomo/pyomo”, “base: main”, “head repos-
itory: Pyomo/pyomo”, and “compare: main”. Click the leftmost button and choose “<username>/Pyomo”.

• Then click the button which is second to the left, and choose the branch which you want to merge Pyomo main
into. The four buttons should now read: “base repository: <username>/pyomo”, “base: <branch_name>”, “head
repository: Pyomo/pyomo”, and “compare: main”. This is setting you up to merge a pull-request from Pyomo’s
main branch into your fork’s <branch_name> branch.

16.2. Working on Forks and Branches 415

https://github.com
https://github.com/Pyomo/pyomo

Pyomo Documentation, Release 6.5.0

• You should also now see a pull request template. If you fill out the pull request template and click “Create pull
request”, this will create a pull request which will update your fork and branch with any changes that have been
made to the main branch of Pyomo.

• You can then merge the pull request by clicking the green “Merge pull request” button from your fork on GitHub.

16.2.2 Working with remotes and the git command-line

After you have created your fork, you can clone the fork and setup git ‘remotes’ that allow you to merge changes from
(and to) different remote repositories. Below, we have included a set of recommendations, but, of course, there are
other valid GitHub workflows that you can adopt.

The following commands show how to clone your fork and setup two remotes, one for your fork, and one for the head
Pyomo repository.

git clone https://github.com/<username>/pyomo.git
git remote rename origin my-fork
git remote add head-pyomo https://github.com/pyomo/pyomo.git

Note, you can see a list of your remotes with

git remote -v

The commands for creating a local branch and performing local commits are the same as those listed in the previous
section above. Below are some common tasks based on this multi-remote setup.

If you have changes that have been committed to a local feature branch (<branch_name>), you can push these changes
to the branch on your fork with,

git push my-fork <branch_name>

In order to update a local branch with changes from a branch of the Pyomo repository,

git checkout <branch_to_update>
git fetch head-pyomo
git merge head-pyomo/<branch_to_update_from> --ff-only

The “–ff-only” only allows a merge if the merge can be done by a fast-forward. If you do not require a fast-forward,
you can drop this option. The most common concrete example of this would be

git checkout main
git fetch head-pyomo
git merge head-pyomo/main --ff-only

The above commands pull changes from the main branch of the head Pyomo repository into the main branch of your
local clone. To push these changes to the main branch on your fork,

git push my-fork main

416 Chapter 16. Contributing to Pyomo

Pyomo Documentation, Release 6.5.0

16.2.3 Setting up your development environment

After cloning your fork, you will want to install Pyomo from source.

Step 1 (recommended): Create a new conda environment.

conda create --name pyomodev

You may change the environment name from pyomodev as you see fit. Then activate the environment:

conda activate pyomodev

Step 2 (optional): Install PyUtilib

The hard dependency on PyUtilib was removed in Pyomo 6.0.0. There is still a soft dependency for any code related
to pyomo.dataportal.plugins.sheet.

If your contribution requires PyUtilib, you will likely need the main branch of PyUtilib to contribute. Clone a copy of
the repository in a new directory:

git clone https://github.com/PyUtilib/pyutilib

Then in the directory containing the clone of PyUtilib run:

python setup.py develop

Step 3: Install Pyomo

Finally, move to the directory containing the clone of your Pyomo fork and run:

python setup.py develop

These commands register the cloned code with the active python environment (pyomodev). This way, your changes to
the source code for pyomo are automatically used by the active environment. You can create another conda environment
to switch to alternate versions of pyomo (e.g., stable).

16.3 Review Process

After a PR is opened it will be reviewed by at least two members of the core development team. The core development
team consists of anyone with write-access to the Pyomo repository. Pull requests opened by a core developer only
require one review. The reviewers will decide if they think a PR should be merged or if more changes are necessary.

Reviewers look for:

• Outside of pyomo.contrib: Code rigor and standards, edge cases, side effects, etc.

• Inside of pyomo.contrib: No “glaringly obvious” problems with the code

• Documentation and tests

The core development team tries to review pull requests in a timely manner but we make no guarantees on review
timeframes. In addition, PRs might not be reviewed in the order they are opened in.

16.3. Review Process 417

Pyomo Documentation, Release 6.5.0

16.4 Where to put contributed code

In order to contribute to Pyomo, you must first make a fork of the Pyomo git repository. Next, you should create a
branch on your fork dedicated to the development of the new feature or bug fix you’re interested in. Once you have this
branch checked out, you can start coding. Bug fixes and minor enhancements to existing Pyomo functionality should
be made in the appropriate files in the Pyomo code base. New examples, features, and packages built on Pyomo should
be placed in pyomo.contrib. Follow the link below to find out if pyomo.contrib is right for your code.

16.5 pyomo.contrib

Pyomo uses the pyomo.contrib package to facilitate the inclusion of third-party contributions that enhance Pyomo’s
core functionality. The are two ways that pyomo.contrib can be used to integrate third-party packages:

• pyomo.contrib can provide wrappers for separate Python packages, thereby allowing these packages to be
imported as subpackages of pyomo.

• pyomo.contrib can include contributed packages that are developed and maintained outside of the Pyomo
developer team.

Including contrib packages in the Pyomo source tree provides a convenient mechanism for defining new functionality
that can be optionally deployed by users. We expect this mechanism to include Pyomo extensions and experimental
modeling capabilities. However, contrib packages are treated as optional packages, which are not maintained by the
Pyomo developer team. Thus, it is the responsibility of the code contributor to keep these packages up-to-date.

Contrib package contributions will be considered as pull-requests, which will be reviewed by the Pyomo developer
team. Specifically, this review will consider the suitability of the proposed capability, whether tests are available to
check the execution of the code, and whether documentation is available to describe the capability. Contrib packages
will be tested along with Pyomo. If test failures arise, then these packages will be disabled and an issue will be created
to resolve these test failures.

The following two examples illustrate the two ways that pyomo.contrib can be used to integrate third-party contri-
butions.

16.5.1 Including External Packages

The pyomocontrib_simplemodel package is derived from Pyomo, and it defines the class SimpleModel that illustrates
how Pyomo can be used in a simple, less object-oriented manner. Specifically, this class mimics the modeling style
supported by PuLP.

While pyomocontrib_simplemodel can be installed and used separate from Pyomo, this package is included in
pyomo/contrib/simplemodel. This allows this package to be referenced as if were defined as a subpackage of
pyomo.contrib. For example:

from pyomo.contrib.simplemodel import *
from math import pi

m = SimpleModel()

r = m.var('r', bounds=(0,None))
h = m.var('h', bounds=(0,None))

m += 2*pi*r*(r + h)
m += pi*h*r**2 == 355

(continues on next page)

418 Chapter 16. Contributing to Pyomo

http://pyomocontrib-simplemodel.readthedocs.io/en/latest/
https://github.com/coin-or/pulp

Pyomo Documentation, Release 6.5.0

(continued from previous page)

status = m.solve("ipopt")

This example illustrates that a package can be distributed separate from Pyomo while appearing to be included in the
pyomo.contrib subpackage. Pyomo requires a separate directory be defined under pyomo/contrib for each such
package, and the Pyomo developer team will approve the inclusion of third-party packages in this manner.

16.5.2 Contrib Packages within Pyomo

Third-party contributions can also be included directly within the pyomo.contrib package. The pyomo/contrib/
example package provides an example of how this can be done, including a directory for plugins and package tests.
For example, this package can be imported as a subpackage of pyomo.contrib:

from pyomo.environ import *
from pyomo.contrib.example import a

Print the value of 'a' defined by this package
print(a)

Although pyomo.contrib.example is included in the Pyomo source tree, it is treated as an optional package. Pyomo
will attempt to import this package, but if an import failure occurs, Pyomo will silently ignore it. Otherwise, this pyomo
package will be treated like any other. Specifically:

• Plugin classes defined in this package are loaded when pyomo.environ is loaded.

• Tests in this package are run with other Pyomo tests.

16.5. pyomo.contrib 419

Pyomo Documentation, Release 6.5.0

420 Chapter 16. Contributing to Pyomo

CHAPTER

SEVENTEEN

THIRD-PARTY CONTRIBUTIONS

Pyomo includes a variety of additional features and functionality provided by third parties through the pyomo.contrib
package. This package includes both contributions included with the main Pyomo distribution and wrappers for third-
party packages that must be installed separately.

These packages are maintained by the original contributors and are managed as optional Pyomo packages.

Contributed packages distributed with Pyomo:

17.1 Community Detection for Pyomo models

This package separates model components (variables, constraints, and objectives) into different communities distin-
guished by the degree of connectivity between community members.

17.1.1 Description of Package and detect_communities function

The community detection package allows users to obtain a community map of a Pyomo model - a Python dictionary-
like object that maps sequential integer values to communities within the Pyomo model. The package takes in a model,
organizes the model components into a graph of nodes and edges, then uses Louvain community detection (Blondel et
al, 2008) to determine the communities that exist within the model.

In graph theory, a community is defined as a subset of nodes that have a greater degree of connectivity within them-
selves than they do with the rest of the nodes in the graph. In the context of Pyomo models, a community represents
a subproblem within the overall optimization problem. Identifying these subproblems and then solving them indepen-
dently can save computational work compared with trying to solve the entire model at once. Thus, it can be very useful
to know the communities that exist in a model.

The manner in which the graph of nodes and edges is constructed from the model directly affects the community
detection. Thus, this package provides the user with a lot of control over the construction of the graph. The function
we use for this community detection is shown below:

pyomo.contrib.community_detection.detection.detect_communities(model,
type_of_community_map='constraint',
with_objective=True,
weighted_graph=True,
random_seed=None,
use_only_active_components=True)

Detects communities in a Pyomo optimization model

This function takes in a Pyomo optimization model and organizes the variables and constraints into a graph of
nodes and edges. Then, by using Louvain community detection on the graph, a dictionary (community_map) is
created, which maps (arbitrary) community keys to the detected communities within the model.

421

https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008

Pyomo Documentation, Release 6.5.0

Parameters
• model (Block) – a Pyomo model or block to be used for community detection

• type_of_community_map (str, optional) – a string that specifies the type of com-
munity map to be returned, the default is ‘constraint’. ‘constraint’ returns a dictionary
(community_map) with communities based on constraint nodes, ‘variable’ returns a
dictionary (community_map) with communities based on variable nodes, ‘bipartite’
returns a dictionary (community_map) with communities based on a bipartite graph
(both constraint and variable nodes)

• with_objective (bool, optional) – a Boolean argument that specifies whether
or not the objective function is included in the model graph (and thus in ‘commu-
nity_map’); the default is True

• weighted_graph (bool, optional) – a Boolean argument that specifies whether
community_map is created based on a weighted model graph or an unweighted model
graph; the default is True (type_of_community_map=’bipartite’ creates an unweighted
model graph regardless of this parameter)

• random_seed (int, optional) – an integer that is used as the random seed for the
(heuristic) Louvain community detection

• use_only_active_components (bool, optional) – a Boolean argument that
specifies whether inactive constraints/objectives are included in the community map

Returns
The CommunityMap object acts as a Python dictionary, mapping integer keys to tuples con-
taining two lists (which contain the components in the given community) - a constraint list and
variable list. Furthermore, the CommunityMap object stores relevant information about the
given community map (dict), such as the model used to create it, its networkX representation,
etc.

Return type
CommunityMap object (dict-like object)

As stated above, the characteristics of the NetworkX graph of the Pyomo model are very important to the community
detection. The main graph features the user can specify are the type of community map, whether the graph is weighted
or unweighted, and whether the objective function(s) is included in the graph generation. Below, the significance and
reasoning behind including each of these options are explained in greater depth.

Type of Community Map (type_of_community_map)
In this package’s main function (detect_communities), the user can select 'bipartite', 'constraint',
or 'variable' as an input for the ‘type_of_community_map’ argument, and these result in a community map
based on a bipartite graph, a constraint node graph, or a variable node graph (respectively).

If the user sets type_of_community_map='constraint', then each entry in the community map (which is a
dictionary) contains a list of all the constraints in the community as well as all the variables contained in those
constraints. For the model graph, a node is created for every active constraint in the model, an edge between two
constraint nodes is created only if those two constraint equations share a variable, and the weight of each edge is
equal to the number of variables the two constraint equations have in common.

If the user sets type_of_community_map='variable', then each entry in the community map (which is a
dictionary) contains a list of all the variables in the community as well as all the constraints that contain those
variables. For the model graph, a node is created for every variable in the model, an edge between two variable
nodes is created only if those two variables occur in the same constraint equation, and the weight of each edge is
equal to the number of constraint equations in which the two variables occur together.

If the user sets type_of_community_map='bipartite', then each entry in the community map (which is a
dictionary) is simply all of the nodes in the community but split into a list of constraints and a list of variables.
For the model graph, a node is created for every variable and every constraint in the model. An edge is created

422 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

between a constraint node and a variable node only if the constraint equation contains the variable. (Edges are
not drawn between nodes of the same type in a bipartite graph.) And as for the edge weights, the edges in the
bipartite graph are unweighted regardless of what the user specifies for the weighted_graph parameter. (This
is because for our purposes, the number of times a variable appears in a constraint is not particularly useful.)

Weighted Graph/Unweighted Graph (weighted_graph)
The Louvain community detection algorithm takes edge weights into account, so depending on whether the graph
is weighted or unweighted, the communities that are found will vary. This can be valuable depending on how the
user intends to use the community detection information. For example, if a user plans on feeding that information
into an algorithm, the algorithm may be better suited to the communities detected in a weighted graph (or vice
versa).

With/Without Objective in the Graph (with_objective)
This argument determines whether the objective function(s) will be included when creating the graphical repre-
sentation of the model and thus whether the objective function(s) will be included in the community map. Some
models have an objective function that contains so many of the model variables that it obscures potential commu-
nities within a model. Thus, it can be useful to call detect_communities(model, with_objective=False)
on such a model to see whether isolating the other components of the model provides any new insights.

17.1.2 External Packages

• NetworkX

• Python-Louvain

The community detection package relies on two external packages, the NetworkX package and the Louvain community
detection package. Both of these packages can be installed at the following URLs (respectively):

https://pypi.org/project/networkx/

https://pypi.org/project/python-louvain/

The pip install and conda install commands are included below as well:

pip install networkx
pip install python-louvain

conda install -c anaconda networkx
conda install -c conda-forge python-louvain

17.1.3 Usage Examples

Let’s start off by taking a look at how we can use detect_communities to create a CommunityMap object. We’ll
first use a model from Allman et al, 2019 :

Required Imports
>>> from pyomo.contrib.community_detection.detection import detect_communities, detect_
→˓communities, CommunityMap, generate_model_graph
>>> from pyomo.contrib.mindtpy.tests.eight_process_problem import EightProcessFlowsheet
>>> from pyomo.core import ConcreteModel, Var, Constraint
>>> import networkx as nx

Let's define a model for our use
>>> def decode_model_1():
... model = m = ConcreteModel()

(continues on next page)

17.1. Community Detection for Pyomo models 423

https://pypi.org/project/networkx/
https://pypi.org/project/python-louvain/
https://doi.org/10.1007/s11081-019-09450-5

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... m.x1 = Var(initialize=-3)

... m.x2 = Var(initialize=-1)

... m.x3 = Var(initialize=-3)

... m.x4 = Var(initialize=-1)

... m.c1 = Constraint(expr=m.x1 + m.x2 <= 0)

... m.c2 = Constraint(expr=m.x1 - 3 * m.x2 <= 0)

... m.c3 = Constraint(expr=m.x2 + m.x3 + 4 * m.x4 ** 2 == 0)

... m.c4 = Constraint(expr=m.x3 + m.x4 <= 0)

... m.c5 = Constraint(expr=m.x3 ** 2 + m.x4 ** 2 - 10 == 0)

... return model
>>> model = m = decode_model_1()
>>> seed = 5 # To be used as a random seed value for the heuristic Louvain community␣
→˓detection

Let's create an instance of the CommunityMap class (which is what gets returned by the
function detect_communities):
>>> community_map_object = detect_communities(model, type_of_community_map='bipartite',␣
→˓random_seed=seed)

This community map object has many attributes that contain the relevant information about the community map itself
(such as the parameters used to create it, the networkX representation, and other useful information).

An important point to note is that the community_map attribute of the CommunityMap class is the actual dictionary
that maps integers to the communities within the model. It is expected that the user will be most interested in the actual
dictionary itself, so dict-like usage is permitted.

If a user wishes to modify the actual dictionary (the community_map attribute of the CommunityMap object), creat-
ing a deep copy is highly recommended (or else any destructive modifications could have unintended consequences):
new_community_map = copy.deepcopy(community_map_object.community_map)

Let’s take a closer look at the actual community map object generated by detect_communities:

>>> print(community_map_object)
{0: (['c1', 'c2'], ['x1', 'x2']), 1: (['c3', 'c4', 'c5'], ['x3', 'x4'])}

Printing a community map object is made to be user-friendly (by showing the community map with components re-
placed by their strings). However, if the default Pyomo representation of components is desired, then the commu-
nity_map attribute or the repr() function can be used:

>>> print(community_map_object.community_map) # or print(repr(community_map_object))
{0: ([<pyomo.core.base.constraint.ScalarConstraint object at 0x0000028DA74BB588>, <pyomo.
→˓core.base.constraint.ScalarConstraint object at 0x0000028DA74BB5F8>], [<pyomo.core.
→˓base.var.ScalarVar object at 0x0000028DA74BB3C8>, <pyomo.core.base.var.ScalarVar␣
→˓object at 0x0000028DA74BB438>]), 1: ([<pyomo.core.base.constraint.ScalarConstraint␣
→˓object at 0x0000028DA74BB668>, <pyomo.core.base.constraint.ScalarConstraint object at␣
→˓0x0000028DA74BB6D8>, <pyomo.core.base.constraint.ScalarConstraint object at␣
→˓0x0000028DA74BB748>], [<pyomo.core.base.var.ScalarVar object at 0x0000028DA74BB4A8>,
→˓<pyomo.core.base.var.ScalarVar object at 0x0000028DA74BB518>])}

generate_structured_model method of CommunityMap objects
It may be useful to create a new model based on the communities found in the model - we can use the
generate_structured_model method of the CommunityMap class to do this. Calling this method on a Com-
munityMap object returns a new model made up of blocks that correspond to each of the communities found in
the original model. Let’s take a look at the example below:

424 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Use the CommunityMap object made from the first code example
>>> structured_model = community_map_object.generate_structured_model()
>>> structured_model.pprint()
2 Set Declarations

b_index : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 2 : {0, 1}

equality_constraint_list_index : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 1 : {1,}

1 Var Declarations
x2 : Size=1, Index=None

Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : None : None : False : True : Reals

1 Constraint Declarations
equality_constraint_list : Equality Constraints for the different forms of a␣

→˓given variable
Size=1, Index=equality_constraint_list_index, Active=True
Key : Lower : Body : Upper : Active
1 : 0.0 : b[0].x2 - x2 : 0.0 : True

1 Block Declarations
b : Size=2, Index=b_index, Active=True

b[0] : Active=True
2 Var Declarations

x1 : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : None : None : False : True : Reals

x2 : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : None : None : False : True : Reals

2 Constraint Declarations
c1 : Size=1, Index=None, Active=True

Key : Lower : Body : Upper : Active
None : -Inf : b[0].x1 + b[0].x2 : 0.0 : True

c2 : Size=1, Index=None, Active=True
Key : Lower : Body : Upper : Active
None : -Inf : b[0].x1 - 3*b[0].x2 : 0.0 : True

4 Declarations: x1 x2 c1 c2
b[1] : Active=True

2 Var Declarations
x3 : Size=1, Index=None

Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : None : None : False : True : Reals

x4 : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : None : None : False : True : Reals

3 Constraint Declarations
(continues on next page)

17.1. Community Detection for Pyomo models 425

Pyomo Documentation, Release 6.5.0

(continued from previous page)

c3 : Size=1, Index=None, Active=True
Key : Lower : Body : Upper : Active
None : 0.0 : x2 + b[1].x3 + 4*b[1].x4**2 : 0.0 : True

c4 : Size=1, Index=None, Active=True
Key : Lower : Body : Upper : Active
None : -Inf : b[1].x3 + b[1].x4 : 0.0 : True

c5 : Size=1, Index=None, Active=True
Key : Lower : Body : Upper : Active
None : 0.0 : b[1].x3**2 + b[1].x4**2 - 10 : 0.0 : True

5 Declarations: x3 x4 c3 c4 c5

5 Declarations: b_index b x2 equality_constraint_list_index equality_constraint_list

We see that there is an equality constraint list (equality_constraint_list) that has been created. This is due to the
fact that the detect_communities function can return a community map that has Pyomo components (vari-
ables, constraints, or objectives) in more than one community, and thus, an equality_constraint_list is created to
ensure that the new model still corresponds to the original model. This is explained in more detail below.

Consider the case where community detection is done on a constraint node graph - this would result in com-
munities that are made up of the corresponding constraints as well as all the variables that occur in the given
constraints. Thus, it is possible for certain Pyomo components to be in multiple communities (and a similar
argument exists for community detection done on a variable node graph). As a result, our structured model
(the model returned by the generate_structured_model method) may need to have several “copies” of a
certain component. For example, a variable original_model.x1 that exists in the original model may have cor-
responding forms structured_model.b[0].x1, structured_model.b[0].x1, structured_model.x1. In order for these
components to meaningfully correspond to their counterparts in the original model, they must be bounded by
equality constraints. Thus, we use an equality_constraint_list to bind different forms of a component from the
original model.

The last point to make about this method is that variables will be created outside of blocks if (1) an objective
is not inside a block (for example if the community detection is done with_objective=False) or if (2) an objec-
tive/constraint contains a variable that is not in the same block as the given objective/constraint.

visualize_model_graph method of CommunityMap objects
If we want a visualization of the communities within the Pyomo model, we can use visualize_model_graph
to do so. Let’s take a look at how this can be done in the following example:

Create a CommunityMap object (so we can demonstrate the visualize_model_graph␣
→˓method)
>>> community_map_object = cmo = detect_communities(model, type_of_community_map=
→˓'bipartite', random_seed=seed)

Generate a matplotlib figure (left_figure) - a constraint graph of the community map
>>> left_figure, _ = cmo.visualize_model_graph(type_of_graph='constraint')

Now, we will generate the figure on the right (a bipartite graph of the community␣
→˓map)
>>> right_figure, _ = cmo.visualize_model_graph(type_of_graph='bipartite')

An example of the two separate graphs created for these two function calls is shown below:

426 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

These graph drawings very clearly demonstrate the communities within this model. The constraint graph (which
is colored using the bipartite community map) shows a very simple illustration - one node for each constraint,
with only one edge connecting the two communities (which represents the variable m.x2 common to m.c2 and
m.c3 in separate communities) The bipartite graph is slightly more complicated and we can see again how there
is only one edge between the two communities and more edges within each community. This is an ideal situation
for breaking a model into separate communities since there is little connectivity between the communities. Also,
note that we can choose different graph types (such as a variable node graph, constraint node graph, or bipartite
graph) for a given community map.

Let’s try a more complicated model (taken from Duran & Grossmann, 1986) - this example will demonstrate
how the same graph can be illustrated using different community maps (in the previous example we illustrated
different graphs with a single community map):

Define the model
>>> model = EightProcessFlowsheet()

Now, we follow steps similar to the example above (see above for explanations)
>>> community_map_object = cmo = detect_communities(model, type_of_community_map=
→˓'constraint', random_seed=seed)
>>> left_fig, pos = cmo.visualize_model_graph(type_of_graph='variable')

As we did before, we will use the returned 'pos' to create a consistent graph layout
>>> community_map_object = cmo = detect_communities(model, type_of_community_map=
→˓'bipartite')
>>> middle_fig, _ = cmo.visualize_model_graph(type_of_graph='variable', pos=pos)

>>> community_map_object = cmo = detect_communities(model, type_of_community_map=
→˓'variable')
>>> right_fig, _ = cmo.visualize_model_graph(type_of_graph='variable', pos=pos)

We can see an example for the three separate graphs created by these three function calls below:

17.1. Community Detection for Pyomo models 427

https://dx.doi.org/10.1007/BF02592064

Pyomo Documentation, Release 6.5.0

The three graphs above are all variable graphs - which means the nodes represent variables in the model,
and the edges represent constraint equations. The coloring differs because the three graphs rely on commu-
nity maps that were created based on a constraint node graph, a bipartite graph, and a variable node graph
(from left to right). For example, the community map that was generated from a constraint node graph
(type_of_community_map='constraint') resulted in three communities (as seen by the purple, yellow, and
blue nodes).

generate_model_graph function
Now, we will take a look at generate_model_graph - this function can be used to create a NetworkX graph
for a Pyomo model (and is used in detect_communities). Here, we will create a NetworkX graph from the model
in our first example and then create the edge and adjacency list for the graph.

generate_model_graph returns three things:

• a NetworkX graph of the given model

• a dictionary that maps the numbers used to represent the model components to the actual components
(because Pyomo components cannot be directly added to a NetworkX graph)

• a dictionary that maps constraints to the variables in them.

For this example, we will only need the NetworkX graph of the model and the number-to-component mapping.

Define the model
>>> model = decode_model_1()

See above for the description of the items returned by 'generate_model_graph'
>>> model_graph, number_component_map, constr_var_map = generate_model_graph(model,␣
→˓type_of_graph='constraint')

The next two lines create and implement a mapping to change the node values from␣
→˓numbers into
strings. The second line uses this mapping to create string_model_graph, which has
the relabeled nodes (strings instead of numbers).

>>> string_map = dict((number, str(comp)) for number, comp in number_component_map.
→˓items())
>>> string_model_graph = nx.relabel_nodes(model_graph, string_map)

Now, we print the edge list and the adjacency list:
Edge List:
>>> for line in nx.generate_edgelist(string_model_graph): print(line)
c1 c2 {'weight': 2}
c1 c3 {'weight': 1}
c2 c3 {'weight': 1}
c3 c5 {'weight': 2}

(continues on next page)

428 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

c3 c4 {'weight': 2}
c4 c5 {'weight': 2}

Adjacency List:
>>> print(list(nx.generate_adjlist(string_model_graph)))
['c1 c2 c3', 'c2 c3', 'c3 c5 c4', 'c4 c5', 'c5']

It’s worth mentioning that in the code above, we do not have to create string_map to create an edge list or
adjacency list, but for the sake of having an easily understandable output, it is quite helpful. (Without relabeling
the nodes, the output below would not have the strings of the components but instead would have integer values.)
This code will hopefully make it easier for a user to do the same.

17.1.4 Functions in this Package

Main module for community detection integration with Pyomo models.

This module separates model components (variables, constraints, and objectives) into different communities distin-
guished by the degree of connectivity between community members.

Original implementation developed by Rahul Joglekar in the Grossmann research group.

class pyomo.contrib.community_detection.detection.CommunityMap(community_map,
type_of_community_map,
with_objective, weighted_graph,
random_seed,
use_only_active_components,
model, graph,
graph_node_mapping,
constraint_variable_map,
graph_partition)

This class is used to create CommunityMap objects which are returned by the detect_communities function.
Instances of this class allow dict-like usage and store relevant information about the given community map, such
as the model used to create them, their networkX representation, etc.

The CommunityMap object acts as a Python dictionary, mapping integer keys to tuples containing two lists
(which contain the components in the given community) - a constraint list and variable list.

Methods: generate_structured_model visualize_model_graph

generate_structured_model()

Using the community map and the original model used to create this community map, we will create
structured_model, which will be based on the original model but will place variables, constraints, and
objectives into or outside of various blocks (communities) based on the community map.

Returns
structured_model – a Pyomo model that reflects the nature of the community map

Return type
Block

visualize_model_graph(type_of_graph='constraint', filename=None, pos=None)
This function draws a graph of the communities for a Pyomo model.

The type_of_graph parameter is used to create either a variable-node graph, constraint-node graph, or
bipartite graph of the Pyomo model. Then, the nodes are colored based on the communities they are in
- which is based on the community map (self.community_map). A filename can be provided to save the
figure, otherwise the figure is illustrated with matplotlib.

17.1. Community Detection for Pyomo models 429

Pyomo Documentation, Release 6.5.0

Parameters
• type_of_graph (str, optional) – a string that specifies the types of nodes

drawn on the model graph, the default is ‘constraint’. ‘constraint’ draws a graph
with constraint nodes, ‘variable’ draws a graph with variable nodes, ‘bipartite’
draws a bipartite graph (with both constraint and variable nodes)

• filename (str, optional) – a string that specifies a path for the model graph
illustration to be saved

• pos (dict, optional) – a dictionary that maps node keys to their positions on
the illustration

Returns
• fig (matplotlib figure) – the figure for the model graph drawing

• pos (dict) – a dictionary that maps node keys to their positions on the illustration
- can be used to create consistent layouts for graphs of a given model

pyomo.contrib.community_detection.detection.detect_communities(model,
type_of_community_map='constraint',
with_objective=True,
weighted_graph=True,
random_seed=None,
use_only_active_components=True)

Detects communities in a Pyomo optimization model

This function takes in a Pyomo optimization model and organizes the variables and constraints into a graph of
nodes and edges. Then, by using Louvain community detection on the graph, a dictionary (community_map) is
created, which maps (arbitrary) community keys to the detected communities within the model.

Parameters
• model (Block) – a Pyomo model or block to be used for community detection

• type_of_community_map (str, optional) – a string that specifies the type of com-
munity map to be returned, the default is ‘constraint’. ‘constraint’ returns a dictionary
(community_map) with communities based on constraint nodes, ‘variable’ returns a
dictionary (community_map) with communities based on variable nodes, ‘bipartite’
returns a dictionary (community_map) with communities based on a bipartite graph
(both constraint and variable nodes)

• with_objective (bool, optional) – a Boolean argument that specifies whether
or not the objective function is included in the model graph (and thus in ‘commu-
nity_map’); the default is True

• weighted_graph (bool, optional) – a Boolean argument that specifies whether
community_map is created based on a weighted model graph or an unweighted model
graph; the default is True (type_of_community_map=’bipartite’ creates an unweighted
model graph regardless of this parameter)

• random_seed (int, optional) – an integer that is used as the random seed for the
(heuristic) Louvain community detection

• use_only_active_components (bool, optional) – a Boolean argument that
specifies whether inactive constraints/objectives are included in the community map

Returns
The CommunityMap object acts as a Python dictionary, mapping integer keys to tuples con-
taining two lists (which contain the components in the given community) - a constraint list and
variable list. Furthermore, the CommunityMap object stores relevant information about the

430 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

given community map (dict), such as the model used to create it, its networkX representation,
etc.

Return type
CommunityMap object (dict-like object)

Model Graph Generator Code

pyomo.contrib.community_detection.community_graph.generate_model_graph(model, type_of_graph,
with_objective=True,
weighted_graph=True,
use_only_active_components=True)

Creates a networkX graph of nodes and edges based on a Pyomo optimization model

This function takes in a Pyomo optimization model, then creates a graphical representation of the model with
specific features of the graph determined by the user (see Parameters below).

(This function is designed to be called by detect_communities, but can be used solely for the purpose of creating
model graphs as well.)

Parameters
• model (Block) – a Pyomo model or block to be used for community detection

• type_of_graph (str) – a string that specifies the type of graph that is created from the
model ‘constraint’ creates a graph based on constraint nodes, ‘variable’ creates a graph
based on variable nodes, ‘bipartite’ creates a graph based on constraint and variable
nodes (bipartite graph).

• with_objective (bool, optional) – a Boolean argument that specifies whether or
not the objective function is included in the graph; the default is True

• weighted_graph (bool, optional) – a Boolean argument that specifies whether a
weighted or unweighted graph is to be created from the Pyomo model; the default is True
(type_of_graph=’bipartite’ creates an unweighted graph regardless of this parameter)

• use_only_active_components (bool, optional) – a Boolean argument that
specifies whether inactive constraints/objectives are included in the networkX graph

Returns
• bipartite_model_graph/projected_model_graph (nx.Graph) – a NetworkX graph

with nodes and edges based on the given Pyomo optimization model

• number_component_map (dict) – a dictionary that (deterministically) maps a number
to a component in the model

• constraint_variable_map (dict) – a dictionary that maps a numbered constraint to a
list of (numbered) variables that appear in the constraint

17.2 Pyomo.DoE

Pyomo.DoE (Pyomo Design of Experiments) is a Python library for model-based design of experi-
ments using science-based models.

Pyomo.DoE was developed by Jialu Wang and Alexander Dowling at the University of Notre Dame
as part of the Carbon Capture Simulation for Industry Impact (CCSI2) project, funded through the U.S.
Department of Energy Office of Fossil Energy and Carbon Management. Special thank you to John
Siirola and Bethany Nicholson for extensive code reviews, suggestions, and improvements to Pyomo.DoE.

If you use Pyomo.DoE, please cite:

17.2. Pyomo.DoE 431

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://www.acceleratecarboncapture.org/

Pyomo Documentation, Release 6.5.0

Jialu Wang and Alexander W. Dowling (2022). “Pyomo.DoE: An open-source package for model-based design of
experiments in Python.” AIChE Journal 68(12), e17813. doi: 10.1002/aic.17813

17.2.1 Methodology Overview

Model-based Design of Experiments (MBDoE) is a technique to maximize the information gain of experiments by
directly using science-based models with physically meaningful parameters. It is one key component in the model
calibration and uncertainty quantification workflow shown below:

Fig. 17.1: Pyomo.DoE integrates exploratory analysis, parameter estimation, uncertainty analysis, and MBDoE into
an iterative framework to select, refine, and calibrate science-based mathematical models with quantified uncertainty.
Currently, Pyomo.DoE focuses on increasing parameter precision.

Pyomo.DoE provides science-based MBDoE capabilities to the Pyomo ecosystem. The user provides one Pyomo
model, a set of parameter nominal values, the allowable design spaces for design variables, and the assumed observa-
tion error structure (e.g., covariance matrix). During exploratory analysis, Pyomo.DoE checks if the model parameters
can be inferred from the proposed measurements or preliminary data. Pyomo.DoE then recommends optimized experi-
mental conditions for collecting more data. Parameter estimation via Parmest can estimate uncertainty parameters from
data and compute a parameter covariance matrix. If the parameter uncertainties are sufficiently small, the workflow
terminates and returns the final model with quantified parametric uncertainty. Otherwise, Pyomo.DoE recommends
the best next set of experimental conditions to generate new data.

Below is an overview of the type of optimization models Pyomo.DoE can accomodate:

• Pyomo.DoE is suitable for optimization models of continuous variables

• Pyomo.DoE can handle equality constraints defining state variables

• Pyomo.DoE supports (Partial) Differential-Algebraic Equations (PDAE) models via Pyomo.DAE

• Pyomo.DoE also supports models with only algebraic constraints

Pyomo.DoE considers the following DAE model:

ẋ(𝑡) = f(x(𝑡), z(𝑡),y(𝑡),u(𝑡),w,𝜃)

g(x(𝑡), z(𝑡),y(𝑡),u(𝑡),w,𝜃) = 0

y = h(x(𝑡), z(𝑡),u(𝑡),w,𝜃)

f0 (ẋ (𝑡0) ,x (𝑡0) , z(𝑡0),y(𝑡0),u (𝑡0) ,w,𝜃)) = 0

g0 (x (𝑡0) , z(𝑡0),y(𝑡0),u (𝑡0) ,w,𝜃) = 0

y0 (𝑡0) = h (x (𝑡0) , z(𝑡0),u (𝑡0) ,w,𝜃)

where:

• 𝜃 ∈ R𝑁𝑝 are unknown model parameters.

• x ⊆ 𝒳 are dynamic state variables which characterize trajectory of the system, 𝒳 ∈ R𝑁𝑥×𝑁𝑡 .

432 Chapter 17. Third-Party Contributions

https://doi.org/10.1002/aic.17813
https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html
https://pyomo.readthedocs.io/en/stable/modeling_extensions/dae.html

Pyomo Documentation, Release 6.5.0

• z ⊆ 𝒵 are algebraic state variables, 𝒵 ∈ R𝑁𝑧×𝑁𝑡 .

• u ⊆ 𝒰 are time-varying decision variables, 𝒰 ∈ R𝑁𝑢×𝑁𝑡 .

• w ∈ R𝑁𝑤 are time-invariant decision variables.

• y ⊆ 𝒴 are measurement response variables, 𝒴 ∈ R𝑁𝑟×𝑁𝑡 .

• f(·) are differential equations.

• g(·) are algebraic equations.

• h(·) are measurement functions.

• t ∈ R𝑁𝑡×1 is a union of all time sets.

Note:
• Process models provided to Pyomo.DoE should define an extra scenario index for all state variables and all pa-

rameters, as the first index before any other index. The next version of Pyomo.DoE will remove this requirement.

• Process models must include an index for time, named t. For steady-state models, t should be [0].

• Measurements can have an extra index (e.g., spatial domain) besides time.

• Parameters and design variables should be defined as Pyomo var components on the model to use direct_kaug
mode. Other modes allow these to be defined as Pyomo Param objects.

• Create model function should take scenarios as the first argument of this function.

• Design variables are defined with and only with a time index.

Pyomo.DoE solves the following DAE-constrainted optimization problem:

max
𝜙

Ψ(M(ŷ,𝜙))

s.t. M(𝜃,𝜙) =

𝑁𝑟∑︁
𝑟

𝑁𝑟∑︁
𝑟′

𝜎̃(𝑟,𝑟′)Q
T
𝑟 Q𝑟′ + V−1

𝜃 (𝜃)

ẋ(𝑡) = f(x(𝑡), z(𝑡),y(𝑡),u(𝑡),w,𝜃)

g(x(𝑡), z(𝑡),y(𝑡),u(𝑡),w,𝜃) = 0

y = h(x(𝑡), z(𝑡),u(𝑡),w,𝜃)

f0 (ẋ (𝑡0) ,x (𝑡0) , z(𝑡0),y(𝑡0),u (𝑡0) ,w,𝜃)) = 0

g0 (x (𝑡0) , z(𝑡0),y(𝑡0),u (𝑡0) ,w,𝜃) = 0

y0 (𝑡0) = h (x (𝑡0) , z(𝑡0),u (𝑡0) ,w,𝜃)

(17.1)

M(𝜃,𝜙) =

𝑁𝑟∑︁
𝑟

𝑁𝑟∑︁
𝑟′

𝜎̃(𝑟,𝑟′)Q
T
𝑟 Q𝑟′ + V−1

𝜃 (𝜃)

g(x(𝑡), z(𝑡),y(𝑡),u(𝑡),w,𝜃) = 0

f0 (ẋ (𝑡0) ,x (𝑡0) , z(𝑡0),y(𝑡0),u (𝑡0) ,w,𝜃)) = 0

y0 (𝑡0) = h (x (𝑡0) , z(𝑡0),u (𝑡0) ,w,𝜃)

17.2. Pyomo.DoE 433

Pyomo Documentation, Release 6.5.0

where:

• 𝜙 are design variables, which are manipulated to maximize the information content of experiments. 𝜙 should
consist of one or more of u(𝑡),y0(𝑡0),w. With a proper model formulation, the timepoints for control or mea-
surements t can also be degrees of freedom.

• M is the Fisher information matrix (FIM), estimated as the inverse of the covariance matrix of parameter esti-
mates 𝜃. A large FIM indicates more information contained in the experiment for parameter estimation.

• Q is the dynamic sensitivity matrix, containing the partial derivatives of y with respect to 𝜃.

• Ψ(·) is the design criteria computed from the FIM.

• V𝜃(𝜃)−1 is the FIM of previous experiments.

Pyomo.DoE provides four design criteria Ψ(·) to measure the size of FIM:

Table 17.1: Pyomo.DoE design criteria
Design criterion Computation Geometrical meaning
A-optimality trace(M) Dimensions of the enclosing box of the confidence ellipse
D-optimality det(M) Volume of the confidence ellipse
E-optimality min eig(M) Size of the longest axis of the confidence ellipse
Modified E-optimality cond(M) Ratio of the longest axis to the shortest axis of the confidence ellipse

Pyomo.DoE reformulates the above optimization problem as a stochastic program. The scenarios are perturbations of
the model parameters 𝜃 to compute the sensitivities Q via finite difference. See Wang and Dowling (2022) for details.

17.2.2 Pyomo.DoE Required Inputs

Pyomo.DoE requires the following inputs:

• A Python function that creates the process model. This is similar to interface for Parmest.

• Dictionary of parameters and their nominal values

• Dictionary of measurements and their measurement time points

• Dictionary of design variables and their control time points

• A Numpy array containing the prior FIM

• Local and global nonlinear optimization solver object

Below is a list of arguments that Pyomo.DoE expects the user to provide.

param_init
[dictionary] A dictionary of parameter names and values. If they are indexed variables, put the variable
names and indexes in a nested Dictionary.

design_variable_timepoints
[dictionary] A dictionary of design variable names and their control time points. If the design variables
are time-invariant (constant), set the time to [0]

measurement_object
[object] An object of the measurements, provided by the measurement class.

434 Chapter 17. Third-Party Contributions

https://doi.org/10.1002/aic.17813
https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html

Pyomo Documentation, Release 6.5.0

create_model
[function] A function returning a deterministic process model.

prior_FIM
[array] An array defining the Fisher information matrix (FIM) for prior experiments, default is a zero matrix.

17.2.3 Pyomo.DoE Solver Interface

class pyomo.contrib.doe.doe.DesignOfExperiments(param_init, design_variable_timepoints,
measurement_object, create_model, solver=None,
time_set_name='t', prior_FIM=None,
discretize_model=None, args=None)

__init__(param_init, design_variable_timepoints, measurement_object, create_model, solver=None,
time_set_name='t', prior_FIM=None, discretize_model=None, args=None)

This package enables model-based design of experiments analysis with Pyomo. Both direct optimization
and enumeration modes are supported. NLP sensitivity tools, e.g., sipopt and k_aug, are supported to
accelerate analysis via enumeration. It can be applied to dynamic models, where design variables are
controlled throughout the experiment.

Parameters
• param_init – A dictionary of parameter names and values. If they defined as

indexed Pyomo variable, put the variable name and index, such as ‘theta[“A1”]’.
Note: if sIPOPT is used, parameter shouldn’t be indexed.

• design_variable_timepoints – A dictionary where keys are design vari-
able names, values are its control time points. If this design var is independent of
time (constant), set the time to [0]

• measurement_object – A measurement object.

• create_model – A function that returns the model

• solver – A solver object that User specified, default=None. If not specified,
default solver is IPOPT MA57.

• time_set_name – A string of the name of the time set in the model. Default is
“t”.

• prior_FIM – A list of lists containing Fisher information matrix (FIM) for prior
experiments.

• discretize_model – A user-specified function that discretizes the model.
Only use with Pyomo.DAE, default=None

17.2. Pyomo.DoE 435

Pyomo Documentation, Release 6.5.0

• args – Additional arguments for the create_model function.

compute_FIM(design_values, mode='sequential_finite', FIM_store_name=None, specified_prior=None,
tee_opt=True, scale_nominal_param_value=False, scale_constant_value=1,
store_output=None, read_output=None, extract_single_model=None, formula='central',
step=0.001, objective_option='det')

This function solves a square Pyomo model with fixed design variables to compute the FIM. It calculates
FIM with sensitivity information from four modes:

1. sequential_finite: Calculates a single-scenario model which is solved many times in series to esti-
mate sensitivity information by finite difference

2. sequential_sipopt: calculate sensitivity by sIPOPT [Experimental]
3. sequential_kaug: calculate sensitivity by k_aug [Experimental]
4. direct_kaug: calculate sensitivity by k_aug with direct sensitivity

“Simultaneous_finite” mode is not included in this function.
Parameters

• design_values – a dict where keys are design variable names, values are a
dict whose keys are time point and values are the design variable value at that
time point

• mode – use mode=’sequential_finite’, ‘sequential_sipopt’, ‘sequential_kaug’, ‘di-
rect_kaug’

• FIM_store_name – if storing the FIM in a .csv or .txt, give the file name here as
a string.

• specified_prior – provide alternate prior matrix, default is no prior.

• tee_opt – if True, IPOPT console output is printed

• scale_nominal_param_value – if True, the parameters are scaled by its own
nominal value in param_init

• scale_constant_value – scale all elements in Jacobian matrix, default is 1.

• store_output – if storing the output (value stored in Var ‘output_record’) as a
pickle file, give the file name here as a string.

• read_output – if reading the output (value for Var ‘output_record’) as a pickle
file, give the file name here as a string.

• extract_single_model – if True, the solved model outputs for each scenario
are all recorded as a .csv file. The output file uses the name AB.csv, where string
A is store_output input, B is the index of scenario. scenario index is the number
of the scenario outputs which is stored.

• formula – choose from ‘central’, ‘forward’, ‘backward’, None. This option is
only used for ‘sequential_finite’ mode.

• step – Sensitivity perturbation step size, a fraction between [0,1]. default is 0.001

• objective_option – choose from ‘det’ or ‘trace’ or ‘zero’. Optimization prob-
lem maximizes determinant or trace or using 0 as objective function.

Returns
FIM_analysis

Return type
result summary object of this solve

436 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

run_grid_search(design_values, design_ranges, design_dimension_names, design_control_time,
mode='sequential_finite', tee_option=False, scale_nominal_param_value=False,
scale_constant_value=1, store_name=None, read_name=None, filename=None,
formula='central', step=0.001)

Enumerate through full grid search for any number of design variables; solve square problems sequentially
to compute FIMs. It calculates FIM with sensitivity information from four modes:

1. sequential_finite: Calculates a one scenario model multiple times for multiple scenarios. Sensitivity
info estimated by finite difference

2. sequential_sipopt: calculate sensitivity by sIPOPT [Experimental]
3. sequential_kaug: calculate sensitivity by k_aug [Experimental]
4. direct_kaug: calculate sensitivity by k_aug with direct sensitivity

Parameters
• design_values – a dict where keys are design variable names, values are a

dict whose keys are time point and values are the design variable value at that
time point

• design_ranges – a list of design variable values to go over

• design_dimension_names – a list of design variable names of each design
range

• design_control_time – a list of control time points that should be fixed to
the values in dv_ranges

• mode – use mode=’sequential_finite’, ‘sequential_sipopt’, ‘sequential_kaug’, ‘di-
rect_kaug’

• tee_option – if solver console output is made

• scale_nominal_param_value – if True, the parameters are scaled by its own
nominal value in param_init

• scale_constant_value – scale all elements in Jacobian matrix, default is 1.

• store_name – a string of file name. If not None, store results with this name.
Since there are multiple experiments, results are numbered with a scalar number,
and the result for one grid is ‘store_name(count).csv’ (count is the number of
count).

• read_name – a string of file name. If not None, read result files. Since there are
multiple experiments, this string should be the common part of all files; Real name
of the file is “read_name(count)”, where count is the number of the experiment.

• filename – if True, grid search results stored with this file name

• formula – choose from ‘central’, ‘forward’, ‘backward’, None. This option is
only used for ‘sequential_finite’ mode.

• step – Sensitivity perturbation step size, a fraction between [0,1]. default is 0.001

Returns
figure_draw_object

Return type
a combined result object of class Grid_search_result

stochastic_program(design_values, if_optimize=True, objective_option='det',
jac_involved_measurement=None, scale_nominal_param_value=False,
scale_constant_value=1, optimize_opt=None, if_Cholesky=False, L_LB=1e-07,
L_initial=None, jac_initial=None, fim_initial=None, formula='central', step=0.001,
check=True, tee_opt=True)

17.2. Pyomo.DoE 437

Pyomo Documentation, Release 6.5.0

Optimize DOE problem with design variables being the decisions. The DOE model is formed invasively
and all scenarios are computed simultaneously. The function will first run a square problem with design
variable being fixed at the given initial points (Objective function being 0), then a square problem with
design variables being fixed at the given initial points (Objective function being Design optimality), and
then unfix the design variable and do the optimization.

Parameters
• design_values – a dict where keys are design variable names, values are a

dict whose keys are time point and values are the design variable value at that
time point

• if_optimize – if true, continue to do optimization. else, just run square problem
with given design variable values

• objective_option – supporting maximizing the ‘det’ determinant or the ‘trace’
trace of the FIM

• jac_involved_measurement – the measurement class involved in calculation.
If None, take the overall measurement class

• scale_nominal_param_value – if True, the parameters are scaled by its own
nominal value in param_init

• scale_constant_value – scale all elements in Jacobian matrix, default is 1.

• optimize_opt – A dictionary, keys are design variables, values are True or False
deciding if this design variable will be optimized as DOF or not

• if_Cholesky – if True, Cholesky decomposition is used for Objective function
for D-optimality.

• L_LB – L is the Cholesky decomposition matrix for FIM, i.e. FIM = L*L.T. L_LB
is the lower bound for every element in L. if FIM is positive definite, the diagonal
element should be positive, so we can set a LB like 1E-10

• L_initial – initialize the L

• jac_initial – a matrix used to initialize jacobian matrix

• fim_initial – a matrix used to initialize FIM matrix

• formula – choose from ‘central’, ‘forward’, ‘backward’, None. This option is
only used for ‘sequential_finite’ mode.

• step – Sensitivity perturbation step size, a fraction between [0,1]. default is 0.001

• check – if True, inputs are checked for consistency, default is True.

Returns
• analysis_square (result summary of the square problem solved at the initial point)

• analysis_optimize (result summary of the optimization problem solved)

Note:
stochastic_program() includes the following steps:

1. Build two-stage stochastic programming optimization model where scenarios correspond to finite differ-
ence approximations for the Jacobian of the response variables with respect to calibrated model parameters

2. Fix the experiment design decisions and solve a square (i.e., zero degrees of freedom) instance of the
two-stage DoE problem. This step is for initialization.

438 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

3. Unfix the experiment design decisions and solve the two-stage DoE problem.

class pyomo.contrib.doe.measurements.Measurements(measurement_index_time, variance=None,
ind_string='_index_')

__init__(measurement_index_time, variance=None, ind_string='_index_')
This class stores information on which algebraic and differential variables in the Pyomo model are consid-
ered measurements.

This includes the functionality to specify indices for these measurement variables. For example, with a
partial differential algebraic equation model, these measurement index sets can specify which spatial and
temporal coordinates each measurement is available. Moreover, this class supports defining the covariance
matrix for all measurements.

Parameters
• measurement_index_time – a dict, keys are measurement variable names,

– if there are extra indices, for e.g., Var[scenario, extra_index, time]: values are
a dictionary, keys are its extra index, values are its measuring time points.

– if there are no extra indices, for e.g., Var[scenario, time]: values are a list of
measuring time point.

For e.g., for the kinetics illustrative example, it should be {‘C’:{‘CA’:[0,1,..],
‘CB’:[0,2,. . .]}, ‘k’:[0,4,..]}, so the measurements are C[scenario, ‘CA’, 0]. . . ,
k[scenario, 0]. . . .

• variance – a dict, keys are measurement variable names, values are a dictio-
nary, keys are its extra index, values are its variance (a scalar number), values are
its variance if there is no extra index for this measurement. For e.g., for the kinet-
ics illustrative example, it should be {‘C’:{‘CA’: 10, ‘CB’: 1, ‘CC’: 2}}. If given
None, the default is {‘C’:{‘CA’: 1, ‘CB’: 1, ‘CC’: 1}}.

• ind_string – a ‘’string”, used to flatten the name of variables and extra index.
Default is ‘_index_’. For e.g., for {‘C’:{‘CA’: 10, ‘CB’: 1, ‘CC’: 2}}, the refor-
mulated name is ‘C_index_CA’.

check_subset(subset, throw_error=True, valid_subset=True)
Check if the subset is correctly defined with right name, index and time.

Parameters
• subset – a ‘’dict” where measurement name and index are involved in jacobian

calculation

• throw_error – if the given subset is not a subset of the measurement set, throw
error message

class pyomo.contrib.doe.scenario.Scenario_generator(para_dict, formula='central', step=0.001,
store=False)

__init__(para_dict, formula='central', step=0.001, store=False)
Generate scenarios. DoE library first calls this function to generate scenarios. For sequential and simulta-
neous models, call different functions in this class.

Parameters
• para_dict – a dict of parameter, keys are names of ‘’string”, values are their

nominal value of ‘’float”. for e.g., {‘A1’: 84.79, ‘A2’: 371.72, ‘E1’: 7.78, ‘E2’:
15.05}

• formula – choose from ‘central’, ‘forward’, ‘backward’, None.

17.2. Pyomo.DoE 439

Pyomo Documentation, Release 6.5.0

• step – Sensitivity perturbation step size, a fraction between [0,1]. default is 0.001

• store – if True, store results.

class pyomo.contrib.doe.result.FisherResults(para_name, measure_object, jacobian_info=None,
all_jacobian_info=None, prior_FIM=None,
store_FIM=None, scale_constant_value=1,
max_condition_number=1000000000000.0,
verbose=True)

__init__(para_name, measure_object, jacobian_info=None, all_jacobian_info=None, prior_FIM=None,
store_FIM=None, scale_constant_value=1, max_condition_number=1000000000000.0,
verbose=True)

Analyze the FIM result for a single run
Parameters

• para_name – A list of parameter names

• measure_object – measurement information object

• jacobian_info – the jacobian for this measurement object

• all_jacobian_info – the overall jacobian

• prior_FIM – if there’s prior FIM to be added

• store_FIM – if storing the FIM in a .csv or .txt, give the file name here as a string

• scale_constant_value – scale all elements in Jacobian matrix, default is 1.

• max_condition_number – max condition number

• verbose – if True, print statements are used

calculate_FIM(dv_values, result=None)
Calculate FIM from Jacobian information. This is for grid search (combined models) results

Parameters
• dv_values – a dict where keys are design variable names, values are a dict

whose keys are time point and values are the design variable value at that time
point

• result – solver status returned by IPOPT

class pyomo.contrib.doe.result.GridSearchResult(design_ranges, design_dimension_names,
design_control_time, FIM_result_list,
store_optimality_name=None, verbose=True)

__init__(design_ranges, design_dimension_names, design_control_time, FIM_result_list,
store_optimality_name=None, verbose=True)

This class deals with the FIM results from grid search, providing A, D, E, ME-criteria results for each
design variable. Can choose to draw 1D sensitivity curves and 2D heatmaps.

Parameters
• design_ranges – a dict whose keys are design variable names, values are a list

of design variable values to go over

• design_dimension_names – a list of design variables names

• design_control_time – a list of design control timesets

• FIM_result_list – a dict containing FIM results, keys are a tuple of design
variable values, values are FIM result objects

440 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

• store_optimality_name – a .csv file name containing all four optimalities
value

• verbose – if True, print statements

17.2.4 Pyomo.DoE Usage Example

We illustrate the Pyomo.DoE interface with a reaction kinetics example when feed A is converted to species B and C
(Wang and Dowling, 2022). Assuming an Arrhenius temperature dependence for the reaction rates 𝑘1, 𝑘2, first-order
reaction mechanisms, and only species A is fed to the reactor gives the following DAE model:

𝑘1 = 𝐴1𝑒
− 𝐸1

𝑅𝑇

𝑘2 = 𝐴2𝑒
− 𝐸2

𝑅𝑇

𝑑𝐶𝐴

𝑑𝑡
= −𝑘1𝐶𝐴

𝑑𝐶𝐵

𝑑𝑡
= 𝑘1𝐶𝐴 − 𝑘2𝐶𝐵

𝐶𝐴0 = 𝐶𝐴 + 𝐶𝐵 + 𝐶𝐶

𝐶𝐵(𝑡0) = 0

𝐶𝐶(𝑡0) = 0

= 𝐴2𝑒
− 𝐸2

𝑅𝑇
𝑑𝐶𝐴

𝑑𝑡
= 𝑘1𝐶𝐴 − 𝑘2𝐶𝐵𝐶𝐴0

= 0𝐶𝐶(𝑡0)= 0

Here 𝐶𝐴(𝑡), 𝐶𝐵(𝑡), 𝐶𝐶(𝑡) are the time-varying concentrations of the species A, B, C, respectively. The reaction rates
𝑘1, 𝑘2 depend on the activation energies 𝐸1, 𝐸2 and pre-exponential factors 𝐴1, 𝐴2. The goal of MBDoE is to optimize
the experiment design variables 𝜙 = (𝐶𝐴0, 𝑇 (𝑡)), where 𝐶𝐴0, 𝑇 (𝑡) are the initial concentration of species A and the
time-varying reactor temperature, to maximize the precision of unknown model parameters 𝜃 = (𝐴1, 𝐸1, 𝐴2, 𝐸2) by
measuring y(𝑡) = (𝐶𝐴(𝑡), 𝐶𝐵(𝑡), 𝐶𝐶(𝑡)). The observation errors are assumed to be independent in both time and
across measurements with a constant standard deviation of 1 M for each species. Thus the measurement covariance
matrix is the identity matrix.

See this Jupyter notebook for an extended version of this example.

17.2. Pyomo.DoE 441

https://github.com/Pyomo/pyomo/blob/main/pyomo/contrib/doe/fim_doe_tutorial.ipynb

Pyomo Documentation, Release 6.5.0

Step 0: Import Pyomo and the Pyomo.DoE module

>>> # === Required import ===
>>> import pyomo.environ as pyo
>>> from pyomo.dae import ContinuousSet, DerivativeVar
>>> from pyomo.contrib.doe import Measurements, DesignOfExperiments
>>> import numpy as np

Step 1: Define the Pyomo process model

The process model for the reaction kinetics problem is shown below.

>>> def create_model(scena, CA_init=5, T_initial=300,args=None):
... # === Create model ==
... m = pyo.ConcreteModel()
... m.R = 8.31446261815324 # J/K/mol
... # === Define set ===
... m.t0 = pyo.Set(initialize=[0])
... m.t = ContinuousSet(bounds=(0, 1))
... m.t_con = pyo.Set(initialize=[0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1])
... m.scena = pyo.Set(initialize=scena['scena-name'])
... m.y_set = pyo.Set(initialize=['CA', 'CB', 'CC'])
... # === Define variables ===
... m.CA0 = pyo.Var(m.t0, initialize = CA_init, bounds=(1.0,5.0), within=pyo.
→˓NonNegativeReals) # mol/L
... m.T = pyo.Var(m.t, initialize =T_initial, bounds=(300, 700), within=pyo.
→˓NonNegativeReals)
... m.C = pyo.Var(m.scena, m.y_set, m.t, initialize=3, within=pyo.NonNegativeReals)
... m.dCdt = DerivativeVar(m.C, wrt=m.t)
... m.kp1 = pyo.Var(m.scena, m.t, initialize=3)
... m.kp2 = pyo.Var(m.scena, m.t, initialize=1)
... # === Define Param ===
... m.A1 = pyo.Param(m.scena, initialize=scena['A1'],mutable=True)
... m.A2 = pyo.Param(m.scena, initialize=scena['A2'],mutable=True)
... m.E1 = pyo.Param(m.scena, initialize=scena['E1'],mutable=True)
... m.E2 = pyo.Param(m.scena, initialize=scena['E2'],mutable=True)
... # === Constraints ===
... def T_control(m,t):
... if t in m.t_con:
... return pyo.Constraint.Skip
... else:
... j = -1
... for t_con in m.t_con:
... if t>t_con:
... j+=1
... neighbour_t = t_control[j]
... return m.T[t] == m.T[neighbour_t]
... def cal_kp1(m,z,t):
... return m.kp1[z,t] == m.A1[z]*pyo.exp(-m.E1[z]*1000/(m.R*m.T[t]))
... def cal_kp2(m,z,t):
... return m.kp2[z,t] == m.A2[z]*pyo.exp(-m.E2[z]*1000/(m.R*m.T[t]))
... def dCdt_control(m,z,y,t):

(continues on next page)

442 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... if y=='CA':

... return m.dCdt[z,y,t] == -m.kp1[z,t]*m.C[z,'CA',t]

... elif y=='CB':

... return m.dCdt[z,y,t] == m.kp1[z,t]*m.C[z,'CA',t] - m.kp2[z,t]*m.C[z,'CB',
→˓t]
... elif y=='CC':
... return pyo.Constraint.Skip
... def alge(m,z,t):
... return m.C[z,'CA',t] + m.C[z,'CB',t] + m.C[z,'CC', t] == m.CA0[0]
... m.T_rule = pyo.Constraint(m.t, rule=T_control)
... m.k1_pert_rule = pyo.Constraint(m.scena, m.t, rule=cal_kp1)
... m.k2_pert_rule = pyo.Constraint(m.scena, m.t, rule=cal_kp2)
... m.dCdt_rule = pyo.Constraint(m.scena,m.y_set, m.t, rule=dCdt_control)
... m.alge_rule = pyo.Constraint(m.scena, m.t, rule=alge)
... for z in m.scena:
... m.C[z,'CB',0.0].fix(0.0)
... m.C[z,'CC',0.0].fix(0.0)
... return m

Next we define a function to discretize the model.

>>> # === Discretization ===
>>> def disc(m, NFE=32):
... discretizer = pyo.TransformationFactory('dae.collocation')
... discretizer.apply_to(m, nfe=NFE, ncp=3, wrt=m.t)
... return m

Note: The first argument of the create_model function should be scena.

Note: To use direct_kaug mode, the model parameters (𝐴1, 𝐴2, 𝐸1, 𝐸2) definitions should be changed from Param
to Var objects.

Step 2: Define the inputs for Pyomo.DoE

>>> # === Design variables, time points
>>> t_control = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1] # Control time␣
→˓set [h]
>>> dv_pass = {'CA0': [0],'T': t_control} # design variable and its control time set

>>> # === Measurement object ===
>>> t_measure = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1] # Measurement time␣
→˓points [h]
>>> measure_pass = {'C':{'CA': t_measure, 'CB': t_measure, 'CC': t_measure}}
>>> measure_variance = {'C': {'CA': 1, 'CB': 1, 'CC': 1}} # provide measurement␣
→˓uncertainty
>>> measure_class = Measurements(measure_pass, variance=measure_variance) # Use Pyomo.
→˓DoE.Measurements to achieve a measurement object

(continues on next page)

17.2. Pyomo.DoE 443

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> # === Parameter dictionary ===
>>> parameter_dict = {'A1': 84.79, 'A2': 371.72, 'E1': 7.78, 'E2': 15.05}

>>> # === Define prior information ==
>>> prior_none = np.zeros((4,4))

Step 3: Compute the FIM of a square MBDoE problem

This method computes an MBDoE optimization problem with no degree of freedom.

This method can be accomplished by two modes, direct_kaug and sequential_finite. direct_kaug mode
requires the installation of the solver k_aug which is available through the IDAES-PSE extensions.

>>> # === Decide mode ===
>>> sensi_opt = 'sequential_finite'
>>> # === Specify an experiment ===
>>> exp1 = {'CA0': {0: 5}, 'T': {0: 570, 0.125:300, 0.25:300, 0.375:300, 0.5:300, 0.
→˓625:300, 0.75:300, 0.875:300, 1:300}}
>>> # === Create the DoE object ===
>>> doe_object = DesignOfExperiments(parameter_dict, dv_pass, measure_class, create_
→˓model,
... prior_FIM=prior_none, discretize_model=disc)
>>> # === Use ``compute_FIM`` to compute one MBDoE square problem ===
>>> result = doe_object.compute_FIM(exp1,mode=sensi_opt, FIM_store_name = 'dynamic.csv',
... store_output = 'store_output')
>>> # === Use ``calculate_FIM`` method of the result object to evaluate the FIM ===
>>> result.calculate_FIM(doe_object.design_values)
>>> # === Print FIM and its trace, determinant, condition number and minimal eigen value␣
→˓===
>>> result.FIM
>>> result.trace
>>> result.det
>>> result.cond
>>> result.min_eig

Step 4: Exploratory analysis (Enumeration)

Exploratory analysis is suggested to enumerate the design space to check if the problem is identifiable, i.e., ensure that
D-, E-optimality metrics are not small numbers near zero, and Modified E-optimality is not a big number.

Pyomo.DoE accomplishes the exploratory analysis with the run_grid_search function. It allows users to define any
number of design decisions. Heatmaps (or lines) are used to visualize the sensitivity of the DoE criteria to changes
in two (or one) design variables with any other design variables held constant. The function run_grid_search
enumerates over the design space, each MBDoE problem accomplished by compute_FIM method. Therefore,
run_grid_search supports only two modes: sequential_finite and direct_kaug.

>>> # === Specify inputs===
>>> design_ranges = [[1,2,3,4,5], [300,400,500,600,700]] # [CA0 [M], T [K]]
>>> dv_apply_name = ['CA0','T']
>>> dv_apply_time = [[0],t_control]
>>> exp1 = {'CA0': {0: 5}, 'T': {0: 570, 0.125:300, 0.25:300, 0.375:300, 0.5:300, 0.

(continues on next page)

444 Chapter 17. Third-Party Contributions

https://github.com/dthierry/k_aug
https://idaes-pse.readthedocs.io/en/stable/reference_guides/commands/get_extensions.html

Pyomo Documentation, Release 6.5.0

(continued from previous page)

→˓625:300, 0.75:300, 0.875:300, 1:300}} # CA0 in [M], T in [K]
>>> sensi_opt = 'sequential_finite'
>>> prior_all = np.zeros((4,4))
>>> prior_pass=np.asarray(prior_all)

>>> # === Run enumeration ===
>>> doe_object = DesignOfExperiments(parameter_dict, dv_pass, measure_class, create_
→˓model,
... prior_FIM=prior_none, discretize_model=disc)
>>> all_fim = doe_object.run_grid_search(exp1, design_ranges, dv_apply_name, dv_apply_
→˓time, mode=sensi_opt)

>>> # === Analyze results ===
>>> test = all_fim.extract_criteria()
>>> # === Draw 1D sensitivity curve===
>>> fixed = {"'CA0'": 5.0} # fix a dimension
>>> all_fim.figure_drawing(fixed, ['T'], 'Reactor case','T [K]','C_{A0} [M]')
>>> # === Draw 2D heatmap ===
>>> fixed = {} # do not need to fix
>>> all_fim.figure_drawing(fixed, ['CA0','T'], 'Reactor case','C_{A0} [M]', 'T [K]')

Successful run of the above code shows the following figure:

This heatmap shows the sensitivity of the DoE criteria, i.e., measures of the experimental information content, across
the two-dimensional experiment design space. Horizontal and vertical axes are two design variables, while the color
of each grid shows the experimental information content. For example, A-optimality shows that the most informative
region is around 𝐶𝐴0 = 5.0 M, 𝑇 = 300.0 K, while the least informative region is around 𝐶𝐴0 = 1.0 M, 𝑇 = 700.0
K.

17.2. Pyomo.DoE 445

Pyomo Documentation, Release 6.5.0

Step 5: Gradient-based optimization

Pyomo.DoE formulates a two-stage stochastic_program to compute A- and D-optimality designs.

This function solves twice to ensure reliable intialization: first, Pyomo.DoE solves a square problem. Next, Pyomo.DoE
unfixes the design variables (adds degrees of freedom) and solves again.

>>> # === Specify a starting point ===
>>> exp1 = {'CA0': {0: 5}, 'T': {0: 300, 0.125:300, 0.25:300, 0.375:300, 0.5:300, 0.
→˓625:300, 0.75:300, 0.875:300, 1:300}}
>>> # === Define DoE object ===
>>> doe_object = DesignOfExperiments(parameter_dict, dv_pass, measure_class, createmod,
... prior_FIM=prior_pass, discretize_model=disc)
>>> # === Optimize ===
>>> square_result, optimize_result= doe_object.stochastic_program(exp1,
... if_optimize=True,
... if_Cholesky=True,
... scale_nominal_param_
→˓value=True,
... objective_option='det',
... L_initial=None)

17.3 GDPopt logic-based solver

The GDPopt solver in Pyomo allows users to solve nonlinear Generalized Disjunctive Programming (GDP) models
using logic-based decomposition approaches, as opposed to the conventional approach via reformulation to a Mixed
Integer Nonlinear Programming (MINLP) model.

The main advantage of these techniques is their ability to solve subproblems in a reduced space, including nonlinear
constraints only for True logical blocks. As a result, GDPopt is most effective for nonlinear GDP models.

Three algorithms are available in GDPopt:

1. Logic-based outer approximation (LOA) [Turkay & Grossmann, 1996]

2. Global logic-based outer approximation (GLOA) [Lee & Grossmann, 2001]

3. Logic-based branch-and-bound (LBB) [Lee & Grossmann, 2001]

Usage and implementation details for GDPopt can be found in the PSE 2018 paper (Chen et al., 2018), or via its preprint.

Credit for prototyping and development can be found in the GDPopt class documentation, below.

GDPopt can be used to solve a Pyomo.GDP concrete model in two ways. The simplest is to instantiate the generic
GDPopt solver and specify the desired algorithm as an argument to the solve method:

>>> SolverFactory('gdpopt').solve(model, algorithm='LOA')

The alternative is to instantiate an algorithm-specific GDPopt solver:

>>> SolverFactory('gdpopt.loa').solve(model)

In the above examples, GDPopt uses the GDPopt-LOA algorithm. Other algorithms may be used by specifying them
in the algorithm argument when using the generic solver or by instantiating the algorithm-specific GDPopt solvers.
All GDPopt options are listed below.

446 Chapter 17. Third-Party Contributions

https://dx.doi.org/10.1016/0098-1354(95)00219-7
https://doi.org/10.1016/S0098-1354(01)00732-3
https://doi.org/10.1016/S0098-1354(01)00732-3
https://doi.org/10.1016/B978-0-444-64241-7.50143-9
http://egon.cheme.cmu.edu/Papers/Chen_Pyomo_GDP_PSE2018.pdf

Pyomo Documentation, Release 6.5.0

Note: The generic GDPopt solver allows minimal configuration outside of the arguments to the solve method. To
avoid repeatedly specifying the same configuration options to the solve method, use the algorithm-specific solvers.

17.3.1 Logic-based Outer Approximation (LOA)

Chen et al., 2018 contains the following flowchart, taken from the preprint version:

An example that includes the modeling approach may be found below.

Required imports
>>> from pyomo.environ import *
>>> from pyomo.gdp import *

Create a simple model
>>> model = ConcreteModel(name='LOA example')

>>> model.x = Var(bounds=(-1.2, 2))
>>> model.y = Var(bounds=(-10,10))
>>> model.c = Constraint(expr= model.x + model.y == 1)

>>> model.fix_x = Disjunct()
>>> model.fix_x.c = Constraint(expr=model.x == 0)

>>> model.fix_y = Disjunct()
>>> model.fix_y.c = Constraint(expr=model.y == 0)

>>> model.d = Disjunction(expr=[model.fix_x, model.fix_y])
>>> model.objective = Objective(expr=model.x + 0.1*model.y, sense=minimize)

Solve the model using GDPopt
>>> results = SolverFactory('gdpopt.loa').solve(
... model, mip_solver='glpk')

Display the final solution
>>> model.display()
Model LOA example

Variables:
x : Size=1, Index=None

Key : Lower : Value : Upper : Fixed : Stale : Domain
(continues on next page)

17.3. GDPopt logic-based solver 447

https://doi.org/10.1016/B978-0-444-64241-7.50143-9

Pyomo Documentation, Release 6.5.0

(continued from previous page)

None : -1.2 : 0.0 : 2 : False : False : Reals
y : Size=1, Index=None

Key : Lower : Value : Upper : Fixed : Stale : Domain
None : -10 : 1.0 : 10 : False : False : Reals

Objectives:
objective : Size=1, Index=None, Active=True

Key : Active : Value
None : True : 0.1

Constraints:
c : Size=1

Key : Lower : Body : Upper
None : 1.0 : 1.0 : 1.0

Note: When troubleshooting, it can often be helpful to turn on verbose output using the tee flag.

>>> SolverFactory('gdpopt.loa').solve(model, tee=True)

17.3.2 Global Logic-based Outer Approximation (GLOA)

The same algorithm can be used to solve GDPs involving nonconvex nonlinear constraints by solving the subproblems
globally:

>>> SolverFactory('gdpopt.gloa').solve(model)

Warning: The nlp_solver option must be set to a global solver for the solution returned by GDPopt to also be
globally optimal.

17.3.3 Relaxation with Integer Cuts (RIC)

Instead of outer approximation, GDPs can be solved using the same MILP relaxation as in the previous two algorithms,
but instead of using the subproblems to generate outer-approximation cuts, the algorithm adds only no-good cuts for
every discrete solution encountered:

>>> SolverFactory('gdpopt.ric').solve(model)

Again, this is a global algorithm if the subproblems are solved globally, and is not otherwise.

Note: The RIC algorithm will not necessarily enumerate all discrete solutions as it is possible for the bounds to
converge first. However, full enumeration is not uncommon.

448 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

17.3.4 Logic-based Branch-and-Bound (LBB)

The GDPopt-LBB solver branches through relaxed subproblems with inactive disjunctions. It explores the possibilities
based on best lower bound, eventually activating all disjunctions and presenting the globally optimal solution.

To use the GDPopt-LBB solver, define your Pyomo GDP model as usual:

Required imports
>>> from pyomo.environ import *
>>> from pyomo.gdp import Disjunct, Disjunction

Create a simple model
>>> m = ConcreteModel()
>>> m.x1 = Var(bounds = (0,8))
>>> m.x2 = Var(bounds = (0,8))
>>> m.obj = Objective(expr=m.x1 + m.x2, sense=minimize)
>>> m.y1 = Disjunct()
>>> m.y2 = Disjunct()
>>> m.y1.c1 = Constraint(expr=m.x1 >= 2)
>>> m.y1.c2 = Constraint(expr=m.x2 >= 2)
>>> m.y2.c1 = Constraint(expr=m.x1 >= 3)
>>> m.y2.c2 = Constraint(expr=m.x2 >= 3)
>>> m.djn = Disjunction(expr=[m.y1, m.y2])

Invoke the GDPopt-LBB solver
>>> results = SolverFactory('gdpopt.lbb').solve(m)

>>> print(results)
>>> print(results.solver.status)
ok
>>> print(results.solver.termination_condition)
optimal

>>> print([value(m.y1.indicator_var), value(m.y2.indicator_var)])
[True, False]

17.3.5 GDPopt implementation and optional arguments

Warning: GDPopt optional arguments should be considered beta code and are subject to change.

class pyomo.contrib.gdpopt.GDPopt.GDPoptSolver

Decomposition solver for Generalized Disjunctive Programming (GDP) problems.

The GDPopt (Generalized Disjunctive Programming optimizer) solver applies a variety of decomposition-based
approaches to solve Generalized Disjunctive Programming (GDP) problems. GDP models can include nonlinear,
continuous variables and constraints, as well as logical conditions.

These approaches include:
• Logic-based outer approximation (LOA)
• Logic-based branch-and-bound (LBB)
• Partial surrogate cuts [pending]
• Generalized Bender decomposition [pending]

17.3. GDPopt logic-based solver 449

Pyomo Documentation, Release 6.5.0

This solver implementation was developed by Carnegie Mellon University in the research group of Ignacio Gross-
mann.

For nonconvex problems, LOA may not report rigorous lower/upper bounds.

Questions: Please make a post at StackOverflow and/or contact Qi Chen <https://github.com/qtothec> or David
Bernal <https://github.com/bernalde>.

Several key GDPopt components were prototyped by BS and MS students:
• Logic-based branch and bound: Sunjeev Kale
• MC++ interface: Johnny Bates
• LOA set-covering initialization: Eloy Fernandez
• Logic-to-linear transformation: Romeo Valentin

available(exception_flag=True)
Solver is always available. Though subsolvers may not be, they will raise an error when the time comes.

solve(model, **kwds)
Solve the model.

Parameters
model (Block) – a Pyomo model or block to be solved

Keyword Arguments
• iterlim – Iteration limit.

• time_limit – Seconds allowed until terminated. Note that the time limit can
currently only be enforced between subsolver invocations. You may need to set
subsolver time limits as well.

• tee – Stream output to terminal.

• logger – The logger object or name to use for reporting.

version()

Return a 3-tuple describing the solver version.

class pyomo.contrib.gdpopt.loa.GDP_LOA_Solver(**kwds)
The GDPopt (Generalized Disjunctive Programming optimizer) logic-based outer approximation (LOA) solver.

Accepts models that can include nonlinear, continuous variables and constraints, as well as logical conditions.
For nonconvex problems, LOA may not report rigorous dual bounds.

class pyomo.contrib.gdpopt.gloa.GDP_GLOA_Solver(**kwds)
The GDPopt (Generalized Disjunctive Programming optimizer) global logic-based outer approximation (GLOA)
solver.

Accepts models that can include nonlinear, continuous variables and constraints, as well as logical conditions.

class pyomo.contrib.gdpopt.ric.GDP_RIC_Solver(**kwds)
The GDPopt (Generalized Disjunctive Programming optimizer) relaxation with integer cuts (RIC) solver.

Accepts models that can include nonlinear, continuous variables and constraints, as well as logical conditions.
For non-convex problems, RIC will not be exact unless the NLP subproblems are solved globally.

class pyomo.contrib.gdpopt.branch_and_bound.GDP_LBB_Solver(**kwds)
The GDPopt (Generalized Disjunctive Programming optimizer) logic-based branch and bound (LBB) solver.

Accepts models that can include nonlinear, continuous variables and constraints, as well as logical conditions.

450 Chapter 17. Third-Party Contributions

https://github.com/qtothec
https://github.com/bernalde

Pyomo Documentation, Release 6.5.0

17.4 Infeasible Irreducible System (IIS) Tool

This module contains functions for computing an irreducible infeasible set for a Pyomo MILP or LP using a specified
commerical solver, one of CPLEX, Gurobi, or Xpress.

pyomo.contrib.iis.write_iis(pyomo_model, iis_file_name, solver=None, logger=<Logger pyomo.contrib.iis
(INFO)>)

Write an irreducible infeasible set for a Pyomo MILP or LP using the specified commerical solver.
Parameters

• pyomo_model – A Pyomo Block or ConcreteModel

• iis_file_name (str) – A file name to write the IIS to, e.g., infeasible_model.ilp

• solver (str) – Specify the solver to use, one of “cplex”, “gurobi”, or “xpress”. If
None, the tool will use the first solver available.

• logger (logging.Logger) – A logger for messages. Uses pyomo.contrib.iis logger
by default.

Returns
iis_file_name – The file containing the IIS.

Return type
str

17.5 Incidence Analysis

Tools for constructing and analyzing the incidence graph of variables and constraints.

This documentation contains the following resources:

17.5.1 Overview

What is Incidence Analysis?

A Pyomo extension for constructing the bipartite incidence graph of variables and constraints, and an interface to useful
algorithms for analyzing or decomposing this graph.

Why is Incidence Analysis useful?

It can identify the source of certain types of singularities in a system of variables and constraints. These singulari-
ties often violate assumptions made while modeling a physical system or assumptions required for an optimization
solver to guarantee convergence. In particular, interior point methods used for nonlinear local optimization require
the Jacobian of equality constraints (and active inequalities) to be full row rank, and this package implements the
Dulmage-Mendelsohn partition, which can be used to determine if this Jacobian is structurally rank-deficient.

17.4. Infeasible Irreducible System (IIS) Tool 451

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Who develops and maintains Incidence Analysis?

This extension was developed by Robert Parker while a PhD student in Professor Biegler’s lab at Carnegie Mellon
University, with guidance from Bethany Nicholson and John Siirola at Sandia.

How can I cite Incidence Analysis?

We are working on a journal article about Incidence Analysis and the underlying methods. In the meantime, if you use
Incidence Analysis in your research, you may cite the following conference paper:

@inproceedings{Parker2023Dulmage,
title={{An application of the Dulmage-Mendelsohn partition to the analysis of a␣

→˓discretized dynamic chemical looping combustion reactor model}},
author={Robert Parker and Chinedu Okoli and Bethany Nicholson and John Siirola and␣

→˓Lorenz Biegler},
booktitle={Proceedings of FOCAPO/CPC 2023},
year={2023}

}

17.5.2 Incidence Analysis Tutorial

This tutorial walks through examples of the most common use cases for Incidence Analysis:

Debugging a structural singularity with the Dulmage-Mendelsohn partition

We start with some imports and by creating a Pyomo model we would like to debug. Usually the model is much larger
and more complicated than this. This particular system appeared when debugging a dynamic 1-D partial differential-
algebraic equation (PDAE) model representing a chemical looping combustion reactor.

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.incidence_analysis import IncidenceGraphInterface

>>> m = pyo.ConcreteModel()
>>> m.components = pyo.Set(initialize=[1, 2, 3])
>>> m.x = pyo.Var(m.components, initialize=1.0/3.0)
>>> m.flow_comp = pyo.Var(m.components, initialize=10.0)
>>> m.flow = pyo.Var(initialize=30.0)
>>> m.density = pyo.Var(initialize=1.0)
>>> m.sum_eqn = pyo.Constraint(
... expr=sum(m.x[j] for j in m.components) - 1 == 0
...)
>>> m.holdup_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.density - 1 == 0 for j in m.components
... })
>>> m.density_eqn = pyo.Constraint(
... expr=1/m.density - sum(1/m.x[j] for j in m.components) == 0
...)
>>> m.flow_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.flow - m.flow_comp[j] == 0 for j in m.components
... })

452 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

To check this model for structural singularity, we apply the Dulmage-Mendelsohn partition. var_dm_partition and
con_dm_partition are named tuples with fields for each of the four subsets defined by the partition: unmatched,
overconstrained, square, and underconstrained.

>>> igraph = IncidenceGraphInterface(m)
>>> # Make sure we have a square system
>>> print(len(igraph.variables))
8
>>> print(len(igraph.constraints))
8
>>> var_dm_partition, con_dm_partition = igraph.dulmage_mendelsohn()

If any variables or constraints are unmatched, the (Jacobian of the) model is structurally singular.

>>> for var in var_dm_partition.unmatched:
... print(f" {var.name}")
flow_comp[1]
>>> for con in con_dm_partition.unmatched:
... print(f" {con.name}")
density_eqn

This model has one unmatched constraint and one unmatched variable, so it is structurally singular. However, the
unmatched variable and constraint are not unique. For example, flow_comp[2] could have been unmatched instead
of flow_comp[1].

Unique subsets of variables and constraints that are useful when debugging a structural singularity are the under-
constrained and overconstrained subsystems. The variables in the underconstrained subsystem are contained in the
unmatched and underconstrained fields of the var_dm_partition named tuple, while the constraints are con-
tained in the underconstrained field of the con_dm_partition named tuple. The variables in the overconstrained
subsystem are contained in the overconstrained field of the var_dm_partition named tuple, while the constraints
are contained in the overconstrained and unmatched fields of the con_dm_partition named tuple.

We now construct the underconstrained and overconstrained subsystems:

>>> uc_var = var_dm_partition.unmatched + var_dm_partition.underconstrained
>>> uc_con = con_dm_partition.underconstrained
>>> oc_var = var_dm_partition.overconstrained
>>> oc_con = con_dm_partition.overconstrained + con_dm_partition.unmatched

And display the variables and constraints contained in each:

>>> # Overconstrained subsystem
>>> for var in oc_var:
>>> print(f" {var.name}")
x[1]
density
x[2]
x[3]
>>> for con in oc_con:
>>> print(f" {con.name}")
sum_eqn
holdup_eqn[1]
holdup_eqn[2]
holdup_eqn[3]
density_eqn

(continues on next page)

17.5. Incidence Analysis 453

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> # Underconstrained subsystem
>>> for var in uc_var:
>>> print(f" {var.name}")
flow_comp[1]
flow
flow_comp[2]
flow_comp[3]
>>> for con in uc_con:
>>> print(f" {con.name}")
flow_eqn[1]
flow_eqn[2]
flow_eqn[3]

At this point we must use our intuition about the system being modeled to identify “what is causing” the singularity.
Looking at the under and over- constrained systems, it appears that we are missing an equation to calculate flow, the
total flow rate, and that density is over-specified as it is computed by both the bulk density equation and one of the
component density equations.

With this knowledge, we can eventually figure out (a) that we need an equation to calculate flow from density and (b)
that our “bulk density equation” is actually a skeletal density equation. Admittedly, this is difficult to figure out without
the full context behind this particular system.

The following code constructs a new version of the model and verifies that it is structurally nonsingular:

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.incidence_analysis import IncidenceGraphInterface

>>> m = pyo.ConcreteModel()
>>> m.components = pyo.Set(initialize=[1, 2, 3])
>>> m.x = pyo.Var(m.components, initialize=1.0/3.0)
>>> m.flow_comp = pyo.Var(m.components, initialize=10.0)
>>> m.flow = pyo.Var(initialize=30.0)
>>> m.dens_bulk = pyo.Var(initialize=1.0)
>>> m.dens_skel = pyo.Var(initialize=1.0)
>>> m.porosity = pyo.Var(initialize=0.25)
>>> m.velocity = pyo.Param(initialize=1.0)
>>> m.sum_eqn = pyo.Constraint(
... expr=sum(m.x[j] for j in m.components) - 1 == 0
...)
>>> m.holdup_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.dens_bulk - 1 == 0 for j in m.components
... })
>>> m.dens_skel_eqn = pyo.Constraint(
... expr=1/m.dens_skel - sum(1/m.x[j] for j in m.components) == 0
...)
>>> m.dens_bulk_eqn = pyo.Constraint(
... expr=m.dens_bulk == (1 - m.porosity)*m.dens_skel
...)
>>> m.flow_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.flow - m.flow_comp[j] == 0 for j in m.components
... })
>>> m.flow_dens_eqn = pyo.Constraint(

(continues on next page)

454 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... expr=m.flow == m.velocity*m.dens_bulk

...)

>>> igraph = IncidenceGraphInterface(m, include_inequality=False)
>>> print(len(igraph.variables))
10
>>> print(len(igraph.constraints))
10
>>> var_dm_partition, con_dm_partition = igraph.dulmage_mendelsohn()

>>> # There are now no unmatched variables or equations
>>> print(len(var_dm_partition.unmatched))
0
>>> print(len(con_dm_partition.unmatched))
0

Debugging a numeric singularity using block triangularization

We start with some imports. To debug a numeric singularity, we will need PyomoNLP from PyNumero to get the
constraint Jacobian, and will need NumPy to compute condition numbers.

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.pynumero.interfaces.pyomo_nlp import PyomoNLP
>>> from pyomo.contrib.incidence_analysis import IncidenceGraphInterface
>>> import numpy as np

We now build the model we would like to debug. Compared to the model in Debugging a structural singularity with
the Dulmage-Mendelsohn partition, we have converted the sum equation to use a sum over component flow rates rather
than a sum over mass fractions.

>>> m = pyo.ConcreteModel()
>>> m.components = pyo.Set(initialize=[1, 2, 3])
>>> m.x = pyo.Var(m.components, initialize=1.0/3.0)
>>> m.flow_comp = pyo.Var(m.components, initialize=10.0)
>>> m.flow = pyo.Var(initialize=30.0)
>>> m.density = pyo.Var(initialize=1.0)
>>> # This equation is new!
>>> m.sum_flow_eqn = pyo.Constraint(
... expr=sum(m.flow_comp[j] for j in m.components) == m.flow
...)
>>> m.holdup_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.density - 1 == 0 for j in m.components
... })
>>> m.density_eqn = pyo.Constraint(
... expr=1/m.density - sum(1/m.x[j] for j in m.components) == 0
...)
>>> m.flow_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.flow - m.flow_comp[j] == 0 for j in m.components
... })

We now construct the incidence graph and check unmatched variables and constraints to validate structural nonsingu-
larity.

17.5. Incidence Analysis 455

Pyomo Documentation, Release 6.5.0

>>> igraph = IncidenceGraphInterface(m, include_inequality=False)
>>> var_dmp, con_dmp = igraph.dulmage_mendelsohn()
>>> print(len(var_dmp.unmatched))
0
>>> print(len(con_dmp.unmatched))
0

Our system is structurally nonsingular. Now we check whether we are numerically nonsingular (well-conditioned) by
checking the condition number. Admittedly, deciding if a matrix is “singular” by looking at its condition number is
somewhat of an art. We might define “numerically singular” as having a condition number greater than the inverse of
machine precision (approximately 1e16), but poorly conditioned matrices can cause problems even if they don’t meet
this definition. Here we use 1e10 as a somewhat arbitrary condition number threshold to indicate a problem in our
system.

>>> # PyomoNLP requires exactly one objective function
>>> m._obj = pyo.Objective(expr=0.0)
>>> nlp = PyomoNLP(m)
>>> cond_threshold = 1e10
>>> cond = np.linalg.cond(nlp.evaluate_jacobian_eq().toarray())
>>> print(cond > cond_threshold)
True

The system is poorly conditioned. Now we can check diagonal blocks of a block triangularization to determine which
blocks are causing the poor conditioning.

>>> var_blocks, con_blocks = igraph.block_triangularize()
>>> for i, (vblock, cblock) in enumerate(zip(var_blocks, con_blocks)):
... submatrix = nlp.extract_submatrix_jacobian(vblock, cblock)
... cond = np.linalg.cond(submatrix.toarray())
... print(f"block {i}: {cond}")
... if cond > cond_threshold:
... for var in vblock:
... print(f" {var.name}")
... for con in cblock:
... print(f" {con.name}")
block 0: 24.492504515710433
block 1: 1.2480741394486336e+17
flow
flow_comp[1]
flow_comp[2]
flow_comp[3]
sum_flow_eqn
flow_eqn[1]
flow_eqn[2]
flow_eqn[3]

We see that the second block is causing the singularity, and that this block contains the sum equation that we modified
for this example. This suggests that converting this equation to sum over flow rates rather than mass fractions just
converted a structural singularity to a numeric singularity, and didn’t really solve our problem. To see a fix that does
resolve the singularity, see Debugging a structural singularity with the Dulmage-Mendelsohn partition.

456 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Solving a square system with a block triangular decomposition

We start with imports. The key function from Incidence Analysis we will use is
solve_strongly_connected_components.

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.incidence_analysis import (
... solve_strongly_connected_components
...)

Now we construct the model we would like to solve. This is a model with the same structure as the “fixed model” in
Debugging a structural singularity with the Dulmage-Mendelsohn partition.

>>> m = pyo.ConcreteModel()
>>> m.components = pyo.Set(initialize=[1, 2, 3])
>>> m.x = pyo.Var(m.components, initialize=1.0/3.0)
>>> m.flow_comp = pyo.Var(m.components, initialize=10.0)
>>> m.flow = pyo.Var(initialize=30.0)
>>> m.dens_bulk = pyo.Var(initialize=1.0)
>>> m.dens_skel = pyo.Var(initialize=1.0)
>>> m.porosity = pyo.Var(initialize=0.25)
>>> m.velocity = pyo.Param(initialize=1.0)
>>> m.holdup = pyo.Param(
... m.components, initialize={j: 1.0+j/10.0 for j in m.components}
...)
>>> m.sum_eqn = pyo.Constraint(
... expr=sum(m.x[j] for j in m.components) - 1 == 0
...)
>>> m.holdup_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.dens_bulk - m.holdup[j] == 0 for j in m.components
... })
>>> m.dens_skel_eqn = pyo.Constraint(
... expr=1/m.dens_skel - sum(1e-3/m.x[j] for j in m.components) == 0
...)
>>> m.dens_bulk_eqn = pyo.Constraint(
... expr=m.dens_bulk == (1 - m.porosity)*m.dens_skel
...)
>>> m.flow_eqn = pyo.Constraint(m.components, expr={
... j: m.x[j]*m.flow - m.flow_comp[j] == 0 for j in m.components
... })
>>> m.flow_dens_eqn = pyo.Constraint(
... expr=m.flow == m.velocity*m.dens_bulk
...)

Solving via a block triangular decomposition is useful in cases where the full model does not converge when con-
sidered simultaneously by a Newton solver. In this case, we specify a solver to use for the diagonal blocks and call
solve_strongly_connected_components.

>>> # Suppose a solve like this does not converge
>>> # pyo.SolverFactory("scipy.fsolve").solve(m)

>>> # We solve via block-triangular decomposition
>>> solver = pyo.SolverFactory("scipy.fsolve")
>>> res_list = solve_strongly_connected_components(m, solver=solver)

17.5. Incidence Analysis 457

Pyomo Documentation, Release 6.5.0

We can now display the variable values at the solution:

for var in m.component_objects(pyo.Var):
var.pprint()

17.5.3 API Reference

Pyomo Interfaces

Utility functions and a utility class for interfacing Pyomo components with useful graph algorithms.

class pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface(model=None,
active=True,
include_fixed=False,
in-
clude_inequality=True)

An interface for applying graph algorithms to Pyomo variables and constraints
Parameters

• model (Pyomo BlockData or PyNumero PyomoNLP, default None) – An object from
which an incidence graph will be constructed.

• active (Bool, default True) – Whether only active constraints should be included in
the incidence graph. Cannot be set to False if the model is provided as a PyomoNLP.

• include_fixed (Bool, default False) – Whether to include fixed variables in the
incidence graph. Cannot be set to False if model is a PyomoNLP.

• include_inequality (Bool, default True) – Whether to include inequality con-
straints (those whose expressions are not instances of EqualityExpression) in
the incidence graph. If a PyomoNLP is provided, setting to False uses the
evaluate_jacobian_eq method instead of evaluate_jacobian rather than check-
ing constraint expression types.

block_triangularize(variables=None, constraints=None)
Compute an ordered partition of the provided variables and constraints such that their incidence matrix is
block lower triangular

Subsets in the partition correspond to the strongly connected components of the bipartite incidence graph,
projected with respect to a perfect matching.

Returns
• var_partition (list of lists) – Partition of variables. The inner lists hold unindexed

variables.

• con_partition (list of lists) – Partition of constraints. The inner lists hold unin-
dexed constraints.

458 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Example

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.incidence_analysis import IncidenceGraphInterface
>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var([1, 2])
>>> m.eq1 = pyo.Constraint(expr=m.x[1]**2 == 7)
>>> m.eq2 = pyo.Constraint(expr=m.x[1]*m.x[2] == 3)
>>> igraph = IncidenceGraphInterface(m)
>>> vblocks, cblocks = igraph.block_triangularize()
>>> print([[v.name for v in vb] for vb in vblocks])
[['x[1]'], ['x[2]']]
>>> print([[c.name for c in cb] for cb in cblocks])
[['eq1'], ['eq2']]

Note: Breaking change in Pyomo 6.5.0
The pre-6.5.0 block_triangularize method returned maps from each variable or constraint to the
index of its block in a block lower triangularization as the original intent of this function was to iden-
tify when variables do or don’t share a diagonal block in this partition. Since then, the dominant use
case of block_triangularize has been to partition variables and constraints into these blocks and
inspect or solve each block individually. A natural return type for this functionality is the ordered
partition of variables and constraints, as lists of lists. This functionality was previously available via
the get_diagonal_blocks method, which was confusing as it did not capture that the partition was
the diagonal of a block triangularization (as opposed to diagonalization). The pre-6.5.0 functional-
ity of block_triangularize is still available via the map_nodes_to_block_triangular_indices
method.

property col_block_map

DEPRECATED.

Deprecated since version 6.5.0: The col_block_map attribute is deprecated and will be removed.

property con_index_map

DEPRECATED.

Deprecated since version 6.5.0: con_index_map is deprecated. Please use get_matrix_coord instead.

property constraints

The constraints participating in the incidence graph

dulmage_mendelsohn(variables=None, constraints=None)
Partition variables and constraints according to the Dulmage- Mendelsohn characterization of the incidence
graph

Variables are partitioned into the following subsets:
• unmatched - Variables not matched in a particular maximum cardinality matching
• underconstrained - Variables that could possibly be unmatched in a maximum cardinality matching
• square - Variables in the well-constrained subsystem
• overconstrained - Variables matched with constraints that can possibly be unmatched

Constraints are partitioned into the following subsets:
• underconstrained - Constraints matched with variables that can possibly be unmatched
• square - Constraints in the well-constrained subsystem
• overconstrained - Constraints that can possibly be unmatched with a maximum cardinality match-

ing

17.5. Incidence Analysis 459

Pyomo Documentation, Release 6.5.0

• unmatched - Constraints that were not matched in a particular maximum cardinality matching

Returns
• var_partition (ColPartition named tuple) – Partitions variables into square,

underconstrained, overconstrained, and unmatched.

• con_partition (RowPartition named tuple) – Partitions constraints into square,
underconstrained, overconstrained, and unmatched.

Example

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.incidence_analysis import IncidenceGraphInterface
>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var([1, 2])
>>> m.eq1 = pyo.Constraint(expr=m.x[1]**2 == 7)
>>> m.eq2 = pyo.Constraint(expr=m.x[1]*m.x[2] == 3)
>>> m.eq3 = pyo.Constraint(expr=m.x[1] + 2*m.x[2] == 5)
>>> igraph = IncidenceGraphInterface(m)
>>> var_dmp, con_dmp = igraph.dulmage_mendelsohn()
>>> print([v.name for v in var_dmp.overconstrained])
['x[1]', 'x[2]']
>>> print([c.name for c in con_dmp.overconstrained])
['eq1', 'eq2']
>>> print([c.name for c in con_dmp.unmatched])
['eq3']

get_adjacent_to(component)
Return a list of components adjacent to the provided component in the cached bipartite incidence graph of
variables and constraints

Parameters
component (ComponentData) – The variable or constraint data object whose adjacent
components are returned

Returns
List of constraint or variable data objects adjacent to the provided component

Return type
list of ComponentData

Example

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.incidence_analysis import IncidenceGraphInterface
>>> m = pyo.ConcreteModel()
>>> m.x = pyo.Var([1, 2])
>>> m.eq1 = pyo.Constraint(expr=m.x[1]**2 == 7)
>>> m.eq2 = pyo.Constraint(expr=m.x[1]*m.x[2] == 3)
>>> m.eq3 = pyo.Constraint(expr=m.x[1] + 2*m.x[2] == 5)
>>> igraph = IncidenceGraphInterface(m)
>>> adj_to_x2 = igraph.get_adjacent_to(m.x[2])
>>> print([c.name for c in adj_to_x2])
['eq2', 'eq3']

460 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

get_connected_components(variables=None, constraints=None)
Partition variables and constraints into weakly connected components of the incidence graph

These correspond to diagonal blocks in a block diagonalization of the incidence matrix.
Returns

• var_blocks (list of lists of variables) – Partition of variables into connected com-
ponents

• con_blocks (list of lists of constraints) – Partition of constraints into correspond-
ing connected components

get_diagonal_blocks(variables=None, constraints=None)
DEPRECATED.

Deprecated since version 6.5.0: IncidenceGraphInterface.get_diagonal_blocks is deprecated.
Please use IncidenceGraphInterface.block_triangularize instead.

get_matrix_coord(component)
Return the row or column coordinate of the component in the incidence matrix of variables and constraints

Variables will return a column coordinate and constraints will return a row coordinate.
Parameters

component (ComponentData) – Component whose coordinate to locate

Returns
Column or row coordinate of the provided variable or constraint

Return type
int

property incidence_matrix

The structural incidence matrix of variables and constraints.

Variables correspond to columns and constraints correspond to rows. All matrix entries have value 1.0.

map_nodes_to_block_triangular_indices(variables=None, constraints=None)
Map variables and constraints to indices of their diagonal blocks in a block lower triangular permutation

Returns
• var_block_map (ComponentMap) – Map from variables to their diagonal blocks

in a block triangularization

• con_block_map (ComponentMap) – Map from constraints to their diagonal
blocks in a block triangularization

maximum_matching(variables=None, constraints=None)
Return a maximum cardinality matching of variables and constraints.

The matching maps constraints to their matched variables.
Returns

A map from constraints to their matched variables.

Return type
ComponentMap

property n_edges

The number of edges in the incidence graph, or the number of structural nonzeros in the incidence matrix

plot(variables=None, constraints=None, title=None, show=True)
Plot the bipartite incidence graph of variables and constraints

17.5. Incidence Analysis 461

Pyomo Documentation, Release 6.5.0

remove_nodes(nodes, constraints=None)
Removes the specified variables and constraints (columns and rows) from the cached incidence matrix.

This is a “projection” of the variable and constraint vectors, rather than something like a vertex elimination.
For the puropse of this method, there is no need to distinguish between variables and constraints. However,
we provide the “constraints” argument so a call signature similar to other methods in this class is still valid.

Parameters
• nodes (list) – VarData or ConData objects whose columns or rows will be re-

moved from the incidence matrix.

• constraints (list) – VarData or ConData objects whose columns or rows will
be removed from the incidence matrix.

property row_block_map

DEPRECATED.

Deprecated since version 6.5.0: The row_block_map attribute is deprecated and will be removed.

property var_index_map

DEPRECATED.

Deprecated since version 6.5.0: var_index_map is deprecated. Please use get_matrix_coord instead.

property variables

The variables participating in the incidence graph

pyomo.contrib.incidence_analysis.interface.extract_bipartite_subgraph(graph, nodes0, nodes1)
Return the bipartite subgraph of a graph.

Two lists of nodes to project onto must be provided. These will correspond to the “bipartite sets” in the subgraph.
If the two sets provided have M and N nodes, the subgraph will have nodes 0 through M+N-1, with the first M
corresponding to the first set provided and the last N corresponding to the second set.

Parameters
• graph (NetworkX Graph) – The graph from which a subgraph is extracted

• nodes0 (list) – A list of nodes in the original graph that will form the first bipartite
set of the projected graph (and have bipartite=0)

• nodes1 (list) – A list of nodes in the original graph that will form the second bipartite
set of the projected graph (and have bipartite=1)

Returns
subgraph – Graph containing integer nodes corresponding to positions in the provided lists,
with edges where corresponding nodes are adjacent in the original graph.

Return type
networkx.Graph

pyomo.contrib.incidence_analysis.interface.get_bipartite_incidence_graph(variables,
constraints,
include_fixed=True)

Return the bipartite incidence graph of Pyomo variables and constraints.

Each node in the returned graph is an integer. The convention is that, for a graph with N variables and M con-
straints, nodes 0 through M-1 correspond to constraints and nodes M through M+N-1 correspond to variables.
Nodes correspond to variables and constraints in the provided orders. For consistency with NetworkX’s “con-
vention”, constraint nodes are tagged with bipartite=0 while variable nodes are tagged with bipartite=1,
although these attributes are not used.

Parameters

462 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• variables (List of Pyomo VarData objects) – Variables that will appear in in-
cidence graph

• constraints (List of Pyomo ConstraintData objects) – Constraints that will
appear in incidence graph

• include_fixed (Bool) – Flag for whether fixed variable should be included in the
incidence

Return type
networkx.Graph

pyomo.contrib.incidence_analysis.interface.get_numeric_incidence_matrix(variables, constraints)
Return the “numeric incidence matrix” (Jacobian) of Pyomo variables and constraints.

Each matrix value is the derivative of a constraint body with respect to a variable. Rows correspond to constraints
and columns correspond to variables. Entries are included even if the value of the derivative is zero. Only active
constraints and unfixed variables that participate in these constraints are included.

Parameters
• variables (List of Pyomo VarData objects) –

• constraints (List of Pyomo ConstraintData objects) –
Returns

COO matrix. Rows are indices into the user-provided list of constraints, columns are indices
into the user-provided list of variables.

Return type
scipy.sparse.coo_matrix

pyomo.contrib.incidence_analysis.interface.get_structural_incidence_matrix(variables,
constraints, in-
clude_fixed=True)

Return the incidence matrix of Pyomo constraints and variables
Parameters

• variables (List of Pyomo VarData objects) –

• constraints (List of Pyomo ConstraintData objects) –

• include_fixed (Bool) – Flag for whether fixed variables should be included in the
matrix nonzeros

Returns
COO matrix. Rows are indices into the user-provided list of constraints, columns are indices
into the user-provided list of variables. Entries are 1.0.

Return type
scipy.sparse.coo_matrix

Maximum Matching

pyomo.contrib.incidence_analysis.matching.maximum_matching(matrix_or_graph, top_nodes=None)
Return a maximum cardinality matching of the provided matrix or bipartite graph

If a matrix is provided, the matching is returned as a map from row indices to column indices. If a bipartite graph
is provided, a list of “top nodes” must be provided as well. These correspond to one of the “bipartite sets”. The
matching is then returned as a map from “top nodes” to the other set of nodes.

Parameters
• matrix_or_graph (SciPy sparse matrix or NetworkX Graph) – The matrix

or graph whose maximum matching will be computed

17.5. Incidence Analysis 463

Pyomo Documentation, Release 6.5.0

• top_nodes (list) – Integer nodes representing a bipartite set in a graph. Must be
provided if and only if a NetworkX Graph is provided.

Returns
max_matching – Dict mapping from integer nodes in the first bipartite set (row indices) to
nodes in the second (column indices).

Return type
dict

Weakly Connected Components

pyomo.contrib.incidence_analysis.connected.get_independent_submatrices(matrix)
Partition a matrix into irreducible block diagonal form

This is equivalent to identifying the connected components of the bipartite incidence graph of rows and columns.
Parameters

matrix (scipy.sparse.coo_matrix) – Matrix to partition into block diagonal form
Returns

• row_blocks (list of lists) – Partition of row coordinates into diagonal blocks

• col_blocks (list of lists) – Partition of column coordinates into diagonal blocks

Block Triangularization

pyomo.contrib.incidence_analysis.triangularize.block_triangularize(matrix, matching=None)
Compute ordered partitions of the matrix’s rows and columns that permute the matrix to block lower triangular
form

Subsets in the partition correspond to diagonal blocks in the block triangularization. The order is topological,
with ties broken “lexicographically”.

Parameters
• matrix (scipy.sparse.coo_matrix) – Matrix whose rows and columns will be per-

muted

• matching (dict) – A perfect matching. Maps rows to columns and columns back to
rows.

Returns
• row_partition (list of lists) – A partition of rows. The inner lists hold integer row

coordinates.

• col_partition (list of lists) – A partition of columns. The inner lists hold integer column
coordinates.

Note: Breaking change in Pyomo 6.5.0
The pre-6.5.0 block_triangularize function returned maps from each row or column to the index of its block
in a block lower triangularization as the original intent of this function was to identify when coordinates do or
don’t share a diagonal block in this partition. Since then, the dominant use case of block_triangularize has
been to partition variables and constraints into these blocks and inspect or solve each block individually. A natural
return type for this functionality is the ordered partition of rows and columns, as lists of lists. This functionality
was previously available via the get_diagonal_blocks method, which was confusing as it did not capture that
the partition was the diagonal of a block triangularization (as opposed to diagonalization). The pre-6.5.0 func-
tionality of block_triangularize is still available via the map_coords_to_block_triangular_indices
function.

464 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

pyomo.contrib.incidence_analysis.triangularize.get_blocks_from_maps(row_block_map,
col_block_map)

DEPRECATED.

Deprecated since version 6.5.0: get_blocks_from_maps is deprecated. This functionality has been incorpo-
rated into block_triangularize.

pyomo.contrib.incidence_analysis.triangularize.get_diagonal_blocks(matrix, matching=None)
DEPRECATED.

Deprecated since version 6.5.0: get_diagonal_blocks has been deprecated. Please use
block_triangularize instead.

pyomo.contrib.incidence_analysis.triangularize.get_scc_of_projection(graph, top_nodes,
matching=None)

Return the topologically ordered strongly connected components of a bipartite graph, projected with respect to
a perfect matching

The provided undirected bipartite graph is projected into a directed graph on the set of “top nodes” by treating
“matched edges” as out-edges and “unmatched edges” as in-edges. Then the strongly connected components
of the directed graph are computed. These strongly connected components are unique, regardless of the choice
of perfect matching. The strongly connected components form a directed acyclic graph, and are returned in a
topological order. The order is unique, as ambiguities are resolved “lexicographically”.

The “direction” of the projection (where matched edges are out-edges) leads to a block lower triangular permu-
tation when the top nodes correspond to rows in the bipartite graph of a matrix.

Parameters
• graph (NetworkX Graph) – A bipartite graph

• top_nodes (list) – One of the bipartite sets in the graph

• matching (dict) – Maps each node in top_nodes to its matched node
Returns

The outer list is a list of strongly connected components. Each strongly connected component
is a list of tuples of matched nodes. The first node is a “top node”, and the second is an “other
node”.

Return type
list of lists

Dulmage-Mendelsohn Partition

class pyomo.contrib.incidence_analysis.dulmage_mendelsohn.ColPartition(unmatched,
underconstrained,
overconstrained,
square)

Named tuple containing the subsets of the Dulmage-Mendelsohn partition when applied to matrix columns (vari-
ables).

property overconstrained

Alias for field number 2

property square

Alias for field number 3

property underconstrained

Alias for field number 1

17.5. Incidence Analysis 465

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

property unmatched

Alias for field number 0

class pyomo.contrib.incidence_analysis.dulmage_mendelsohn.RowPartition(unmatched,
overconstrained,
underconstrained,
square)

Named tuple containing the subsets of the Dulmage-Mendelsohn partition when applied to matrix rows (con-
straints).

property overconstrained

Alias for field number 1

property square

Alias for field number 3

property underconstrained

Alias for field number 2

property unmatched

Alias for field number 0

pyomo.contrib.incidence_analysis.dulmage_mendelsohn.dulmage_mendelsohn(matrix_or_graph,
top_nodes=None,
matching=None)

Partition a bipartite graph or incidence matrix according to the Dulmage-Mendelsohn characterization

The Dulmage-Mendelsohn partition tells which nodes of the two bipartite sets can possibly be unmatched after
a maximum cardinality matching. Applied to an incidence matrix, it can be interpreted as partitioning rows and
columns into under-constrained, over-constrained, and well-constrained subsystems.

As it is often useful to explicitly check the unmatched rows and columns, dulmage_mendelsohn partitions rows
into the subsets:

• underconstrained - The rows matched with possibly unmatched columns (unmatched and undercon-
strained columns)

• square - The well-constrained rows, which are matched with well-constrained columns
• overconstrained - The matched rows that can possibly be unmatched in some maximum cardinality match-

ing
• unmatched - The unmatched rows in a particular maximum cardinality matching

and partitions columns into the subsets:
• unmatched - The unmatched columns in a particular maximum cardinality matching
• underconstrained - The columns that can possibly be unmatched in some maximum cardinality matching
• square - The well-constrained columns, which are matched with well-constrained rows
• overconstrained - The columns matched with possibly unmatched rows (unmatched and overconstrained

rows)

Parameters
• matrix_or_graph (scipy.sparse.coo_matrix or networkx.Graph) – The inci-

dence matrix or bipartite graph to be partitioned

• top_nodes (list) – List of nodes in one bipartite set of the graph. Must be provided
if a graph is provided.

• matching (dict) – A maximum cardinality matching in the form of a dict mapping
from “top nodes” to their matched nodes and from the matched nodes back to the “top
nodes”.

Returns

466 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

• row_dmp (RowPartition) – The Dulmage-Mendelsohn partition of rows

• col_dmp (ColPartition) – The Dulmage-Mendelsohn partition of columns

Block Triangular Decomposition Solver

pyomo.contrib.incidence_analysis.scc_solver.generate_strongly_connected_components(constraints,
vari-
ables=None,
in-
clude_fixed=False)

Yield in order _BlockData that each contain the variables and constraints of a single diagonal block in a block
lower triangularization of the incidence matrix of constraints and variables

These diagonal blocks correspond to strongly connected components of the bipartite incidence graph, projected
with respect to a perfect matching into a directed graph.

Parameters
• constraints (List of Pyomo constraint data objects) – Constraints used

to generate strongly connected components.

• variables (List of Pyomo variable data objects) – Variables that may par-
ticipate in strongly connected components. If not provided, all variables in the con-
straints will be used.

• include_fixed (Bool) – Indicates whether fixed variables will be included when
identifying variables in constraints.

Yields
_BlockData – Blocks containing the variables and constraints of every strongly connected
component, in a topological order, as well as the “input variables” for that block

pyomo.contrib.incidence_analysis.scc_solver.solve_strongly_connected_components(block,
solver=None,
solve_kwds=None,
calc_var_kwds=None)

Solve a square system of variables and equality constraints by solving strongly connected components individu-
ally.

Strongly connected components (of the directed graph of constraints obtained from a perfect matching of vari-
ables and constraints) are the diagonal blocks in a block triangularization of the incidence matrix, so solving the
strongly connected components in topological order is sufficient to solve the entire block.

One-by-one blocks are solved using Pyomo’s calculate_variable_from_constraint function, while higher-
dimension blocks are solved using the user-provided solver object.

Parameters
• block (Pyomo Block) – The Pyomo block whose variables and constraints will be

solved

• solver (Pyomo solver object) – The solver object that will be used to solve
strongly connected components of size greater than one constraint. Must implement
a solve method.

• solve_kwds (Dictionary) – Keyword arguments for the solver’s solve method

• calc_var_kwds (Dictionary) – Keyword arguments for calcu-
late_variable_from_constraint

Return type
List of results objects returned by each call to solve

17.5. Incidence Analysis 467

Pyomo Documentation, Release 6.5.0

If you are wondering what Incidence Analysis is and would like to learn more, please see Overview. If you already
know what Incidence Analysis is and are here for reference, see Incidence Analysis Tutorial or API Reference as needed.

17.6 MindtPy Solver

The Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy) solver allows users to solve Mixed-Integer
Nonlinear Programs (MINLP) using decomposition algorithms. These decomposition algorithms usually rely on the
solution of Mixed-Intger Linear Programs (MILP) and Nonlinear Programs (NLP).

The following algorithms are currently available in MindtPy:

• Outer-Approximation (OA) [Duran & Grossmann, 1986]

• LP/NLP based Branch-and-Bound (LP/NLP BB) [Quesada & Grossmann, 1992]

• Extended Cutting Plane (ECP) [Westerlund & Petterson, 1995]

• Global Outer-Approximation (GOA) [Kesavan & Allgor, 2004, MC++]

• Regularized Outer-Approximation (ROA) [Bernal & Peng, 2021, Kronqvist & Bernal, 2018]

• Feasibility Pump (FP) [Bernal & Vigerske, 2019, Bonami & Cornuéjols, 2009]

Usage and early implementation details for MindtPy can be found in the PSE 2018 paper Bernal et al., (ref, preprint).

17.6.1 MINLP Formulation

The general formulation of the mixed integer nonlinear programming (MINLP) models is as follows.

min
x,y

𝑓(x,y)

s.t. 𝑔𝑗(x,y) ≤ 0 ∀𝑗 = 1, . . . 𝑙,

Ax + By ≤ b,

x ∈ R𝑛, y ∈ Z𝑚.

where

• x ∈ R𝑛 are continuous variables,

• y ∈ Z𝑚 are discrete variables,

• 𝑓, 𝑔1, . . . , 𝑔𝑙 are non-linear smooth functions,

• Ax + By ≤ b‘ are linear constraints.

17.6.2 Solve Convex MINLPs

Usage of MindtPy to solve a convex MINLP Pyomo model involves:

>>> SolverFactory('mindtpy').solve(model)

An example which includes the modeling approach may be found below.

468 Chapter 17. Third-Party Contributions

https://dx.doi.org/10.1007/BF02592064
https://www.sciencedirect.com/science/article/abs/pii/0098135492800288
http://dx.doi.org/10.1016/0098-1354(95)87027-X
https://link.springer.com/article/10.1007/s10107-004-0503-1
https://pyomo.readthedocs.io/en/stable/contributed_packages/mcpp.html
http://www.optimization-online.org/DB_HTML/2021/06/8452.html
https://link.springer.com/article/10.1007%2Fs10107-018-1356-3
https://www.tandfonline.com/doi/abs/10.1080/10556788.2019.1641498
https://link.springer.com/article/10.1007/s10107-008-0212-2
https://doi.org/10.1016/B978-0-444-64241-7.50144-0
http://egon.cheme.cmu.edu/Papers/Bernal_Chen_MindtPy_PSE2018Paper.pdf

Pyomo Documentation, Release 6.5.0

Required imports
>>> from pyomo.environ import *

Create a simple model
>>> model = ConcreteModel()

>>> model.x = Var(bounds=(1.0,10.0),initialize=5.0)
>>> model.y = Var(within=Binary)

>>> model.c1 = Constraint(expr=(model.x-4.0)**2 - model.x <= 50.0*(1-model.y))
>>> model.c2 = Constraint(expr=model.x*log(model.x)+5.0 <= 50.0*(model.y))

>>> model.objective = Objective(expr=model.x, sense=minimize)

Solve the model using MindtPy
>>> SolverFactory('mindtpy').solve(model, mip_solver='glpk', nlp_solver='ipopt')

The solution may then be displayed by using the commands

>>> model.objective.display()
>>> model.display()
>>> model.pprint()

Note: When troubleshooting, it can often be helpful to turn on verbose output using the tee flag.

>>> SolverFactory('mindtpy').solve(model, mip_solver='glpk', nlp_solver='ipopt',␣
→˓tee=True)

MindtPy also supports setting options for mip solvers and nlp solvers.

>>> SolverFactory('mindtpy').solve(model,
strategy='OA',
time_limit=3600,
mip_solver='gams',
mip_solver_args=dict(solver='cplex', warmstart=True),
nlp_solver='ipopt',
tee=True)

There are three initialization strategies in MindtPy: rNLP, initial_binary, max_binary. In OA and GOA strategies,
the default initialization strategy is rNLP. In ECP strategy, the default initialization strategy is max_binary.

LP/NLP Based Branch-and-Bound

MindtPy also supports single-tree implementation of Outer-Approximation (OA) algorithm, which is known as LP/NLP
based branch-and-bound algorithm originally described in [Quesada & Grossmann, 1992]. The LP/NLP based branch-
and-bound algorithm in MindtPy is implemeted based on the LazyConstraintCallback function in commercial solvers.

Note: In Pyomo, persistent solvers are necessary to set or register callback functions. The single tree implementation
currently only works with CPLEX and GUROBI, more exactly cplex_persistent and gurobi_persistent. To
use the LazyConstraintCallback function of CPLEX from Pyomo, the CPLEX Python API is required. This means

17.6. MindtPy Solver 469

https://www.sciencedirect.com/science/article/abs/pii/0098135492800288
https://pyomo.readthedocs.io/en/stable/advanced_topics/persistent_solvers.html?highlight=persistent
https://www.ibm.com/docs/en/icos/20.1.0?topic=classes-cplexcallbackslazyconstraintcallback
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-setting-up-python-api

Pyomo Documentation, Release 6.5.0

both IBM ILOG CPLEX Optimization Studio and the CPLEX-Python modules should be installed on your computer.
To use the cbLazy function of GUROBI from pyomo, gurobipy is required.

A usage example for LP/NLP based branch-and-bound algorithm is as follows:

>>> pyo.SolverFactory('mindtpy').solve(model,
... strategy='OA',
... mip_solver='cplex_persistent', # or 'gurobi_
→˓persistent'
... nlp_solver='ipopt',
... single_tree=True)
>>> model.objective.display()

Regularized Outer-Approximation

As a new implementation in MindtPy, we provide a flexible regularization technique implementation. In this technique,
an extra mixed-integer problem is solved in each decomposition iteration or incumbent solution of the single-tree
solution methods. The extra mixed-integer program is constructed to provide a point where the NLP problem is solved
closer to the feasible region described by the non-linear constraint. This approach has been proposed in [Kronqvist et
al., 2020], and it has shown to be efficient for highly non-linear convex MINLP problems. In [Kronqvist et al., 2020],
two different regularization approaches are proposed, using a squared Euclidean norm which was proved to make the
procedure equivalent to adding a trust-region constraint to Outer-approximation, and a second-order approximation of
the Lagrangian of the problem, which showed better performance. We implement these methods, using PyomoNLP as
the interface to compute the second-order approximation of the Lagrangian, and extend them to consider linear norm
objectives and first-order approximations of the Lagrangian. Finally, we implemented an approximated second-order
expansion of the Lagrangian, drawing inspiration from the Sequential Quadratic Programming (SQP) literature. The
details of this implementation are included in [Bernal et al., 2021].

A usage example for regularized OA is as follows:

>>> pyo.SolverFactory('mindtpy').solve(model,
... strategy='OA',
... mip_solver='cplex',
... nlp_solver='ipopt',
... add_regularization='level_L1'
... # alternative regularizations
... # 'level_L1', 'level_L2', 'level_L_infinity',
... # 'grad_lag', 'hess_lag', 'hess_only_lag', 'sqp_lag'
...)
>>> model.objective.display()

Solution Pool Implementation

MindtPy supports solution pool of the MILP solver, CPLEX and GUROBI. With the help of the solution, MindtPy can
explore several integer combinations in one iteration.

A usage example for OA with solution pool is as follows:

>>> pyo.SolverFactory('mindtpy').solve(model,
... strategy='OA',
... mip_solver='cplex_peristent',
... nlp_solver='ipopt',

(continues on next page)

470 Chapter 17. Third-Party Contributions

https://www.gurobi.com/documentation/9.1/refman/py_model_cblazy.html
https://www.gurobi.com/documentation/9.1/quickstart_mac/cs_grbpy_the_gurobi_python.html
https://link.springer.com/article/10.1007/s10107-018-1356-3
https://link.springer.com/article/10.1007/s10107-018-1356-3
https://link.springer.com/article/10.1007/s10107-018-1356-3
http://www.optimization-online.org/DB_HTML/2021/06/8452.html

Pyomo Documentation, Release 6.5.0

(continued from previous page)

... solution_pool=True,

... num_solution_iteration=10, # default=5

... tee=True

...)
>>> model.objective.display()

Feasibility Pump

For some MINLP problems, the Outer Approximation method might have difficulty in finding a feasible solution.
MindtPy provides the Feasibility Pump implementation to find feasible solutions for convex MINLPs quickly. The main
idea of the Feasibility Pump is to decompose the original mixed-integer problem into two parts: integer feasibility and
constraint feasibility. For convex MINLPs, a MIP is solved to obtain a solution, which satisfies the integrality constraints
on y, but may violate some of the nonlinear constraints; next, by solving an NLP, a solution is computed that satisfies the
nonlinear constraints but might again violate the integrality constraints on y. By minimizing the distance between these
two types of solutions iteratively, a constraint and integer feasible solution can be expected. In MindtPy, the Feasibility
Pump can be used both as an initialization strategy and a decomposition strategy. For details of this implementation
are included in [Bernal et al., 2017].

A usage example for Feasibility Pump as the initialization strategy is as follows:

>>> pyo.SolverFactory('mindtpy').solve(model,
... strategy='OA',
... init_strategy='FP',
... mip_solver='cplex',
... nlp_solver='ipopt',
... tee=True
...)
>>> model.objective.display()

A usage example for Feasibility Pump as the decomposition strategy is as follows:

>>> pyo.SolverFactory('mindtpy').solve(model,
... strategy='FP',
... mip_solver='cplex',
... nlp_solver='ipopt',
... tee=True
...)
>>> model.objective.display()

17.6.3 Solve Nonconvex MINLPs

Equality Relaxation

Under certain assumptions concerning the convexity of the nonlinear functions, an equality constraint can be relaxed
to be an inequality constraint. This property can be used in the MIP master problem to accumulate linear approxima-
tions(OA cuts). The sense of the equivalent inequality constraint is based on the sign of the dual values of the equality
constraint. Therefore, the sense of the OA cuts for equality constraint should be determined according to both the
objective sense and the sign of the dual values. In MindtPy, the dual value of the equality constraint is calculated as
follows.

17.6. MindtPy Solver 471

http://www.optimization-online.org/DB_HTML/2017/08/6171.html

Pyomo Documentation, Release 6.5.0

constraint status at 𝑥1 dual values
𝑔(𝑥) ≤ 𝑏 𝑔(𝑥1) ≤ 𝑏 0
𝑔(𝑥) ≤ 𝑏 𝑔(𝑥1) > 𝑏 𝑔(𝑥1) − 𝑏
𝑔(𝑥) ≥ 𝑏 𝑔(𝑥1) ≥ 𝑏 0
𝑔(𝑥) ≥ 𝑏 𝑔(𝑥1) < 𝑏 𝑏− 𝑔(𝑥1)

Augmented Penalty

Augmented Penalty refers to the introduction of (non-negative) slack variables on the right hand sides of the just
described inequality constraints and the modification of the objective function when assumptions concerning convexity
do not hold. (From DICOPT)

Global Outer-Approximation

Apart from the decomposition methods for convex MINLP problems [Kronqvist et al., 2019], MindtPy provides an
implementation of Global Outer Approximation (GOA) as described in [Kesavan & Allgor, 2004], to provide optimality
guaranteed for nonconvex MINLP problems. Here, the validity of the Mixed-integer Linear Programming relaxation
of the original problem is guaranteed via the usage of Generalized McCormick envelopes, computed using the package
MC++. The NLP subproblems, in this case, need to be solved to global optimality, which can be achieved through
global NLP solvers such as BARON or SCIP.

Convergence

MindtPy provides two ways to guarantee the finite convergence of the algorithm.

• No-good cuts. No-good cuts(integer cuts) are added to the MILP master problem in each iteration.

• Tabu list. Tabu list is only supported if the mip_solver is cplex_persistent (gurobi_persistent pend-
ing). In each iteration, the explored integer combinations will be added to the tabu_list. When solving the next
MILP problem, the MIP solver will reject the previously explored solutions in the branch and bound process
through IncumbentCallback.

Bound Calculation

Since no-good cuts or tabu list is applied in the Global Outer-Approximation (GOA) method, the MILP master problem
cannot provide a valid bound for the original problem. After the GOA method has converged, MindtPy will remove
the no-good cuts or the tabu integer combinations added when and after the optimal solution has been found. Solving
this problem will give us a valid bound for the original problem.

The GOA method also has a single-tree implementation with cplex_persistent and gurobi_persistent. Notice
that this method is more computationally expensive than the other strategies implemented for convex MINLP like OA
and ECP, which can be used as heuristics for nonconvex MINLP problems.

A usage example for GOA is as follows:

>>> pyo.SolverFactory('mindtpy').solve(model,
... strategy='GOA',
... mip_solver='cplex',
... nlp_solver='baron')
>>> model.objective.display()

472 Chapter 17. Third-Party Contributions

https://link.springer.com/article/10.1007/s11081-018-9411-8
https://link.springer.com/article/10.1007/s10107-004-0503-1
https://pyomo.readthedocs.io/en/stable/contributed_packages/mcpp.html
https://minlp.com/baron-solver
https://www.scipopt.org/

Pyomo Documentation, Release 6.5.0

17.6.4 MindtPy Implementation and Optional Arguments

Warning: MindtPy optional arguments should be considered beta code and are subject to change.

class pyomo.contrib.mindtpy.MindtPy.MindtPySolver

Decomposition solver for Mixed-Integer Nonlinear Programming (MINLP) problems.

The MindtPy (Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo) solver applies a variety of
decomposition-based approaches to solve Mixed-Integer Nonlinear Programming (MINLP) problems. These
approaches include:

• Outer approximation (OA)
• Global outer approximation (GOA)
• Regularized outer approximation (ROA)
• LP/NLP based branch-and-bound (LP/NLP)
• Global LP/NLP based branch-and-bound (GLP/NLP)
• Regularized LP/NLP based branch-and-bound (RLP/NLP)
• Feasibility pump (FP)

This solver implementation has been developed by David Bernal <https://github.com/bernalde> and Zedong
Peng <https://github.com/ZedongPeng> as part of research efforts at the Grossmann Research Group (http://
egon.cheme.cmu.edu/) at the Department of Chemical Engineering at Carnegie Mellon University.

available(exception_flag=True)
Check if solver is available.

solve(model, **kwds)
Solve the model.

Parameters
model (Block) – a Pyomo model or block to be solved

Keyword Arguments
• iteration_limit – Number of maximum iterations in the decomposition meth-

ods.

• stalling_limit – Stalling limit for primal bound progress in the decomposition
methods.

• time_limit – Seconds allowed until terminated. Note that the time limit can-
currently only be enforced between subsolver invocations. You mayneed to set
subsolver time limits as well.

• strategy – MINLP Decomposition strategy to be applied to the method. Cur-
rently available Outer Approximation (OA), Extended Cutting Plane (ECP),
Global Outer Approximation (GOA) and Feasibility Pump (FP).

• add_regularization – Solving a regularization problem before solve the fixed
subproblemthe objective function of the regularization problem.

• call_after_main_solve – Callback hook after a solution of the main problem.

• call_after_subproblem_solve – Callback hook after a solution of the non-
linear subproblem.

• call_after_subproblem_feasible – Callback hook after a feasible solution
of the nonlinear subproblem.

• tee – Stream output to terminal.

17.6. MindtPy Solver 473

https://github.com/bernalde
https://github.com/ZedongPeng
http://egon.cheme.cmu.edu/
http://egon.cheme.cmu.edu/

Pyomo Documentation, Release 6.5.0

• logger – The logger object or name to use for reporting.

• logging_level – The logging level for MindtPy.CRITICAL = 50, ERROR = 40,
WARNING = 30, INFO = 20, DEBUG = 10, NOTSET = 0

• integer_to_binary – Convert integer variables to binaries (for no-good cuts).

• add_no_good_cuts – Add no-good cuts (no-good cuts) to binary variables to
disallow same integer solution again.Note that integer_to_binary flag needs to be
used to apply it to actual integers and not just binaries.

• use_tabu_list – Use tabu list and incumbent callback to disallow same integer
solution again.

• single_tree – Use single tree implementation in solving the MIP main problem.

• solution_pool – Use solution pool in solving the MIP main problem.

• num_solution_iteration – The number of MIP solutions (from the solution
pool) used to generate the fixed NLP subproblem in each iteration.

• cycling_check – Check if OA algorithm is stalled in a cycle and terminate.

• feasibility_norm – Different forms of objective function in feasibility sub-
problem.

• differentiate_mode – Differentiate mode to calculate jacobian.

• use_mcpp – Use package MC++ to set a bound for variable ‘objective_value’,
which is introduced when the original problem’s objective function is nonlinear.

• calculate_dual_at_solution – Calculate duals of the NLP subproblem.

• use_fbbt – Use fbbt to tighten the feasible region of the problem.

• use_dual_bound – Add dual bound constraint to enforce the objective satisfies
best-found dual bound.

• partition_obj_nonlinear_terms – Partition objective with the sum of non-
linear terms using epigraph reformulation.

• quadratic_strategy – How to treat the quadratic terms in MINLP.0 : treat
as nonlinear terms1 : only use quadratic terms in objective function directly in
main problem2 : use quadratic terms in objective function and constraints in main
problem

• move_objective – Whether to replace the objective function to constraint using
epigraph constraint.

• add_cuts_at_incumbent – Whether to add lazy cuts to the main problem at the
incumbent solution found in the branch & bound tree

• nlp_solver – Which NLP subsolver is going to be used for solving the nonlin-
earsubproblems.

• nlp_solver_args – Which NLP subsolver options to be passed to the solver
while solving the nonlinear subproblems.

• mip_solver – Which MIP subsolver is going to be used for solving the mixed-
integer main problems.

• mip_solver_args – Which MIP subsolver options to be passed to the solver
while solving the mixed-integer main problems.

• mip_solver_mipgap – Mipgap passed to MIP solver.

474 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

• threads – Threads used by MIP solver and NLP solver.

• regularization_mip_threads – Threads used by MIP solver to solve regular-
ization main problem.

• solver_tee – Stream the output of MIP solver and NLP solver to terminal.

• mip_solver_tee – Stream the output of MIP solver to terminal.

• nlp_solver_tee – Stream the output of nlp solver to terminal.

• mip_regularization_solver – Which MIP subsolver is going to be used for
solving the regularization problem.

• absolute_bound_tolerance – Absolute tolerance for bound feasibility checks.

• relative_bound_tolerance – Relative tolerance for bound feasibility
checks. |𝑃𝑟𝑖𝑚𝑎𝑙𝐵𝑜𝑢𝑛𝑑 − 𝐷𝑢𝑎𝑙𝐵𝑜𝑢𝑛𝑑|/(1𝑒 − 10 + |𝑃𝑟𝑖𝑚𝑎𝑙𝐵𝑜𝑢𝑛𝑑|) <=
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• small_dual_tolerance – When generating cuts, small duals multiplied by ex-
pressions can cause problems. Exclude all duals smaller in absolute value than
the following.

• integer_tolerance – Tolerance on integral values.

• constraint_tolerance – Tolerance on constraint satisfaction.

• variable_tolerance – Tolerance on variable bounds.

• zero_tolerance – Tolerance on variable equal to zero.

• fp_cutoffdecr – Additional relative decrement of cutoff value for the original
objective function.

• fp_iteration_limit – Number of maximum iterations in the feasibility pump
methods.

• fp_projcuts – Whether to add cut derived from regularization of MIP solution
onto NLP feasible set.

• fp_transfercuts – Whether to transfer cuts from the Feasibility Pump MIP to
main MIP in selected strategy (all except from the round in which the FP MIP
became infeasible).

• fp_projzerotol – Tolerance on when to consider optimal value of regulariza-
tion problem as zero, which may trigger the solution of a Sub-NLP.

• fp_mipgap – Optimality tolerance (relative gap) to use for solving MIP regular-
ization problem.

• fp_discrete_only – Only calculate the distance among discrete variables in
regularization problems.

• fp_main_norm – Different forms of objective function MIP regularization prob-
lem.

• fp_norm_constraint – Whether to add the norm constraint to FP-NLP

• fp_norm_constraint_coef – The coefficient in the norm constraint, corre-
spond to the Beta in the paper.

• obj_bound – Bound applied to the linearization of the objective function if main
MIP is unbounded.

17.6. MindtPy Solver 475

Pyomo Documentation, Release 6.5.0

• continuous_var_bound – Default bound added to unbounded continuous vari-
ables in nonlinear constraint if single tree is activated.

• integer_var_bound – Default bound added to unbounded integral variables in
nonlinear constraint if single tree is activated.

• initial_bound_coef – The coefficient used to approximate the initial pri-
mal/dual bound.

• level_coef – The coefficient in the regularization main problemrepresents how
much the linear approximation of the MINLP problem is trusted.

• solution_limit – The solution limit for the regularization problem since it does
not need to be solved to optimality.

• reduce_level_coef – Whether to reduce level coefficient in ROA single tree
when regularization problem is infeasible.

• use_bb_tree_incumbent – Whether to use the incumbent solution of branch &
bound tree in ROA single tree when regularization problem is infeasible.

• sqp_lag_scaling_coef – The coefficient used to scale the L2 norm in sqp_lag.

version()

Return a 3-tuple describing the solver version.

17.6.5 Get Help

Ways to get help: https://github.com/Pyomo/pyomo#getting-help

17.6.6 Report a Bug

If you find a bug in MindtPy, we will be grateful if you could

• submit an issue in Pyomo repository

• directly contact David Bernal <bernalde@cmu.edu> and Zedong Peng <peng_zedong@126.com>.

17.7 MPC

This package contains data structures and utilities for dynamic optimization and rolling horizon applications, e.g. model
predictive control.

17.7.1 Overview

What does this package contain?

1. Data structures for values and time series data associated with time-indexed variables (or parameters, or named
expressions). Examples are setpoint values associated with a subset of state variables or time series data from a
simulation

2. Utilities for loading and extracting this data into and from variables in a model

3. Utilities for constructing components from this data (expressions, constraints, and objectives) that are useful for
dynamic optimization

476 Chapter 17. Third-Party Contributions

https://github.com/Pyomo/pyomo#getting-help
https://github.com/Pyomo/pyomo/issues
mailto:bernalde@cmu.edu
mailto:peng_zedong@126.com

Pyomo Documentation, Release 6.5.0

What is the goal of this package?

This package was written to help developers of Pyomo-based dynamic optimization case studies, especially rolling
horizon dynamic optimization case studies, write scripts that are small, legible, and maintainable. It does this by
providing utilities for mundane data-management and model construction tasks, allowing the developer to focus on
their application.

Why is this package useful?

First, it is not normally easy to extract “flattened” time series data, in which all indexing structure other than time-
indexing has been flattened to yield a set of one-dimensional arrays, from a Pyomo model. This is an extremely
convenient data structure to have for plotting, analysis, initialization, and manipulation of dynamic models. If all
variables are indexed by time and only time, this data is relatively easy to obtain. The first issue comes up when dealing
with components that are indexed by time in addition to some other set(s). For example:

>>> import pyomo.environ as pyo

>>> m = pyo.ConcreteModel()
>>> m.time = pyo.Set(initialize=[0, 1, 2])
>>> m.comp = pyo.Set(initialize=["A", "B"])
>>> m.var = pyo.Var(m.time, m.comp, initialize=1.0)

>>> t0 = m.time.first()
>>> data = {
... m.var[t0, j].name: [m.var[i, j].value for i in m.time]
... for j in m.comp
... }
>>> data
{'var[0,A]': [1.0, 1.0, 1.0], 'var[0,B]': [1.0, 1.0, 1.0]}

To generate data in this form, we need to (a) know that our variable is indexed by time and m.comp and (b) arbitrarily
select a time index t0 to generate a unique key for each time series. This gets more difficult when blocks and time-
indexed blocks are used as well. The first difficulty can be alleviated using flatten_dae_components from pyomo.
dae.flatten:

>>> import pyomo.environ as pyo
>>> from pyomo.dae.flatten import flatten_dae_components

>>> m = pyo.ConcreteModel()
>>> m.time = pyo.Set(initialize=[0, 1, 2])
>>> m.comp = pyo.Set(initialize=["A", "B"])
>>> m.var = pyo.Var(m.time, m.comp, initialize=1.0)

>>> t0 = m.time.first()
>>> scalar_vars, dae_vars = flatten_dae_components(m, m.time, pyo.Var)
>>> data = {var[t0].name: list(var[:].value) for var in dae_vars}
>>> data
{'var[0,A]': [1.0, 1.0, 1.0], 'var[0,B]': [1.0, 1.0, 1.0]}

Addressing the arbitrary t0 index requires us to ask what key we would like to use to identify each time series in our
data structure. The key should uniquely correspond to a component, or “sub-component” that is indexed only by time.
A slice, e.g. m.var[:, "A"] seems natural. However, Pyomo provides a better data structure that can be constructed
from a component, slice, or string, called ComponentUID. Being constructable from a string is important as we may

17.7. MPC 477

Pyomo Documentation, Release 6.5.0

want to store or serialize this data in a form that is agnostic of any particular ConcreteModel object. We can now
generate our data structure as:

>>> data = {
... pyo.ComponentUID(var.referent): list(var[:].value)
... for var in dae_vars
... }
>>> data
{var[*,A]: [1.0, 1.0, 1.0], var[*,B]: [1.0, 1.0, 1.0]}

This is the structure of the underlying dictionary in the TimeSeriesData class provided by this package. We can
generate this data using this package as:

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.mpc import DynamicModelInterface

>>> m = pyo.ConcreteModel()
>>> m.time = pyo.Set(initialize=[0, 1, 2])
>>> m.comp = pyo.Set(initialize=["A", "B"])
>>> m.var = pyo.Var(m.time, m.comp, initialize=1.0)

>>> # Construct a helper class for interfacing model with data
>>> helper = DynamicModelInterface(m, m.time)

>>> # Generates a TimeSeriesData object
>>> series_data = helper.get_data_at_time()

>>> # Get the underlying dictionary
>>> data = series_data.get_data()
>>> data
{var[*,A]: [1.0, 1.0, 1.0], var[*,B]: [1.0, 1.0, 1.0]}

The first value proposition of this package is that DynamicModelInterface and TimeSeriesData provide wrappers
to ease loading and extraction of data via flatten_dae_components and ComponentUID.

The second difficulty addressed by this package is that of extracting and loading data between (potentially) different
models. For instance, in model predictive control, we often want to extract data from a particular time point in a plant
model and load it into a controller model as initial conditions. This can be done as follows:

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.mpc import DynamicModelInterface

>>> m1 = pyo.ConcreteModel()
>>> m1.time = pyo.Set(initialize=[0, 1, 2])
>>> m1.comp = pyo.Set(initialize=["A", "B"])
>>> m1.var = pyo.Var(m1.time, m1.comp, initialize=1.0)

>>> m2 = pyo.ConcreteModel()
>>> m2.time = pyo.Set(initialize=[0, 1, 2])
>>> m2.comp = pyo.Set(initialize=["A", "B"])
>>> m2.var = pyo.Var(m2.time, m2.comp, initialize=2.0)

>>> # Construct helper objects
>>> m1_helper = DynamicModelInterface(m1, m1.time)

(continues on next page)

478 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> m2_helper = DynamicModelInterface(m2, m2.time)

>>> # Extract data from final time point of m2
>>> tf = m2.time.last()
>>> tf_data = m2_helper.get_data_at_time(tf)

>>> # Load data into initial time point of m1
>>> t0 = m1.time.first()
>>> m1_helper.load_data(tf_data, time_points=t0)

>>> # Get TimeSeriesData object
>>> series_data = m1_helper.get_data_at_time()
>>> # Get underlying dictionary
>>> series_data.get_data()
{var[*,A]: [2.0, 1.0, 1.0], var[*,B]: [2.0, 1.0, 1.0]}

Note: Here we rely on the fact that our variable has the same name in both models.

Finally, this package provides methods for constructing components like tracking cost expressions and piecewise-
constant constraints from the provided data structures. For example, the following code constructs a tracking cost
expression.

>>> import pyomo.environ as pyo
>>> from pyomo.contrib.mpc import DynamicModelInterface

>>> m = pyo.ConcreteModel()
>>> m.time = pyo.Set(initialize=[0, 1, 2])
>>> m.comp = pyo.Set(initialize=["A", "B"])
>>> m.var = pyo.Var(m.time, m.comp, initialize=1.0)

>>> # Construct helper object
>>> helper = DynamicModelInterface(m, m.time)

>>> # Construct data structure for setpoints
>>> setpoint = {m.var[:, "A"]: 0.5, m.var[:, "B"]: 2.0}
>>> var_set, tr_cost = helper.get_penalty_from_target(setpoint)
>>> m.setpoint_idx = var_set
>>> m.tracking_cost = tr_cost
>>> m.tracking_cost.pprint()
tracking_cost : Size=6, Index=tracking_cost_index

Key : Expression
(0, 0) : (var[0,A] - 0.5)**2
(0, 1) : (var[1,A] - 0.5)**2
(0, 2) : (var[2,A] - 0.5)**2
(1, 0) : (var[0,B] - 2.0)**2
(1, 1) : (var[1,B] - 2.0)**2
(1, 2) : (var[2,B] - 2.0)**2

These methods will hopefully allow developers to declutter dynamic optimization scripts and pay more attention to the
application of the optimization problem rather than the setup of the optimization problem.

17.7. MPC 479

Pyomo Documentation, Release 6.5.0

Who develops and maintains this package?

This package was developed by Robert Parker while a PhD student in Larry Biegler’s group at CMU, with guidance
from Bethany Nicholson and John Siirola.

17.7.2 Examples

Please see pyomo/contrib/mpc/examples/cstr/run_openloop.py and pyomo/contrib/mpc/examples/
cstr/run_mpc.py for examples of some simple use cases.

17.7.3 Frequently asked questions

1. Why not use Pandas DataFrames?

Pandas DataFrames are a natural data structure for storing “columns” of time series data. These columns, or individual
time series, could each represent the data for a single variable. This is very similar to the TimeSeriesData class intro-
duced in this package. The reason a new data structure is introduced is primarily that a DataFrame does not provide any
utility for converting labels into a consistent format, as TimeSeriesData does by accepting variables, strings, slices, etc.
as keys and converting them into the form of a time-indexed ComponentUID. Also, DataFrames do not have convenient
analogs for scalar data and time interval data, which this package provides as the ScalarData and IntervalData classes
with very similar APIs to TimeSeriesData.

17.8 Multistart Solver

The multistart solver is used in cases where the objective function is known to be non-convex but the global optimum
is still desired. It works by running a non-linear solver of your choice multiple times at different starting points, and
returns the best of the solutions.

17.8.1 Using Multistart Solver

To use the multistart solver, define your Pyomo model as usual:

Required import
>>> from pyomo.environ import *

Create a simple model
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var()
>>> m.obj = Objective(expr=m.x**2 + m.y**2)
>>> m.c = Constraint(expr=m.y >= -2*m.x + 5)

Invoke the multistart solver
>>> SolverFactory('multistart').solve(m)

480 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

17.8.2 Multistart wrapper implementation and optional arguments

class pyomo.contrib.multistart.multi.MultiStart

Solver wrapper that initializes at multiple starting points.

TODO: also return appropriate duals

For theoretical underpinning, see https://www.semanticscholar.org/paper/
How-many-random-restarts-are-enough-Dick-Wong/55b248b398a03dc1ac9a65437f88b835554329e0

Keyword arguments below are specified for the solve function.
Keyword Arguments

• strategy – Specify the restart strategy.

– ”rand”: random choice between variable bounds

– ”midpoint_guess_and_bound”: midpoint between current value and farthest
bound

– ”rand_guess_and_bound”: random choice between current value and farthest
bound

– ”rand_distributed”: random choice among evenly distributed values

– ”midpoint”: exact midpoint between the bounds. If using this option, multiple
iterations are useless.

• solver – solver to use, defaults to ipopt

• solver_args – Dictionary of keyword arguments to pass to the solver.

• iterations – Specify the number of iterations, defaults to 10. If -1 is specified, the
high confidence stopping rule will be used

• stopping_mass – Maximum allowable estimated missing mass of optima for the high
confidence stopping rule, only used with the random strategy. The lower the parameter,
the stricter the rule. Value bounded in (0, 1].

• stopping_delta – 1 minus the confidence level required for the stopping rule for
the high confidence stopping rule, only used with the random strategy. The lower the
parameter, the stricter the rule. Value bounded in (0, 1].

• suppress_unbounded_warning – True to suppress warning for skipping unbounded
variables.

• HCS_max_iterations – Maximum number of iterations before interrupting the high
confidence stopping rule.

• HCS_tolerance – Tolerance on HCS objective value equality. Defaults to Python float
equality precision.

available(exception_flag=True)
Check if solver is available.

TODO: For now, it is always available. However, sub-solvers may not always be available, and so this
should reflect that possibility.

17.8. Multistart Solver 481

https://www.semanticscholar.org/paper/How-many-random-restarts-are-enough-Dick-Wong/55b248b398a03dc1ac9a65437f88b835554329e0
https://www.semanticscholar.org/paper/How-many-random-restarts-are-enough-Dick-Wong/55b248b398a03dc1ac9a65437f88b835554329e0

Pyomo Documentation, Release 6.5.0

17.9 Nonlinear Preprocessing Transformations

pyomo.contrib.preprocessing is a contributed library of preprocessing transformations intended to operate upon
nonlinear and mixed-integer nonlinear programs (NLPs and MINLPs), as well as generalized disjunctive programs
(GDPs).

This contributed package is maintained by Qi Chen and his colleagues from Carnegie Mellon University.

The following preprocessing transformations are available. However, some may later be deprecated or combined,
depending on their usefulness.

var_aggregator.VariableAggregator Aggregate model variables that are linked by equality
constraints.

bounds_to_vars.ConstraintToVarBoundTransform Change constraints to be a bound on the variable.
induced_linearity.InducedLinearity Reformulate nonlinear constraints with induced linear-

ity.
constraint_tightener.
TightenContraintFromVars

DEPRECATED.

deactivate_trivial_constraints.
TrivialConstraintDeactivator

Deactivates trivial constraints.

detect_fixed_vars.FixedVarDetector Detects variables that are de-facto fixed but not consid-
ered fixed.

equality_propagate.FixedVarPropagator Propagate variable fixing for equalities of type 𝑥 = 𝑦.
equality_propagate.VarBoundPropagator Propagate variable bounds for equalities of type 𝑥 = 𝑦.
init_vars.InitMidpoint Initialize non-fixed variables to the midpoint of their

bounds.
init_vars.InitZero Initialize non-fixed variables to zero.
remove_zero_terms.RemoveZeroTerms Looks for 0𝑣 in a constraint and removes it.
strip_bounds.VariableBoundStripper Strip bounds from variables.
zero_sum_propagator.ZeroSumPropagator Propagates fixed-to-zero for sums of only positive (or

negative) vars.

17.9.1 Variable Aggregator

The following code snippet demonstrates usage of the variable aggregation transformation on a concrete Pyomo model:

>>> from pyomo.environ import *
>>> m = ConcreteModel()
>>> m.v1 = Var(initialize=1, bounds=(1, 8))
>>> m.v2 = Var(initialize=2, bounds=(0, 3))
>>> m.v3 = Var(initialize=3, bounds=(-7, 4))
>>> m.v4 = Var(initialize=4, bounds=(2, 6))
>>> m.c1 = Constraint(expr=m.v1 == m.v2)
>>> m.c2 = Constraint(expr=m.v2 == m.v3)
>>> m.c3 = Constraint(expr=m.v3 == m.v4)
>>> TransformationFactory('contrib.aggregate_vars').apply_to(m)

To see the results of the transformation, you could then use the command

>>> m.pprint()

class pyomo.contrib.preprocessing.plugins.var_aggregator.VariableAggregator(**kwds)
Aggregate model variables that are linked by equality constraints.

482 Chapter 17. Third-Party Contributions

https://github.com/qtothec
http://capd.cheme.cmu.edu/

Pyomo Documentation, Release 6.5.0

Before:

𝑥 = 𝑦

𝑎 = 2𝑥 + 6𝑦 + 7

𝑏 = 5𝑦 + 6

After:

𝑧 = 𝑥 = 𝑦

𝑎 = 8𝑧 + 7

𝑏 = 5𝑧 + 6

Warning: TODO: unclear what happens to “capital-E” Expressions at this point in time.

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

update_variables(model)
Update the values of the variables that were replaced by aggregates.

TODO: reduced costs

17.9.2 Explicit Constraints to Variable Bounds

>>> from pyomo.environ import *
>>> m = ConcreteModel()
>>> m.v1 = Var(initialize=1)
>>> m.v2 = Var(initialize=2)
>>> m.v3 = Var(initialize=3)
>>> m.c1 = Constraint(expr=m.v1 == 2)
>>> m.c2 = Constraint(expr=m.v2 >= -2)
>>> m.c3 = Constraint(expr=m.v3 <= 5)
>>> TransformationFactory('contrib.constraints_to_var_bounds').apply_to(m)

class pyomo.contrib.preprocessing.plugins.bounds_to_vars.ConstraintToVarBoundTransform(**kwds)
Change constraints to be a bound on the variable.

Looks for constraints of form: 𝑘 * 𝑣 + 𝑐1 ≤ 𝑐2. Changes variable lower bound on 𝑣 to match (𝑐2 − 𝑐1)/𝑘 if it
results in a tighter bound. Also does the same thing for lower bounds.

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

• tolerance – tolerance on bound equality (𝐿𝐵 = 𝑈𝐵)

• detect_fixed – If True, fix variable when |𝐿𝐵 − 𝑈𝐵| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.
apply_to(model, **kwds)

Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

17.9. Nonlinear Preprocessing Transformations 483

Pyomo Documentation, Release 6.5.0

17.9.3 Induced Linearity Reformulation

class pyomo.contrib.preprocessing.plugins.induced_linearity.InducedLinearity(**kwds)
Reformulate nonlinear constraints with induced linearity.

Finds continuous variables 𝑣 where 𝑣 = 𝑑1 + 𝑑2 + 𝑑3, where 𝑑’s are discrete variables. These continuous
variables may participate nonlinearly in other expressions, which may then be induced to be linear.

The overall algorithm flow can be summarized as:
1. Detect effectively discrete variables and the constraints that imply discreteness.
2. Determine the set of valid values for each effectively discrete variable
3. Find nonlinear expressions in which effectively discrete variables participate.
4. Reformulate nonlinear expressions appropriately.

Note: Tasks 1 & 2 must incorporate scoping considerations (Disjuncts)

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

• equality_tolerance – Tolerance on equality constraints.

• pruning_solver – Solver to use when pruning possible values.
apply_to(model, **kwds)

Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

17.9.4 Constraint Bounds Tightener

This transformation was developed by Sunjeev Kale at Carnegie Mellon University.

class pyomo.contrib.preprocessing.plugins.constraint_tightener.TightenContraintFromVars

DEPRECATED.

Tightens upper and lower bound on constraints based on variable bounds.
Iterates through each variable and tightens the constraint bounds using the inferred values from the
variable bounds.

For now, this only operates on linear constraints.
Deprecated since version 5.7: Use of the constraint tightener transformation is deprecated. Its functionality may
be partially replicated using pyomo.contrib.fbbt.compute_bounds_on_expr(constraint.body).

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

484 Chapter 17. Third-Party Contributions

https://github.com/sjkale

Pyomo Documentation, Release 6.5.0

17.9.5 Trivial Constraint Deactivation

class pyomo.contrib.preprocessing.plugins.deactivate_trivial_constraints.TrivialConstraintDeactivator(**kwds)
Deactivates trivial constraints.

Trivial constraints take form 𝑘1 = 𝑘2 or 𝑘1 ≤ 𝑘2, where 𝑘1 and 𝑘2 are constants. These constraints typically
arise when variables are fixed.

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

• tmp – True to store a set of transformed constraints for future reversion of the transfor-
mation.

• ignore_infeasible – True to skip over trivial constraints that are infeasible instead
of raising an InfeasibleConstraintException.

• return_trivial – a list to which the deactivated trivialconstraints are appended (side
effect)

• tolerance – tolerance on constraint violations
apply_to(model, **kwds)

Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

revert(instance)
Revert constraints deactivated by the transformation.

Parameters
instance – the model instance on which trivial constraints were earlier deactivated.

17.9.6 Fixed Variable Detection

class pyomo.contrib.preprocessing.plugins.detect_fixed_vars.FixedVarDetector(**kwds)
Detects variables that are de-facto fixed but not considered fixed.

For each variable 𝑣 found on the model, check to see if its lower bound 𝑣𝐿𝐵 is within some tolerance of its upper
bound 𝑣𝑈𝐵 . If so, fix the variable to the value of 𝑣𝐿𝐵 .

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

• tmp – True to store the set of transformed variables and their old values so that they can
be restored.

• tolerance – tolerance on bound equality (LB == UB)
apply_to(model, **kwds)

Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

revert(instance)
Revert variables fixed by the transformation.

17.9. Nonlinear Preprocessing Transformations 485

Pyomo Documentation, Release 6.5.0

17.9.7 Fixed Variable Equality Propagator

class pyomo.contrib.preprocessing.plugins.equality_propagate.FixedVarPropagator(**kwds)
Propagate variable fixing for equalities of type 𝑥 = 𝑦.

If 𝑥 is fixed and 𝑦 is not fixed, then this transformation will fix 𝑦 to the value of 𝑥.

This transformation can also be performed as a temporary transformation, whereby the transformed variables are
saved and can be later unfixed.

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

tmp – True to store the set of transformed variables and their old states so that they can be
later restored.

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

revert(instance)
Revert variables fixed by the transformation.

17.9.8 Variable Bound Equality Propagator

class pyomo.contrib.preprocessing.plugins.equality_propagate.VarBoundPropagator(**kwds)
Propagate variable bounds for equalities of type 𝑥 = 𝑦.

If 𝑥 has a tighter bound then 𝑦, then this transformation will adjust the bounds on 𝑦 to match those of 𝑥.

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

tmp – True to store the set of transformed variables and their old states so that they can be
later restored.

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

revert(instance)
Revert variable bounds.

17.9.9 Variable Midpoint Initializer

class pyomo.contrib.preprocessing.plugins.init_vars.InitMidpoint(**kwds)
Initialize non-fixed variables to the midpoint of their bounds.

• If the variable does not have bounds, set the value to zero.
• If the variable is missing one bound, set the value to that of the existing bound.

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

486 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

17.9.10 Variable Zero Initializer

class pyomo.contrib.preprocessing.plugins.init_vars.InitZero(**kwds)
Initialize non-fixed variables to zero.

• If setting the variable value to zero will violate a bound, set the variable value to the relevant bound value.
apply_to(model, **kwds)

Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

17.9.11 Zero Term Remover

class pyomo.contrib.preprocessing.plugins.remove_zero_terms.RemoveZeroTerms(**kwds)
Looks for 0𝑣 in a constraint and removes it.

Currently limited to processing linear constraints of the form 𝑥1 = 0𝑥3, occurring as a result of fixing 𝑥2 = 0.

Note: TODO: support nonlinear expressions

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

17.9.12 Variable Bound Remover

class pyomo.contrib.preprocessing.plugins.strip_bounds.VariableBoundStripper(**kwds)
Strip bounds from variables.

Keyword arguments below are specified for the apply_to and create_using functions.
Keyword Arguments

• strip_domains – strip the domain for discrete variables as well

• reversible – Whether the bound stripping will be temporary. If so, store information
for reversion.

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

revert(instance)
Revert variable bounds and domains changed by the transformation.

17.9. Nonlinear Preprocessing Transformations 487

Pyomo Documentation, Release 6.5.0

17.9.13 Zero Sum Propagator

class pyomo.contrib.preprocessing.plugins.zero_sum_propagator.ZeroSumPropagator(**kwds)
Propagates fixed-to-zero for sums of only positive (or negative) vars.

If 𝑧 is fixed to zero and 𝑧 = 𝑥1 + 𝑥2 + 𝑥3 and 𝑥1, 𝑥2, 𝑥3 are all non-negative or all non-positive, then 𝑥1, 𝑥2,
and 𝑥3 will be fixed to zero.

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

17.10 Parameter Estimation with parmest

parmest is a Python package built on the Pyomo optimization modeling language ([PyomoJournal], [PyomoBookII])
to support parameter estimation using experimental data along with confidence regions and subsequent creation of
scenarios for stochastic programming.

17.10.1 Citation for parmest

If you use parmest, please cite [ParmestPaper]

17.10.2 Index of parmest documenation

Overview

The Python package called parmest facilitates model-based parameter estimation along with characterization of un-
certainty associated with the estimates. For example, parmest can provide confidence regions around the parameter
estimates. Additionally, parameter vectors, each with an attached probability estimate, can be used to build scenarios
for design optimization.

Functionality in parmest includes:

• Model based parameter estimation using experimental data

• Bootstrap resampling for parameter estimation

• Confidence regions based on single or multi-variate distributions

• Likelihood ratio

• Leave-N-out cross validation

• Parallel processing

488 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Background

The goal of parameter estimation is to estimate values for a vector, 𝜃, to use in the functional form

𝑦 = 𝑔(𝑥; 𝜃)

where 𝑥 is a vector containing measured data, typically in high dimension, 𝜃 is a vector of values to estimate, in much
lower dimension, and the response vectors are given as 𝑦𝑖, 𝑖 = 1, . . . ,𝑚 with 𝑚 also much smaller than the dimension
of 𝑥. This is done by collecting 𝑆 data points, which are 𝑥̃, 𝑦 pairs and then finding 𝜃 values that minimize some
function of the deviation between the values of 𝑦 that are measured and the values of 𝑔(𝑥̃; 𝜃) for each corresponding
𝑥̃, which is a subvector of the vector 𝑥. Note that for most experiments, only small parts of 𝑥 will change from one
experiment to the next.

The following least squares objective can be used to estimate parameter values, where data points are indexed by
𝑠 = 1, . . . , 𝑆

min
𝜃

𝑄(𝜃; 𝑥̃, 𝑦) ≡
𝑆∑︁

𝑠=1

𝑞𝑠(𝜃; 𝑥̃𝑠, 𝑦𝑠)

where

𝑞𝑠(𝜃; 𝑥̃𝑠, 𝑦𝑠) =

𝑚∑︁
𝑖=1

𝑤𝑖 [𝑦𝑠𝑖 − 𝑔𝑖(𝑥̃𝑠; 𝜃)]
2
,

i.e., the contribution of sample 𝑠 to 𝑄, where 𝑤 ∈ ℜ𝑚 is a vector of weights for the responses. For multi-dimensional
𝑦, this is the squared weighted 𝐿2 norm and for univariate 𝑦 the weighted squared deviation. Custom objectives can
also be defined for parameter estimation.

In the applications of interest to us, the function 𝑔(·) is usually defined as an optimization problem with a large number of
(perhaps constrained) optimization variables, a subset of which are fixed at values 𝑥̃when the optimization is performed.
In other applications, the values of 𝜃 are fixed parameter values, but for the problem formulation above, the values of
𝜃 are the primary optimization variables. Note that in general, the function 𝑔(·) will have a large set of parameters that
are not included in 𝜃. Often, the 𝑦𝑖𝑠 will be vectors themselves, perhaps indexed by time with index sets that vary with
𝑠.

Installation Instructions

parmest is included in Pyomo (pyomo/contrib/parmest). To run parmest, you will need Python version 3.x along with
various Python package dependencies and the IPOPT software library for non-linear optimization.

Python package dependencies

1. numpy

2. pandas

3. pyomo

4. mpisppy (optional)

5. matplotlib (optional)

6. scipy.stats (optional)

7. seaborn (optional)

8. mpi4py.MPI (optional)

17.10. Parameter Estimation with parmest 489

Pyomo Documentation, Release 6.5.0

IPOPT

IPOPT can be downloaded from https://projects.coin-or.org/Ipopt.

Testing

The following commands can be used to test parmest:

cd pyomo/contrib/parmest/tests
python test_parmest.py

Parameter Estimation

Parameter Estimation using parmest requires a Pyomo model, experimental data which defines multiple scenarios, and a
list of parameter names (thetas) to estimate. parmest uses Pyomo [PyomoBookII] and (optionally) mpi-sppy [mpisppy]
to solve a two-stage stochastic programming problem, where the experimental data is used to create a scenario tree.
The objective function needs to be written with the Pyomo Expression for first stage cost (named “FirstStageCost”) set
to zero and the Pyomo Expression for second stage cost (named “SecondStageCost”) defined as the deviation between
the model and the observations (typically defined as the sum of squared deviation between model values and observed
values).

If the Pyomo model is not formatted as a two-stage stochastic programming problem in this format, the user can supply
a custom function to use as the second stage cost and the Pyomo model will be modified within parmest to match the
required specifications. The stochastic programming callback function is also defined within parmest. The callback
function returns a populated and initialized model for each scenario.

To use parmest, the user creates a Estimator object which includes the following methods:

theta_est Parameter estimation using all scenarios in the data
theta_est_bootstrap Parameter estimation using bootstrap resampling of the

data
theta_est_leaveNout Parameter estimation where N data points are left out of

each sample
objective_at_theta Objective value for each theta
confidence_region_test Confidence region test to determine if theta values are

within a rectangular, multivariate normal, or Gaussian
kernel density distribution for a range of alpha values

likelihood_ratio_test Likelihood ratio test to identify theta values within a con-
fidence region using the 𝜒2 distribution

leaveNout_bootstrap_test Leave-N-out bootstrap test to compare theta values
where N data points are left out to a bootstrap analy-
sis using the remaining data, results indicate if theta is
within a confidence region determined by the bootstrap
analysis

Additional functions are available in parmest to group data, plot results, and fit distributions to theta values.

490 Chapter 17. Third-Party Contributions

https://projects.coin-or.org/Ipopt

Pyomo Documentation, Release 6.5.0

group_data Group data by scenario
pairwise_plot Plot pairwise relationship for theta values, and option-

ally alpha-level confidence intervals and objective value
contours

grouped_boxplot Plot a grouped boxplot to compare two datasets
grouped_violinplot Plot a grouped violinplot to compare two datasets
fit_rect_dist Fit an alpha-level rectangular distribution to theta values
fit_mvn_dist Fit a multivariate normal distribution to theta values
fit_kde_dist Fit a Gaussian kernel-density distribution to theta values

A Estimator object can be created using the following code. A description of each argument is listed below. Examples
are provided in the Examples Section.

>>> import pyomo.contrib.parmest.parmest as parmest
>>> pest = parmest.Estimator(model_function, data, theta_names, objective_function)

Optionally, solver options can be supplied, e.g.,

>>> solver_options = {"max_iter": 6000}
>>> pest = parmest.Estimator(model_function, data, theta_names, objective_function,␣
→˓solver_options)

Model function

The first argument is a function which uses data for a single scenario to return a populated and initialized Pyomo model
for that scenario.

Parameters that the user would like to estimate can be defined as mutable parameters (Pyomo `Param`) or variables
(Pyomo `Var`). Within parmest, any parameters that are to be estimated are converted to unfixed variables. Variables
that are to be estimated are also unfixed.

The model does not have to be specifically written as a two-stage stochastic programming problem for parmest. That
is, parmest can modify the objective, see Objective function below.

Data

The second argument is the data which will be used to populate the Pyomo model. Supported data formats include:

• Pandas Dataframe where each row is a separate scenario and column names refer to observed quantities. Pandas
DataFrames are easily stored and read in from csv, excel, or databases, or created directly in Python.

• List of Pandas Dataframe where each entry in the list is a separate scenario. Dataframes store observed quan-
tities, referenced by index and column.

• List of dictionaries where each entry in the list is a separate scenario and the keys (or nested keys) refer to
observed quantities. Dictionaries are often preferred over DataFrames when using static and time series data.
Dictionaries are easily stored and read in from json or yaml files, or created directly in Python.

• List of json file names where each entry in the list contains a json file name for a separate scenario. This format
is recommended when using large datasets in parallel computing.

The data must be compatible with the model function that returns a populated and initialized Pyomo model for a single
scenario. Data can include multiple entries per variable (time series and/or duplicate sensors). This information can
be included in custom objective functions, see Objective function below.

17.10. Parameter Estimation with parmest 491

Pyomo Documentation, Release 6.5.0

Theta names

The third argument is a list of parameters or variable names that the user wants to estimate. The list contains strings
with Param and/or Var names from the Pyomo model.

Objective function

The fourth argument is an optional argument which defines the optimization objective function to use in parameter
estimation.

If no objective function is specified, the Pyomo model is used “as is” and should be defined with “FirstStageCost” and
“SecondStageCost” expressions that are used to build an objective for the two-stage stochastic programming problem.

If the Pyomo model is not written as a two-stage stochastic programming problem in this format, and/or if the user
wants to use an objective that is different than the original model, a custom objective function can be defined for
parameter estimation. The objective function arguments include model and data and the objective function returns a
Pyomo expression which is used to define “SecondStageCost”. The objective function can be used to customize data
points and weights that are used in parameter estimation.

Suggested initialization procedure for parameter estimation problems

To check the quality of initial guess values provided for the fitted parameters, we suggest solving a square instance of
the problem prior to solving the parameter estimation problem using the following steps:

1. Create Estimator object. To initialize the parameter estimation solve from the square problem solution, set
optional argument solver_options = {bound_push: 1e-8}.

2. Call objective_at_theta with optional argument (initialize_parmest_model=True). Different initial
guess values for the fitted parameters can be provided using optional argument theta_values (Pandas Dataframe)

3. Solve parameter estimation problem by calling theta_est

Data Reconciliation

The method theta_est can optionally return model values. This feature can be used to return reconciled data using
a user specified objective. In this case, the list of variable names the user wants to estimate (theta_names) is set to an
empty list and the objective function is defined to minimize measurement to model error. Note that the model used for
data reconciliation may differ from the model used for parameter estimation.

The following example illustrates the use of parmest for data reconciliation. The functions grouped_boxplot or
grouped_violinplot can be used to visually compare the original and reconciled data.

Here’s a stylized code snippet showing how box plots might be created:

>>> import pyomo.contrib.parmest.parmest as parmest
>>> pest = parmest.Estimator(model_function, data, [], objective_function)
>>> obj, theta, data_rec = pest.theta_est(return_values=['A', 'B'])
>>> parmest.graphics.grouped_boxplot(data, data_rec)

492 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Returned Values

Here’s a full program that can be run to see returned values (in this case it is the response function that is defined in
the model file):

>>> import pandas as pd
>>> import pyomo.contrib.parmest.parmest as parmest
>>> from pyomo.contrib.parmest.examples.rooney_biegler.rooney_biegler import rooney_
→˓biegler_model

>>> theta_names = ['asymptote', 'rate_constant']

>>> data = pd.DataFrame(data=[[1,8.3],[2,10.3],[3,19.0],
... [4,16.0],[5,15.6],[7,19.8]],
... columns=['hour', 'y'])

>>> def SSE(model, data):
... expr = sum((data.y[i]\
... - model.response_function[data.hour[i]])**2 for i in data.index)
... return expr

>>> pest = parmest.Estimator(rooney_biegler_model, data, theta_names, SSE,
... solver_options=None)
>>> obj, theta, var_values = pest.theta_est(return_values=['response_function'])
>>> #print(var_values)

Covariance Matrix Estimation

If the optional argument calc_cov=True is specified for theta_est, parmest will calculate the covariance matrix 𝑉𝜃

as follows:

𝑉𝜃 = 2𝜎2𝐻−1

This formula assumes all measurement errors are independent and identically distributed with variance 𝜎2. 𝐻−1 is the
inverse of the Hessian matrix for an unweighted sum of least squares problem. Currently, the covariance approximation
is only valid if the objective given to parmest is the sum of squared error. Moreover, parmest approximates the variance
of the measurement errors as 𝜎2 = 1

𝑛−𝑙

∑︀
𝑒2𝑖 where 𝑛 is the number of data points, 𝑙 is the number of fitted parameters,

and 𝑒𝑖 is the residual for experiment 𝑖.

Scenario Creation

In addition to model-based parameter estimation, parmest can create scenarios for use in optimization under uncer-
tainty. To do this, one first creates an Estimator object, then a ScenarioCreator object, which has methods to add
ParmestScen scenario objects to a ScenarioSet object, which can write them to a csv file or output them via an
iterator method.

This example is in the semibatch subdirectory of the examples directory in the file scenario_example.py. It creates a
csv file with scenarios that correspond one-to-one with the experiments used as input data. It also creates a few scenarios
using the bootstrap methods and outputs prints the scenarios to the screen, accessing them via the ScensItator a
print

17.10. Parameter Estimation with parmest 493

Pyomo Documentation, Release 6.5.0

#
Pyomo: Python Optimization Modeling Objects
Copyright (c) 2008-2022
National Technology and Engineering Solutions of Sandia, LLC
Under the terms of Contract DE-NA0003525 with National Technology and
Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
rights in this software.
This software is distributed under the 3-clause BSD License.

import json
from os.path import join, abspath, dirname
import pyomo.contrib.parmest.parmest as parmest
from pyomo.contrib.parmest.examples.semibatch.semibatch import generate_model
import pyomo.contrib.parmest.scenariocreator as sc

def main():

Vars to estimate in parmest
theta_names = ['k1', 'k2', 'E1', 'E2']

Data: list of dictionaries
data = []
file_dirname = dirname(abspath(str(__file__)))
for exp_num in range(10):

fname = join(file_dirname, 'exp'+str(exp_num+1)+'.out')
with open(fname,'r') as infile:

d = json.load(infile)
data.append(d)

pest = parmest.Estimator(generate_model, data, theta_names)

scenmaker = sc.ScenarioCreator(pest, "ipopt")

Make one scenario per experiment and write to a csv file
output_file = "scenarios.csv"
experimentscens = sc.ScenarioSet("Experiments")
scenmaker.ScenariosFromExperiments(experimentscens)
experimentscens.write_csv(output_file)

Use the bootstrap to make 3 scenarios and print
bootscens = sc.ScenarioSet("Bootstrap")
scenmaker.ScenariosFromBoostrap(bootscens, 3)
for s in bootscens.ScensIterator():

print("{}, {}".format(s.name, s.probability))
for n,v in s.ThetaVals.items():

print(" {}={}".format(n, v))

if __name__ == "__main__":
main()

494 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Note: This example may produce an error message your version of Ipopt is not based on a good linear solver.

Graphics

parmest includes the following functions to help visualize results:

• grouped_boxplot

• grouped_violinplot

• pairwise_plot

Grouped boxplots and violinplots are used to compare datasets, generally before and after data reconciliation. Pairwise
plots are used to visualize results from parameter estimation and include a histogram of each parameter along the
diagonal and a scatter plot for each pair of parameters in the upper and lower sections. The pairwise plot can also
include the following optional information:

• A single value for each theta (generally theta* from parameter estimation).

• Confidence intervals for rectangular, multivariate normal, and/or Gaussian kernel density estimate distributions
at a specified level (i.e. 0.8). For plots with more than 2 parameters, theta* is used to extract a slice of the
confidence region for each pairwise plot.

• Filled contour lines for objective values at a specified level (i.e. 0.8). For plots with more than 2 parameters,
theta* is used to extract a slice of the contour lines for each pairwise plot.

The following examples were generated using the reactor design example. Fig. 17.2 uses output from data reconcilia-
tion, Fig. 17.3 uses output from the bootstrap analysis, and Fig. 17.4 uses output from the likelihood ratio test.

Examples

Examples can be found in pyomo/contrib/parmest/examples and include:

• Reactor design example [PyomoBookII]

• Semibatch example [SemiBatch]

• Rooney Biegler example [RooneyBiegler]

Each example includes a Python file that contains the Pyomo model and a Python file to run parameter estimation.

Additional use cases include:

• Data reconciliation (reactor design example)

• Parameter estimation using data with duplicate sensors and time-series data (reactor design example)

• Parameter estimation using mpi4py, the example saves results to a file for later analysis/graphics (semibatch
example)

The description below uses the reactor design example. The file reactor_design.py includes a function which returns
an populated instance of the Pyomo model. Note that the model is defined to maximize cb and that k1, k2, and k3 are
fixed. The _main_ program is included for easy testing of the model declaration.

#
Pyomo: Python Optimization Modeling Objects
Copyright (c) 2008-2022

(continues on next page)

17.10. Parameter Estimation with parmest 495

Pyomo Documentation, Release 6.5.0

Fig. 17.2: Grouped boxplot showing data before and after data reconciliation.

496 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Fig. 17.3: Pairwise bootstrap plot with rectangular, multivariate normal and kernel density estimation confidence re-
gion.

17.10. Parameter Estimation with parmest 497

Pyomo Documentation, Release 6.5.0

Fig. 17.4: Pairwise likelihood ratio plot with contours of the objective and points that lie within an alpha confidence
region.

498 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

National Technology and Engineering Solutions of Sandia, LLC
Under the terms of Contract DE-NA0003525 with National Technology and
Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
rights in this software.
This software is distributed under the 3-clause BSD License.

"""
Continuously stirred tank reactor model, based on
pyomo/examples/doc/pyomobook/nonlinear-ch/react_design/ReactorDesign.py
"""
import pandas as pd
from pyomo.environ import (

ConcreteModel, Param, Var, PositiveReals, Objective, Constraint, maximize,
SolverFactory

)

def reactor_design_model(data):

Create the concrete model
model = ConcreteModel()

Rate constants
model.k1 = Param(initialize = 5.0/6.0, within=PositiveReals, mutable=True) # min^-1
model.k2 = Param(initialize = 5.0/3.0, within=PositiveReals, mutable=True) # min^-1
model.k3 = Param(initialize = 1.0/6000.0, within=PositiveReals, mutable=True) # m^3/

→˓(gmol min)

Inlet concentration of A, gmol/m^3
model.caf = Param(initialize = float(data['caf']), within=PositiveReals)

Space velocity (flowrate/volume)
model.sv = Param(initialize = float(data['sv']), within=PositiveReals)

Outlet concentration of each component
model.ca = Var(initialize = 5000.0, within=PositiveReals)
model.cb = Var(initialize = 2000.0, within=PositiveReals)
model.cc = Var(initialize = 2000.0, within=PositiveReals)
model.cd = Var(initialize = 1000.0, within=PositiveReals)

Objective
model.obj = Objective(expr = model.cb, sense=maximize)

Constraints
model.ca_bal = Constraint(expr = (0 == model.sv * model.caf \

- model.sv * model.ca - model.k1 * model.ca \
- 2.0 * model.k3 * model.ca ** 2.0))

model.cb_bal = Constraint(expr=(0 == -model.sv * model.cb \
+ model.k1 * model.ca - model.k2 * model.cb))

model.cc_bal = Constraint(expr=(0 == -model.sv * model.cc \

(continues on next page)

17.10. Parameter Estimation with parmest 499

Pyomo Documentation, Release 6.5.0

(continued from previous page)

+ model.k2 * model.cb))

model.cd_bal = Constraint(expr=(0 == -model.sv * model.cd \
+ model.k3 * model.ca ** 2.0))

return model

def main():
For a range of sv values, return ca, cb, cc, and cd
results = []
sv_values = [1.0 + v * 0.05 for v in range(1, 20)]
caf = 10000
for sv in sv_values:

model = reactor_design_model({'caf': caf, 'sv': sv})
solver = SolverFactory('ipopt')
solver.solve(model)
results.append([sv, caf, model.ca(), model.cb(), model.cc(), model.cd()])

results = pd.DataFrame(results, columns=['sv', 'caf', 'ca', 'cb', 'cc', 'cd'])
print(results)

if __name__ == "__main__":
main()

The file parameter_estimation_example.py uses parmest to estimate values of k1, k2, and k3 by minimizing the sum
of squared error between model and observed values of ca, cb, cc, and cd. Additional example files use parmest to run
parameter estimation with bootstrap resampling and perform a likelihood ratio test over a range of theta values.

#
Pyomo: Python Optimization Modeling Objects
Copyright (c) 2008-2022
National Technology and Engineering Solutions of Sandia, LLC
Under the terms of Contract DE-NA0003525 with National Technology and
Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
rights in this software.
This software is distributed under the 3-clause BSD License.

import pandas as pd
from os.path import join, abspath, dirname
import pyomo.contrib.parmest.parmest as parmest
from pyomo.contrib.parmest.examples.reactor_design.reactor_design import reactor_design_
→˓model

def main():
Vars to estimate
theta_names = ['k1', 'k2', 'k3']

Data
file_dirname = dirname(abspath(str(__file__)))

(continues on next page)

500 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

file_name = abspath(join(file_dirname, 'reactor_data.csv'))
data = pd.read_csv(file_name)

Sum of squared error function
def SSE(model, data):

expr = (float(data['ca']) - model.ca)**2 + \
(float(data['cb']) - model.cb)**2 + \
(float(data['cc']) - model.cc)**2 + \
(float(data['cd']) - model.cd)**2

return expr

Create an instance of the parmest estimator
pest = parmest.Estimator(reactor_design_model, data, theta_names, SSE)

Parameter estimation
obj, theta = pest.theta_est()

Assert statements compare parameter estimation (theta) to an expected value
k1_expected = 5.0/6.0
k2_expected = 5.0/3.0
k3_expected = 1.0/6000.0
relative_error = abs(theta['k1'] - k1_expected)/k1_expected
assert relative_error < 0.05
relative_error = abs(theta['k2'] - k2_expected)/k2_expected
assert relative_error < 0.05
relative_error = abs(theta['k3'] - k3_expected)/k3_expected
assert relative_error < 0.05

if __name__ == "__main__":
main()

The semibatch and Rooney Biegler examples are defined in a similar manner.

Parallel Implementation

Parallel implementation in parmest is preliminary. To run parmest in parallel, you need the mpi4py Python package
and a compatible MPI installation. If you do NOT have mpi4py or a MPI installation, parmest still works (you should
not get MPI import errors).

For example, the following command can be used to run the semibatch model in parallel:

mpiexec -n 4 python parallel_example.py

The file parallel_example.py is shown below. Results are saved to file for later analysis.

#
Pyomo: Python Optimization Modeling Objects
Copyright (c) 2008-2022
National Technology and Engineering Solutions of Sandia, LLC
Under the terms of Contract DE-NA0003525 with National Technology and

(continues on next page)

17.10. Parameter Estimation with parmest 501

Pyomo Documentation, Release 6.5.0

(continued from previous page)

Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
rights in this software.
This software is distributed under the 3-clause BSD License.

"""
The following script can be used to run semibatch parameter estimation in
parallel and save results to files for later analysis and graphics.
Example command: mpiexec -n 4 python parallel_example.py
"""
import numpy as np
import pandas as pd
from itertools import product
from os.path import join, abspath, dirname
import pyomo.contrib.parmest.parmest as parmest
from pyomo.contrib.parmest.examples.semibatch.semibatch import generate_model

def main():
Vars to estimate
theta_names = ['k1', 'k2', 'E1', 'E2']

Data, list of json file names
data = []
file_dirname = dirname(abspath(str(__file__)))
for exp_num in range(10):

file_name = abspath(join(file_dirname, 'exp'+str(exp_num+1)+'.out'))
data.append(file_name)

Note, the model already includes a 'SecondStageCost' expression
for sum of squared error that will be used in parameter estimation

pest = parmest.Estimator(generate_model, data, theta_names)

Parameter estimation with bootstrap resampling
bootstrap_theta = pest.theta_est_bootstrap(100)
bootstrap_theta.to_csv('bootstrap_theta.csv')

Compute objective at theta for likelihood ratio test
k1 = np.arange(4, 24, 3)
k2 = np.arange(40, 160, 40)
E1 = np.arange(29000, 32000, 500)
E2 = np.arange(38000, 42000, 500)
theta_vals = pd.DataFrame(list(product(k1, k2, E1, E2)), columns=theta_names)

obj_at_theta = pest.objective_at_theta(theta_vals)
obj_at_theta.to_csv('obj_at_theta.csv')

if __name__ == "__main__":
main()

502 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

Installation

The mpi4py Python package should be installed using conda. The following installation instructions were tested on a
Mac with Python 3.5.

Create a conda environment and install mpi4py using the following commands:

conda create -n parmest-parallel python=3.5
source activate parmest-parallel
conda install -c conda-forge mpi4py

This should install libgfortran, mpi, mpi4py, and openmpi.

To verify proper installation, create a Python file with the following:

from mpi4py import MPI
import time
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
print('Rank = ',rank)
time.sleep(10)

Save the file as test_mpi.py and run the following command:

time mpiexec -n 4 python test_mpi.py
time python test_mpi.py

The first one should be faster and should start 4 instances of Python.

API

parmest

class pyomo.contrib.parmest.parmest.Estimator(model_function, data, theta_names, obj_function=None,
tee=False, diagnostic_mode=False,
solver_options=None)

Bases: object

Parameter estimation class
Parameters

• model_function (function) – Function that generates an instance of the Pyomo
model using ‘data’ as the input argument

• data (pd.DataFrame, list of dictionaries, list of dataframes, or
list of json file names) – Data that is used to build an instance of the Pyomo
model and build the objective function

• theta_names (list of strings) – List of Var names to estimate

• obj_function (function, optional) – Function used to formulate parameter es-
timation objective, generally sum of squared error between measurements and model
variables. If no function is specified, the model is used “as is” and should be defined
with a “FirstStageCost” and “SecondStageCost” expression that are used to build an
objective.

• tee (bool, optional) – Indicates that ef solver output should be teed

17.10. Parameter Estimation with parmest 503

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• diagnostic_mode (bool, optional) – If True, print diagnostics from the solver

• solver_options (dict, optional) – Provides options to the solver (also the name
of an attribute)

confidence_region_test(theta_values, distribution, alphas, test_theta_values=None)
Confidence region test to determine if theta values are within a rectangular, multivariate normal, or Gaus-
sian kernel density distribution for a range of alpha values

Parameters
• theta_values (pd.DataFrame, columns = theta_names) – Theta values

used to generate a confidence region (generally returned by theta_est_bootstrap)

• distribution (string) – Statistical distribution used to define a confidence
region, options = ‘MVN’ for multivariate_normal, ‘KDE’ for gaussian_kde, and
‘Rect’ for rectangular.

• alphas (list) – List of alpha values used to determine if theta values are inside
or outside the region.

• test_theta_values (pd.Series or pd.DataFrame, keys/columns =
theta_names, optional) – Additional theta values that are compared to the
confidence region to determine if they are inside or outside.

• Returns –

• training_results (pd.DataFrame) – Theta value used to generate the confi-
dence region along with True (inside) or False (outside) for each alpha

• test_results (pd.DataFrame) – If test_theta_values is not None, returns test
theta value along with True (inside) or False (outside) for each alpha

leaveNout_bootstrap_test(lNo, lNo_samples, bootstrap_samples, distribution, alphas, seed=None)
Leave-N-out bootstrap test to compare theta values where N data points are left out to a bootstrap analysis
using the remaining data, results indicate if theta is within a confidence region determined by the bootstrap
analysis

Parameters
• lNo (int) – Number of data points to leave out for parameter estimation

• lNo_samples (int) – Leave-N-out sample size. If lNo_samples=None, the max-
imum number of combinations will be used

• bootstrap_samples (int:) – Bootstrap sample size

• distribution (string) – Statistical distribution used to define a confidence
region, options = ‘MVN’ for multivariate_normal, ‘KDE’ for gaussian_kde, and
‘Rect’ for rectangular.

• alphas (list) – List of alpha values used to determine if theta values are inside
or outside the region.

• seed (int or None, optional) – Random seed

Returns
• List of tuples with one entry per lNo_sample

• * The first item in each tuple is the list of N samples that are left – out.

• * The second item in each tuple is a DataFrame of theta estimated using – the N
samples.

504 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

• * The third item in each tuple is a DataFrame containing results from – the boot-
strap analysis using the remaining samples.

• For each DataFrame a column is added for each value of alpha which

• indicates if the theta estimate is in (True) or out (False) of the

• alpha region for a given distribution (based on the bootstrap results)

likelihood_ratio_test(obj_at_theta, obj_value, alphas, return_thresholds=False)
Likelihood ratio test to identify theta values within a confidence region using the 𝜒2 distribution

Parameters
• obj_at_theta (pd.DataFrame, columns = theta_names + 'obj') – Ob-

jective values for each theta value (returned by objective_at_theta)

• obj_value (int or float) – Objective value from parameter estimation using
all data

• alphas (list) – List of alpha values to use in the chi2 test

• return_thresholds (bool, optional) – Return the threshold value for each
alpha

Returns
• LR (pd.DataFrame) – Objective values for each theta value along with True or

False for each alpha

• thresholds (pd.Series) – If return_threshold = True, the thresholds are also re-
turned.

objective_at_theta(theta_values=None, initialize_parmest_model=False)
Objective value for each theta

Parameters
• theta_values (pd.DataFrame, columns=theta_names) – Values of theta

used to compute the objective

• initialize_parmest_model (boolean) – If True: Solve square problem in-
stance, build extensive form of the model for parameter estimation, and set flag
model_initialized to True

Returns
obj_at_theta – Objective value for each theta (infeasible solutions are omitted).

Return type
pd.DataFrame

theta_est(solver='ef_ipopt', return_values=[], calc_cov=False, cov_n=None)
Parameter estimation using all scenarios in the data

Parameters
• solver (string, optional) – Currently only “ef_ipopt” is supported. Default

is “ef_ipopt”.

• return_values (list, optional) – List of Variable names, used to return
values from the model for data reconciliation

• calc_cov (boolean, optional) – If True, calculate and return the covariance
matrix (only for “ef_ipopt” solver)

• cov_n (int, optional) – If calc_cov=True, then the user needs to supply the
number of datapoints that are used in the objective function

17.10. Parameter Estimation with parmest 505

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Returns
• objectiveval (float) – The objective function value

• thetavals (pd.Series) – Estimated values for theta

• variable values (pd.DataFrame) – Variable values for each variable name in re-
turn_values (only for solver=’ef_ipopt’)

• cov (pd.DataFrame) – Covariance matrix of the fitted parameters (only for
solver=’ef_ipopt’)

theta_est_bootstrap(bootstrap_samples, samplesize=None, replacement=True, seed=None,
return_samples=False)

Parameter estimation using bootstrap resampling of the data
Parameters

• bootstrap_samples (int) – Number of bootstrap samples to draw from the data

• samplesize (int or None, optional) – Size of each bootstrap sample. If
samplesize=None, samplesize will be set to the number of samples in the data

• replacement (bool, optional) – Sample with or without replacement

• seed (int or None, optional) – Random seed

• return_samples (bool, optional) – Return a list of sample numbers used in
each bootstrap estimation

Returns
bootstrap_theta – Theta values for each sample and (if return_samples = True) the
sample numbers used in each estimation

Return type
pd.DataFrame

theta_est_leaveNout(lNo, lNo_samples=None, seed=None, return_samples=False)
Parameter estimation where N data points are left out of each sample

Parameters
• lNo (int) – Number of data points to leave out for parameter estimation

• lNo_samples (int) – Number of leave-N-out samples. If lNo_samples=None,
the maximum number of combinations will be used

• seed (int or None, optional) – Random seed

• return_samples (bool, optional) – Return a list of sample numbers that
were left out

Returns
lNo_theta – Theta values for each sample and (if return_samples = True) the sample
numbers left out of each estimation

Return type
pd.DataFrame

pyomo.contrib.parmest.parmest.ef_nonants(ef)

pyomo.contrib.parmest.parmest.group_data(data, groupby_column_name, use_mean=None)
Group data by scenario

Parameters
• data (DataFrame) – Data

506 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

• groupby_column_name (strings) – Name of data column which contains scenario
numbers

• use_mean (list of column names or None, optional) – Name of data
columns which should be reduced to a single value per scenario by taking the mean

Returns
grouped_data – Grouped data

Return type
list of dictionaries

scenariocreator

class pyomo.contrib.parmest.scenariocreator.ParmestScen(name, ThetaVals, probability)
Bases: object

A little container for scenarios; the Args are the attributes.
Parameters

• name (str) – name for reporting; might be “”

• ThetaVals (dict) – ThetaVals[name]=val

• probability (float) – probability of occurance “near” these ThetaVals

class pyomo.contrib.parmest.scenariocreator.ScenarioCreator(pest, solvername)
Bases: object

Create scenarios from parmest.
Parameters

• pest (Estimator) – the parmest object

• solvername (str) – name of the solver (e.g. “ipopt”)
ScenariosFromBoostrap(addtoSet, numtomake, seed=None)

Creates new self.Scenarios list using the experiments only.
Parameters

• addtoSet (ScenarioSet) – the scenarios will be added to this set

• numtomake (int) – number of scenarios to create

ScenariosFromExperiments(addtoSet)
Creates new self.Scenarios list using the experiments only.

Parameters
addtoSet (ScenarioSet) – the scenarios will be added to this set

Returns
a ScenarioSet

class pyomo.contrib.parmest.scenariocreator.ScenarioSet(name)
Bases: object

Class to hold scenario sets

Args: name (str): name of the set (might be “”)

ScenarioNumber(scennum)

Returns the scenario with the given, zero-based number

17.10. Parameter Estimation with parmest 507

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

ScensIterator()

Usage: for scenario in ScensIterator()

addone(scen)
Add a scenario to the set

Parameters
scen (ParmestScen) – the scenario to add

append_bootstrap(bootstrap_theta)
Append a boostrap theta df to the scenario set; equally likely

Parameters
boostrap_theta (dataframe) – created by the bootstrap

Note: this can be cleaned up a lot with the list becomes a df,
which is why I put it in the ScenarioSet class.

write_csv(filename)
write a csv file with the scenarios in the set

Parameters
filename (str) – full path and full name of file

graphics

pyomo.contrib.parmest.graphics.fit_kde_dist(theta_values)
Fit a Gaussian kernel-density distribution to theta values

Parameters
theta_values (DataFrame) – Theta values, columns = variable names

Return type
scipy.stats.gaussian_kde distribution

pyomo.contrib.parmest.graphics.fit_mvn_dist(theta_values)
Fit a multivariate normal distribution to theta values

Parameters
theta_values (DataFrame) – Theta values, columns = variable names

Return type
scipy.stats.multivariate_normal distribution

pyomo.contrib.parmest.graphics.fit_rect_dist(theta_values, alpha)
Fit an alpha-level rectangular distribution to theta values

Parameters
• theta_values (DataFrame) – Theta values, columns = variable names

• alpha (float, optional) – Confidence interval value
Return type

tuple containing lower bound and upper bound for each variable

pyomo.contrib.parmest.graphics.grouped_boxplot(data1, data2, normalize=False, group_names=['data1',
'data2'], filename=None)

Plot a grouped boxplot to compare two datasets

The datasets can be normalized by the median and standard deviation of data1.
Parameters

• data1 (DataFrame) – Data set, columns = variable names

• data2 (DataFrame) – Data set, columns = variable names

508 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

• normalize (bool, optional) – Normalize both datasets by the median and standard
deviation of data1

• group_names (list, optional) – Names used in the legend

• filename (string, optional) – Filename used to save the figure

pyomo.contrib.parmest.graphics.grouped_violinplot(data1, data2, normalize=False,
group_names=['data1', 'data2'], filename=None)

Plot a grouped violinplot to compare two datasets

The datasets can be normalized by the median and standard deviation of data1.
Parameters

• data1 (DataFrame) – Data set, columns = variable names

• data2 (DataFrame) – Data set, columns = variable names

• normalize (bool, optional) – Normalize both datasets by the median and standard
deviation of data1

• group_names (list, optional) – Names used in the legend

• filename (string, optional) – Filename used to save the figure

pyomo.contrib.parmest.graphics.pairwise_plot(theta_values, theta_star=None, alpha=None,
distributions=[], axis_limits=None, title=None,
add_obj_contour=True, add_legend=True,
filename=None)

Plot pairwise relationship for theta values, and optionally alpha-level confidence intervals and objective value
contours

Parameters
• theta_values (DataFrame or tuple) –

– If theta_values is a DataFrame, then it contains one column for each theta vari-
able and (optionally) an objective value column (‘obj’) and columns that contains
Boolean results from confidence interval tests (labeled using the alpha value).
Each row is a sample.

∗ Theta variables can be computed from theta_est_bootstrap,
theta_est_leaveNout, and leaveNout_bootstrap_test.

∗ The objective value can be computed using the likelihood_ratio_test.

∗ Results from confidence interval tests can be computed using the
leaveNout_bootstrap_test, likelihood_ratio_test, and
confidence_region_test.

– If theta_values is a tuple, then it contains a mean, covariance, and number of
samples (mean, cov, n) where mean is a dictionary or Series (indexed by variable
name), covariance is a DataFrame (indexed by variable name, one column per
variable name), and n is an integer. The mean and covariance are used to create
a multivariate normal sample of n theta values. The covariance can be computed
using theta_est(calc_cov=True).

• theta_star (dict or Series, optional) – Estimated value of theta. The dictio-
nary or Series is indexed by variable name. Theta_star is used to slice higher dimen-
sional contour intervals in 2D

17.10. Parameter Estimation with parmest 509

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

• alpha (float, optional) – Confidence interval value, if an alpha value is given and
the distributions list is empty, the data will be filtered by True/False values using the col-
umn name whose value equals alpha (see results from leaveNout_bootstrap_test,
likelihood_ratio_test, and confidence_region_test)

• distributions (list of strings, optional) – Statistical distribution used to
define a confidence region, options = ‘MVN’ for multivariate_normal, ‘KDE’ for gaus-
sian_kde, and ‘Rect’ for rectangular. Confidence interval is a 2D slice, using linear
interpolation at theta_star.

• axis_limits (dict, optional) – Axis limits in the format {variable: [min, max]}

• title (string, optional) – Plot title

• add_obj_contour (bool, optional) – Add a contour plot using the column ‘obj’
in theta_values. Contour plot is a 2D slice, using linear interpolation at theta_star.

• add_legend (bool, optional) – Add a legend to the plot

• filename (string, optional) – Filename used to save the figure

Indices and Tables

• genindex

• modindex

• search

17.11 PyNumero

PyNumero is a package for developing parallel algorithms for nonlinear programs (NLPs). This documentation provides
a brief introduction to PyNumero. For more details, see the API documentation (PyNumero API).

17.11.1 PyNumero Installation

PyNumero is a module within Pyomo. Therefore, Pyomo must be installed to use PyNumero. PyNumero also has some
extensions that need built. There are many ways to build the PyNumero extensions. Common use cases are listed be-
low. However, more information can always be found at https://github.com/Pyomo/pyomo/blob/main/pyomo/contrib/
pynumero/build.py and https://github.com/Pyomo/pyomo/blob/main/pyomo/contrib/pynumero/src/CMakeLists.txt.

Method 1

One way to build PyNumero extensions is with the pyomo download-extensions and build-extensions subcommands.
Note that this approach will build PyNumero without support for the HSL linear solvers.

pyomo download-extensions
pyomo build-extensions

510 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://github.com/Pyomo/pyomo/blob/main/pyomo/contrib/pynumero/build.py
https://github.com/Pyomo/pyomo/blob/main/pyomo/contrib/pynumero/build.py
https://github.com/Pyomo/pyomo/blob/main/pyomo/contrib/pynumero/src/CMakeLists.txt

Pyomo Documentation, Release 6.5.0

Method 2

If you want PyNumero support for the HSL solvers and you have an IPOPT compilation for your machine, you can
build PyNumero using the build script

cd pyomo/contrib/pynumero/
python build.py -DBUILD_ASL=ON -DBUILD_MA27=ON -DIPOPT_DIR=<path/to/ipopt/build/>

17.11.2 10 Minutes to PyNumero

NLP Interfaces

Below are examples of using PyNumero’s interfaces to ASL for function and derivative evaluation. More information
can be found in the API documentation (PyNumero API).

Relevant imports

>>> import pyomo.environ as pe
>>> from pyomo.contrib.pynumero.interfaces.pyomo_nlp import PyomoNLP
>>> import numpy as np

Create a Pyomo model

>>> m = pe.ConcreteModel()
>>> m.x = pe.Var(bounds=(-5, None))
>>> m.y = pe.Var(initialize=2.5)
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c1 = pe.Constraint(expr=m.y == (m.x - 1)**2)
>>> m.c2 = pe.Constraint(expr=m.y >= pe.exp(m.x))

Create a pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP instance

>>> nlp = PyomoNLP(m)

Get values of primals and duals

>>> nlp.get_primals()
array([0. , 2.5])
>>> nlp.get_duals()
array([0., 0.])

Get variable and constraint bounds

>>> nlp.primals_lb()
array([-5., -inf])
>>> nlp.primals_ub()
array([inf, inf])
>>> nlp.constraints_lb()
array([0., -inf])
>>> nlp.constraints_ub()
array([0., 0.])

Objective and constraint evaluations

17.11. PyNumero 511

Pyomo Documentation, Release 6.5.0

>>> nlp.evaluate_objective()
6.25
>>> nlp.evaluate_constraints()
array([1.5, -1.5])

Derivative evaluations

>>> nlp.evaluate_grad_objective()
array([0., 5.])
>>> nlp.evaluate_jacobian()
<2x2 sparse matrix of type '<class 'numpy.float64'>'

with 4 stored elements in COOrdinate format>
>>> nlp.evaluate_jacobian().toarray()
array([[2., 1.],

[1., -1.]])
>>> nlp.evaluate_hessian_lag().toarray()
array([[2., 0.],

[0., 2.]])

Set values of primals and duals

>>> nlp.set_primals(np.array([0, 1]))
>>> nlp.evaluate_constraints()
array([0., 0.])
>>> nlp.set_duals(np.array([-2/3, 4/3]))
>>> nlp.evaluate_grad_objective() + nlp.evaluate_jacobian().transpose() * nlp.get_duals()
array([0., 0.])

Equality and inequality constraints separately

>>> nlp.evaluate_eq_constraints()
array([0.])
>>> nlp.evaluate_jacobian_eq().toarray()
array([[2., 1.]])
>>> nlp.evaluate_ineq_constraints()
array([0.])
>>> nlp.evaluate_jacobian_ineq().toarray()
array([[1., -1.]])
>>> nlp.get_duals_eq()
array([-0.66666667])
>>> nlp.get_duals_ineq()
array([1.33333333])

Linear Solver Interfaces

PyNumero’s interfaces to linear solvers are very thin wrappers, and, hence, are rather low-level. It is relatively easy to
wrap these again for specific applications. For example, see the linear solver interfaces in https://github.com/Pyomo/
pyomo/tree/main/pyomo/contrib/interior_point/linalg, which wrap PyNumero’s linear solver interfaces.

The motivation to keep PyNumero’s interfaces as such thin wrappers is that different linear solvers serve different
purposes. For example, HSL’s MA27 can factorize symmetric indefinite matrices, while MUMPS can factorize un-
symmetric, symmetric positive definite, or general symmetric matrices. PyNumero seeks to be independent of the
application, giving more flexibility to algorithm developers.

512 Chapter 17. Third-Party Contributions

https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/interior_point/linalg
https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/interior_point/linalg

Pyomo Documentation, Release 6.5.0

Interface to MA27

>>> import numpy as np
>>> from scipy.sparse import coo_matrix
>>> from scipy.sparse import tril
>>> from pyomo.contrib.pynumero.linalg.ma27_interface import MA27
>>> row = np.array([0, 1, 0, 1, 0, 1, 2, 3, 3, 4, 4, 4])
>>> col = np.array([0, 1, 3, 3, 4, 4, 4, 0, 1, 0, 1, 2])
>>> data = np.array([1.67025575, 2, -1.64872127, 1, -1, -1, -1, -1.64872127, 1, -1, -1,␣
→˓-1])
>>> A = coo_matrix((data, (row, col)), shape=(5,5))
>>> A.toarray()
array([[1.67025575, 0. , 0. , -1.64872127, -1.],

[0. , 2. , 0. , 1. , -1.],
[0. , 0. , 0. , 0. , -1.],
[-1.64872127, 1. , 0. , 0. , 0.],
[-1. , -1. , -1. , 0. , 0.]])

>>> rhs = np.array([-0.67025575, -1.2, 0.1, 1.14872127, 1.25])
>>> solver = MA27()
>>> solver.set_cntl(1, 1e-6) # set the pivot tolerance
>>> status = solver.do_symbolic_factorization(A)
>>> status = solver.do_numeric_factorization(A)
>>> x, status = solver.do_back_solve(rhs)
>>> np.max(np.abs(A*x - rhs)) <= 1e-15
True

Interface to MUMPS

>>> import numpy as np
>>> from scipy.sparse import coo_matrix
>>> from scipy.sparse import tril
>>> from pyomo.contrib.pynumero.linalg.mumps_interface import␣
→˓MumpsCentralizedAssembledLinearSolver
>>> row = np.array([0, 1, 0, 1, 0, 1, 2, 3, 3, 4, 4, 4])
>>> col = np.array([0, 1, 3, 3, 4, 4, 4, 0, 1, 0, 1, 2])
>>> data = np.array([1.67025575, 2, -1.64872127, 1, -1, -1, -1, -1.64872127, 1, -1, -1,␣
→˓-1])
>>> A = coo_matrix((data, (row, col)), shape=(5,5))
>>> A.toarray()
array([[1.67025575, 0. , 0. , -1.64872127, -1.],

[0. , 2. , 0. , 1. , -1.],
[0. , 0. , 0. , 0. , -1.],
[-1.64872127, 1. , 0. , 0. , 0.],
[-1. , -1. , -1. , 0. , 0.]])

>>> rhs = np.array([-0.67025575, -1.2, 0.1, 1.14872127, 1.25])
>>> solver = MumpsCentralizedAssembledLinearSolver(sym=2, par=1, comm=None) # symmetric␣
→˓matrix; solve in serial
>>> solver.do_symbolic_factorization(A)
>>> solver.do_numeric_factorization(A)
>>> x = solver.do_back_solve(rhs)
>>> np.max(np.abs(A*x - rhs)) <= 1e-15

(continues on next page)

17.11. PyNumero 513

Pyomo Documentation, Release 6.5.0

(continued from previous page)

True

Of course, SciPy solvers can also be used. See SciPy documentation for details.

Block Vectors and Matrices

Block vectors and matrices (BlockVector and BlockMatrix) provide a mechanism to perform linear algebra opera-
tions with very structured matrices and vectors.

When a BlockVector or BlockMatrix is constructed, the number of blocks must be specified.

>>> import numpy as np
>>> from scipy.sparse import coo_matrix
>>> from pyomo.contrib.pynumero.sparse import BlockVector, BlockMatrix
>>> v = BlockVector(3)
>>> m = BlockMatrix(3, 3)

Setting blocks:

>>> v.set_block(0, np.array([-0.67025575, -1.2]))
>>> v.set_block(1, np.array([0.1, 1.14872127]))
>>> v.set_block(2, np.array([1.25]))
>>> v.flatten()
array([-0.67025575, -1.2 , 0.1 , 1.14872127, 1.25])

The flatten method converts the BlockVector into a NumPy array.

>>> m.set_block(0, 0, coo_matrix(np.array([[1.67025575, 0], [0, 2]])))
>>> m.set_block(0, 1, coo_matrix(np.array([[0, -1.64872127], [0, 1]])))
>>> m.set_block(0, 2, coo_matrix(np.array([[-1.0], [-1]])))
>>> m.set_block(1, 0, coo_matrix(np.array([[0, -1.64872127], [0, 1]])).transpose())
>>> m.set_block(1, 2, coo_matrix(np.array([[-1.0], [0]])))
>>> m.set_block(2, 0, coo_matrix(np.array([[-1.0], [-1]])).transpose())
>>> m.set_block(2, 1, coo_matrix(np.array([[-1.0], [0]])).transpose())
>>> m.tocoo().toarray()
array([[1.67025575, 0. , 0. , -1.64872127, -1.],

[0. , 2. , 0. , 1. , -1.],
[0. , 0. , 0. , 0. , -1.],
[-1.64872127, 1. , 0. , 0. , 0.],
[-1. , -1. , -1. , 0. , 0.]])

The tocoo method converts the BlockMatrix to a SciPy sparse coo_matrix.

Once the dimensions of a block have been set, they cannot be changed:

>>> v.set_block(0, np.ones(3))
Traceback (most recent call last):
...

ValueError: Incompatible dimensions for block 0; got 3; expected 2

Properties:

514 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

>>> v.shape
(5,)
>>> v.size
5
>>> v.nblocks
3
>>> v.bshape
(3,)
>>> m.shape
(5, 5)
>>> m.bshape
(3, 3)
>>> m.nnz
12

Much of the BlockVector API matches that of NumPy arrays:

>>> v.sum()
0.62846552
>>> v.max()
1.25
>>> np.abs(v).flatten()
array([0.67025575, 1.2 , 0.1 , 1.14872127, 1.25])
>>> (2*v).flatten()
array([-1.3405115 , -2.4 , 0.2 , 2.29744254, 2.5])
>>> (v + v).flatten()
array([-1.3405115 , -2.4 , 0.2 , 2.29744254, 2.5])
>>> v.dot(v)
4.781303326558476

Similarly, BlockMatrix behaves very similarly to SciPy sparse matrices:

>>> (2*m).tocoo().toarray()
array([[3.3405115 , 0. , 0. , -3.29744254, -2.],

[0. , 4. , 0. , 2. , -2.],
[0. , 0. , 0. , 0. , -2.],
[-3.29744254, 2. , 0. , 0. , 0.],
[-2. , -2. , -2. , 0. , 0.]])

>>> (m - m).tocoo().toarray()
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> m * v
BlockVector(3,)
>>> (m * v).flatten()
array([-4.26341971, -2.50127873, -1.25 , -0.09493509, 1.77025575])

Accessing blocks

>>> v.get_block(1)
array([0.1 , 1.14872127])

(continues on next page)

17.11. PyNumero 515

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> m.get_block(1, 0).toarray()
array([[0. , 0.],

[-1.64872127, 1.]])

Empty blocks in a BlockMatrix return None:

>>> print(m.get_block(1, 1))
None

The dimensions of a blocks in a BlockMatrix can be set without setting a block:

>>> m2 = BlockMatrix(2, 2)
>>> m2.set_row_size(0, 5)
>>> m2.set_block(0, 0, m.get_block(0, 0))
Traceback (most recent call last):
...

ValueError: Incompatible row dimensions for row 0; got 2; expected 5.0

Note that operations on BlockVector and BlockMatrix cannot be performed until the dimensions are fully specified:

>>> v2 = BlockVector(3)
>>> v + v2
Traceback (most recent call last):
...

NotFullyDefinedBlockVectorError: Operation not allowed with None blocks.
>>> m2 = BlockMatrix(3, 3)
>>> m2 * 2
Traceback (most recent call last):
...

NotFullyDefinedBlockMatrixError: Operation not allowed with None rows. Specify at least␣
→˓one block in every row

The has_none property can be used to see if a BlockVector is fully specified. If has_none returns True, then there are
None blocks, and the BlockVector is not fully specified.

>>> v.has_none
False
>>> v2.has_none
True

For BlockMatrix, use the has_undefined_row_sizes() and has_undefined_col_sizes() methods:

>>> m.has_undefined_row_sizes()
False
>>> m.has_undefined_col_sizes()
False
>>> m2.has_undefined_row_sizes()
True
>>> m2.has_undefined_col_sizes()
True

To efficiently iterate over non-empty blocks in a BlockMatrix, use the get_block_mask() method, which returns a 2-D
array indicating where the non-empty blocks are:

516 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

>>> m.get_block_mask(copy=False)
array([[True, True, True],

[True, False, True],
[True, True, False]])

>>> for i, j in zip(*np.nonzero(m.get_block_mask(copy=False))):
... assert m.get_block(i, j) is not None

Copying data:

>>> v2 = v.copy()
>>> v2.flatten()
array([-0.67025575, -1.2 , 0.1 , 1.14872127, 1.25])
>>> v2 = v.copy_structure()
>>> v2.block_sizes()
array([2, 2, 1])
>>> v2.copyfrom(v)
>>> v2.flatten()
array([-0.67025575, -1.2 , 0.1 , 1.14872127, 1.25])
>>> m2 = m.copy()
>>> (m - m2).tocoo().toarray()
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> m2 = m.copy_structure()
>>> m2.has_undefined_row_sizes()
False
>>> m2.has_undefined_col_sizes()
False
>>> m2.copyfrom(m)
>>> (m - m2).tocoo().toarray()
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

Nested blocks:

>>> v2 = BlockVector(2)
>>> v2.set_block(0, v)
>>> v2.set_block(1, np.ones(2))
>>> v2.block_sizes()
array([5, 2])
>>> v2.flatten()
array([-0.67025575, -1.2 , 0.1 , 1.14872127, 1.25 ,

1. , 1.])
>>> v3 = v2.copy_structure()
>>> v3.fill(1)
>>> (v2 + v3).flatten()
array([0.32974425, -0.2 , 1.1 , 2.14872127, 2.25 ,

2. , 2.])
(continues on next page)

17.11. PyNumero 517

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> np.abs(v2).flatten()
array([0.67025575, 1.2 , 0.1 , 1.14872127, 1.25 ,

1. , 1.])
>>> v2.get_block(0)
BlockVector(3,)

Nested BlockMatrix applications work similarly.

For more information, see the API documentation (PyNumero API).

MPI-Based Block Vectors and Matrices

PyNumero’s MPI-based block vectors and matrices (MPIBlockVector and MPIBlockMatrix) behave very similarly to
BlockVector and BlockMatrix. The primary difference is in construction. With MPIBlockVector and MPIBlockMatrix,
each block is owned by either a single process/rank or all processes/ranks.

Consider the following example (in a file called “parallel_vector_ops.py”).

import numpy as np
from mpi4py import MPI
from pyomo.contrib.pynumero.sparse.mpi_block_vector import MPIBlockVector

def main():
comm = MPI.COMM_WORLD
rank = comm.Get_rank()

owners = [2, 0, 1, -1]
x = MPIBlockVector(4, rank_owner=owners, mpi_comm=comm)
x.set_block(owners.index(rank), np.ones(3)*(rank + 1))
x.set_block(3, np.array([1, 2, 3]))

y = MPIBlockVector(4, rank_owner=owners, mpi_comm=comm)
y.set_block(owners.index(rank), np.ones(3)*(rank + 1))
y.set_block(3, np.array([1, 2, 3]))

z1: MPIBlockVector = x + y # add x and y
z2 = x.dot(y) # dot product
z3 = np.abs(x).max() # infinity norm

z1_local = z1.make_local_copy()
if rank == 0:

print(z1_local.flatten())
print(z2)
print(z3)

return z1_local, z2, z3

if __name__ == '__main__':
main()

This example can be run with

518 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

mpirun -np 3 python -m mpi4py parallel_vector_ops.py

The output is

[6. 6. 6. 2. 2. 2. 4. 4. 4. 2. 4. 6.]
56.0
3

Note that the make_local_copy() method is not efficient and should only be used for debugging.

The -1 in owners means that the block at that index (index 3 in this example) is owned by all processes. The non-
negative integer values indicate that the block at that index is owned by the process with rank equal to the value. In this
example, rank 0 owns block 1, rank 1 owns block 2, and rank 2 owns block 0. Block 3 is owned by all ranks. Note that
blocks should only be set if the process/rank owns that block.

The operations performed with MPIBlockVector are identical to the same operations peformed with BlockVector (or
even NumPy arrays), except that the operations are now performed in parallel.

MPIBlockMatrix construction is very similar. Consider the following example in a file called “parallel_matvec.py”.

import numpy as np
from mpi4py import MPI
from pyomo.contrib.pynumero.sparse.mpi_block_vector import MPIBlockVector
from pyomo.contrib.pynumero.sparse.mpi_block_matrix import MPIBlockMatrix
from scipy.sparse import random

def main():
comm = MPI.COMM_WORLD
rank = comm.Get_rank()

owners = [0, 1, 2, -1]
x = MPIBlockVector(4, rank_owner=owners, mpi_comm=comm)

owners = np.array([[0, -1, -1, 0],
[-1, 1, -1, 1],
[-1, -1, 2, 2]])

a = MPIBlockMatrix(3, 4, rank_ownership=owners, mpi_comm=comm)

np.random.seed(0)
x.set_block(3, np.random.uniform(-10, 10, size=10))

np.random.seed(rank)
x.set_block(rank, np.random.uniform(-10, 10, size=10))
a.set_block(rank, rank, random(10, 10, density=0.1))
a.set_block(rank, 3, random(10, 10, density=0.1))

b = a * x # parallel matrix-vector dot product

check the answer
local_x = x.make_local_copy().flatten()
local_a = a.to_local_array()
local_b = b.make_local_copy().flatten()

(continues on next page)

17.11. PyNumero 519

Pyomo Documentation, Release 6.5.0

(continued from previous page)

err = np.abs(local_a.dot(local_x) - local_b).max()

if rank == 0:
print('error: ', err)

return err

if __name__ == '__main__':
main()

Which can be run with

mpirun -np 3 python -m mpi4py parallel_matvec.py

The output is

error: 4.440892098500626e-16

The most difficult part of using MPIBlockVector and MPIBlockMatrix is determining the best structure and rank own-
ership to maximize parallel efficiency.

Other examples may be found at https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/pynumero/examples.

17.11.3 PyNumero API

PyNumero Block Linear Algebra

BlockVector

Methods specific to pyomo.contrib.pynumero.sparse.block_vector.BlockVector:

• set_block()

• get_block()

• block_sizes()

• get_block_size()

• is_block_defined()

• copyfrom()

• copyto()

• copy_structure()

• set_blocks()

• pprint()

Attributes specific to pyomo.contrib.pynumero.sparse.block_vector.BlockVector:

• nblocks

• bshape

• has_none

520 Chapter 17. Third-Party Contributions

https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/pynumero/examples

Pyomo Documentation, Release 6.5.0

NumPy compatible methods:

• numpy.ndarray.dot()

• numpy.ndarray.sum()

• numpy.ndarray.all()

• numpy.ndarray.any()

• numpy.ndarray.max()

• numpy.ndarray.astype()

• numpy.ndarray.clip()

• numpy.ndarray.compress()

• numpy.ndarray.conj()

• numpy.ndarray.conjugate()

• numpy.ndarray.nonzero()

• numpy.ndarray.ptp()

• numpy.ndarray.round()

• numpy.ndarray.std()

• numpy.ndarray.var()

• numpy.ndarray.tofile()

• numpy.ndarray.min()

• numpy.ndarray.mean()

• numpy.ndarray.prod()

• numpy.ndarray.fill()

• numpy.ndarray.tolist()

• numpy.ndarray.flatten()

• numpy.ndarray.ravel()

• numpy.ndarray.argmax()

• numpy.ndarray.argmin()

• numpy.ndarray.cumprod()

• numpy.ndarray.cumsum()

• numpy.ndarray.copy()

For example,

>>> import numpy as np
>>> from pyomo.contrib.pynumero.sparse import BlockVector
>>> v = BlockVector(2)
>>> v.set_block(0, np.random.normal(size=100))
>>> v.set_block(1, np.random.normal(size=30))
>>> avg = v.mean()

NumPy compatible functions:

17.11. PyNumero 521

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.all.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.any.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.clip.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conj.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conjugate.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nonzero.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ptp.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.round.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.std.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.var.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html

Pyomo Documentation, Release 6.5.0

• numpy.log10()

• numpy.sin()

• numpy.cos()

• numpy.exp()

• numpy.ceil()

• numpy.floor()

• numpy.tan()

• numpy.arctan()

• numpy.arcsin()

• numpy.arccos()

• numpy.sinh()

• numpy.cosh()

• numpy.abs()

• numpy.tanh()

• numpy.arccosh()

• numpy.arcsinh()

• numpy.arctanh()

• numpy.fabs()

• numpy.sqrt()

• numpy.log()

• numpy.log2()

• numpy.absolute()

• numpy.isfinite()

• numpy.isinf()

• numpy.isnan()

• numpy.log1p()

• numpy.logical_not()

• numpy.expm1()

• numpy.exp2()

• numpy.sign()

• numpy.rint()

• numpy.square()

• numpy.positive()

• numpy.negative()

• numpy.rad2deg()

• numpy.deg2rad()

522 Chapter 17. Third-Party Contributions

https://numpy.org/doc/stable/reference/generated/numpy.log10.html
https://numpy.org/doc/stable/reference/generated/numpy.sin.html
https://numpy.org/doc/stable/reference/generated/numpy.cos.html
https://numpy.org/doc/stable/reference/generated/numpy.exp.html
https://numpy.org/doc/stable/reference/generated/numpy.ceil.html
https://numpy.org/doc/stable/reference/generated/numpy.floor.html
https://numpy.org/doc/stable/reference/generated/numpy.tan.html
https://numpy.org/doc/stable/reference/generated/numpy.arctan.html
https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html
https://numpy.org/doc/stable/reference/generated/numpy.arccos.html
https://numpy.org/doc/stable/reference/generated/numpy.sinh.html
https://numpy.org/doc/stable/reference/generated/numpy.cosh.html
https://numpy.org/doc/stable/reference/generated/numpy.abs.html
https://numpy.org/doc/stable/reference/generated/numpy.tanh.html
https://numpy.org/doc/stable/reference/generated/numpy.arccosh.html
https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html
https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html
https://numpy.org/doc/stable/reference/generated/numpy.fabs.html
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
https://numpy.org/doc/stable/reference/generated/numpy.log.html
https://numpy.org/doc/stable/reference/generated/numpy.log2.html
https://numpy.org/doc/stable/reference/generated/numpy.absolute.html
https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html
https://numpy.org/doc/stable/reference/generated/numpy.isinf.html
https://numpy.org/doc/stable/reference/generated/numpy.isnan.html
https://numpy.org/doc/stable/reference/generated/numpy.log1p.html
https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html
https://numpy.org/doc/stable/reference/generated/numpy.expm1.html
https://numpy.org/doc/stable/reference/generated/numpy.exp2.html
https://numpy.org/doc/stable/reference/generated/numpy.sign.html
https://numpy.org/doc/stable/reference/generated/numpy.rint.html
https://numpy.org/doc/stable/reference/generated/numpy.square.html
https://numpy.org/doc/stable/reference/generated/numpy.positive.html
https://numpy.org/doc/stable/reference/generated/numpy.negative.html
https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html
https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html

Pyomo Documentation, Release 6.5.0

• numpy.conjugate()

• numpy.reciprocal()

• numpy.signbit()

• numpy.add()

• numpy.multiply()

• numpy.divide()

• numpy.subtract()

• numpy.greater()

• numpy.greater_equal()

• numpy.less()

• numpy.less_equal()

• numpy.not_equal()

• numpy.maximum()

• numpy.minimum()

• numpy.fmax()

• numpy.fmin()

• numpy.equal()

• numpy.logical_and()

• numpy.logical_or()

• numpy.logical_xor()

• numpy.logaddexp()

• numpy.logaddexp2()

• numpy.remainder()

• numpy.heaviside()

• numpy.hypot()

For example,

>>> import numpy as np
>>> from pyomo.contrib.pynumero.sparse import BlockVector
>>> v = BlockVector(2)
>>> v.set_block(0, np.random.normal(size=100))
>>> v.set_block(1, np.random.normal(size=30))
>>> inf_norm = np.max(np.abs(v))

class pyomo.contrib.pynumero.sparse.block_vector.BlockVector(nblocks)
Structured vector interface. This interface can be used to perform operations on vectors composed by vectors.
For example,

17.11. PyNumero 523

https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html
https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html
https://numpy.org/doc/stable/reference/generated/numpy.signbit.html
https://numpy.org/doc/stable/reference/generated/numpy.add.html
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html
https://numpy.org/doc/stable/reference/generated/numpy.divide.html
https://numpy.org/doc/stable/reference/generated/numpy.subtract.html
https://numpy.org/doc/stable/reference/generated/numpy.greater.html
https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html
https://numpy.org/doc/stable/reference/generated/numpy.less.html
https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html
https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html
https://numpy.org/doc/stable/reference/generated/numpy.maximum.html
https://numpy.org/doc/stable/reference/generated/numpy.minimum.html
https://numpy.org/doc/stable/reference/generated/numpy.fmax.html
https://numpy.org/doc/stable/reference/generated/numpy.fmin.html
https://numpy.org/doc/stable/reference/generated/numpy.equal.html
https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html
https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html
https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html
https://numpy.org/doc/stable/reference/generated/numpy.remainder.html
https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html
https://numpy.org/doc/stable/reference/generated/numpy.hypot.html

Pyomo Documentation, Release 6.5.0

>>> import numpy as np
>>> from pyomo.contrib.pynumero.sparse import BlockVector
>>> bv = BlockVector(3)
>>> v0 = np.ones(3)
>>> v1 = v0*2
>>> v2 = np.random.normal(size=4)
>>> bv.set_block(0, v0)
>>> bv.set_block(1, v1)
>>> bv.set_block(2, v2)
>>> bv2 = BlockVector(2)
>>> bv2.set_block(0, v0)
>>> bv2.set_block(1, bv)

_nblocks

number of blocks
Type

int

_brow_lengths

1D-Array of size nblocks that specifies the length of each entry in the block vector
Type

numpy.ndarray

_undefined_brows

A set of block indices for which the blocks are still None (i.e., the dimensions have not yet ben set).
Operations with BlockVectors require all entries to be different than None.

Type
set

Parameters
nblocks (int) – The number of blocks in the BlockVector

BlockVector.set_block(key, value)
Set a block. The value can be a NumPy array or another BlockVector.

Parameters
• key (int) – This is the block index

• value – This is the block. It can be a NumPy array or another BlockVector.

BlockVector.get_block(key)
Access a block.

Parameters
key (int) – This is the block index

Returns
block – The block corresponding to the index key.

Return type
np.ndarray or BlockVector

BlockVector.block_sizes(copy=True)
Returns 1D-Array with sizes of individual blocks in this BlockVector

BlockVector.get_block_size(ndx)

BlockVector.is_block_defined(ndx)

524 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

BlockVector.copyfrom(other)
Copy entries of other vector into this vector

Parameters
other (BlockVector or numpy.ndarray) – vector to be copied to this BlockVector

Return type
None

BlockVector.copyto(other)
Copy entries of this BlockVector into other

Parameters
other (BlockVector or numpy.ndarray) –

Return type
None

BlockVector.copy_structure()

Returns a copy of the BlockVector structure filled with zeros

BlockVector.set_blocks(blocks)
Assigns vectors in blocks

Parameters
blocks (list) – list of numpy.ndarrays and/or BlockVectors

Return type
None

BlockVector.pprint()

Prints BlockVector in pretty format

property BlockVector.nblocks

Returns the number of blocks.

property BlockVector.bshape

Returns the number of blocks in this BlockVector in a tuple.

property BlockVector.has_none

Indicate if this BlockVector has any none entries.

PyNumero NLP Interfaces

NLP Interface

class pyomo.contrib.pynumero.interfaces.nlp.NLP

Bases: object

constraint_names()

Override this to provide string names for the constraints

abstract constraints_lb()

Returns vector of lower bounds for the constraints
Return type

vector-like

abstract constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

17.11. PyNumero 525

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

abstract create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'duals'}) – String identifying the ap-
propriate vector to create.

Return type
vector-like

abstract evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

abstract evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

Return type
vector_like

abstract evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

Return type
matrix_like

abstract evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

abstract evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

abstract get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

526 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

abstract get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

abstract get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

abstract get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

abstract get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

abstract get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

abstract init_duals()

Returns vector with initial values for the dual variables of the constraints

abstract init_primals()

Returns vector with initial values for the primal variables

abstract n_constraints()

Returns number of constraints

abstract n_primals()

Returns number of primal variables

abstract nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

abstract nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

abstract primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Override this to provide string names for the primal variables

abstract primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

abstract report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

17.11. PyNumero 527

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

abstract set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

abstract set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

abstract set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

Extended NLP Interface

class pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP

Bases: NLP

This interface extends the NLP interface to support a presentation of the problem that separates equality and
inequality constraints

constraint_names()

Override this to provide string names for the constraints

abstract constraints_lb()

Returns vector of lower bounds for the constraints
Return type

vector-like

abstract constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

abstract create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'eq_constraints',
'ineq_constraints',) – ‘duals’, ‘duals_eq’, ‘duals_ineq’} String identifying
the appropriate vector to create.

Return type
vector-like

abstract evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

528 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

Return type
vector_like

abstract evaluate_eq_constraints(out=None)
Returns the values for the equality constraints evaluated at the values given for the primal variales in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

abstract evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

Return type
vector_like

abstract evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

Return type
matrix_like

abstract evaluate_ineq_constraints(out=None)
Returns the values of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

abstract evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

abstract evaluate_jacobian_eq(out=None)
Returns the Jacobian of the equality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

17.11. PyNumero 529

Pyomo Documentation, Release 6.5.0

Return type
matrix_like

abstract evaluate_jacobian_ineq(out=None)
Returns the Jacobian of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

abstract evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

abstract get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

abstract get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

abstract get_duals_eq()

Get a copy of the values of the dual variables of the equality constraints as provided in set_duals_eq. These
are the values that will be used in calls to the evaluation methods.

abstract get_duals_ineq()

Get a copy of the values of the dual variables of the inequality constraints as provided in set_duals_eq.
These are the values that will be used in calls to the evaluation methods.

abstract get_eq_constraints_scaling()

Return the desired scaling factors to use for the for the equality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

abstract get_ineq_constraints_scaling()

Return the desired scaling factors to use for the for the inequality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

abstract get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

abstract get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

530 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

abstract get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

abstract get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

abstract ineq_lb()

Returns vector of lower bounds for inequality constraints
Return type

vector-like

abstract ineq_ub()

Returns vector of upper bounds for inequality constraints
Return type

vector-like

abstract init_duals()

Returns vector with initial values for the dual variables of the constraints

abstract init_duals_eq()

Returns vector with initial values for the dual variables of the equality constraints

abstract init_duals_ineq()

Returns vector with initial values for the dual variables of the inequality constraints

abstract init_primals()

Returns vector with initial values for the primal variables

abstract n_constraints()

Returns number of constraints

abstract n_eq_constraints()

Returns number of equality constraints

abstract n_ineq_constraints()

Returns number of inequality constraints

abstract n_primals()

Returns number of primal variables

abstract nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

abstract nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

abstract nnz_jacobian_eq()

Returns number of nonzero values in jacobian of equality constraints

abstract nnz_jacobian_ineq()

Returns number of nonzero values in jacobian of inequality constraints

17.11. PyNumero 531

Pyomo Documentation, Release 6.5.0

abstract primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Override this to provide string names for the primal variables

abstract primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

abstract report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

abstract set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

abstract set_duals_eq(duals_eq)
Set the value of the dual variables for the equality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_eq (vector_like) – Vector with the values of dual variables for the equality
constraints

abstract set_duals_ineq(duals_ineq)
Set the value of the dual variables for the inequality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_ineq (vector_like) – Vector with the values of dual variables for the inequal-
ity constraints

abstract set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

abstract set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

532 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

ASL NLP Interface

class pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP(nl_file)
Bases: ExtendedNLP

constraint_names()

Override this to provide string names for the constraints

constraints_lb()

Returns vector of lower bounds for the constraints
Return type

vector-like

constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'eq_constraints',
'ineq_constraints',) – ‘duals’, ‘duals_eq’, ‘duals_ineq’} String identifying
the appropriate vector to create.

Return type
numpy.ndarray

evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_eq_constraints(out=None)
Returns the values for the equality constraints evaluated at the values given for the primal variales in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

Return type
vector_like

17.11. PyNumero 533

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Pyomo Documentation, Release 6.5.0

evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

Return type
matrix_like

evaluate_ineq_constraints(out=None)
Returns the values of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_jacobian_eq(out=None)
Returns the Jacobian of the equality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_jacobian_ineq(out=None)
Returns the Jacobian of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

534 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

Return type
array-like or None

get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

get_duals_eq()

Get a copy of the values of the dual variables of the equality constraints as provided in set_duals_eq. These
are the values that will be used in calls to the evaluation methods.

get_duals_ineq()

Get a copy of the values of the dual variables of the inequality constraints as provided in set_duals_eq.
These are the values that will be used in calls to the evaluation methods.

get_eq_constraints_scaling()

Return the desired scaling factors to use for the for the equality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_ineq_constraints_scaling()

Return the desired scaling factors to use for the for the inequality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

ineq_lb()

Returns vector of lower bounds for inequality constraints
Return type

vector-like

ineq_ub()

Returns vector of upper bounds for inequality constraints
Return type

vector-like

17.11. PyNumero 535

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

init_duals()

Returns vector with initial values for the dual variables of the constraints

init_duals_eq()

Returns vector with initial values for the dual variables of the equality constraints

init_duals_ineq()

Returns vector with initial values for the dual variables of the inequality constraints

init_primals()

Returns vector with initial values for the primal variables

n_constraints()

Returns number of constraints

n_eq_constraints()

Returns number of equality constraints

n_ineq_constraints()

Returns number of inequality constraints

n_primals()

Returns number of primal variables

nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

nnz_jacobian_eq()

Returns number of nonzero values in jacobian of equality constraints

nnz_jacobian_ineq()

Returns number of nonzero values in jacobian of inequality constraints

primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Override this to provide string names for the primal variables

primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

536 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

set_duals_eq(duals_eq)
Set the value of the dual variables for the equality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_eq (vector_like) – Vector with the values of dual variables for the equality
constraints

set_duals_ineq(duals_ineq)
Set the value of the dual variables for the inequality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_ineq (vector_like) – Vector with the values of dual variables for the inequal-
ity constraints

set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

AMPL NLP Interface

class pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP(nl_file, row_filename=None,
col_filename=None)

Bases: AslNLP

constraint_idx(con_name)
Returns the index of the constraint named con_name (corresponding to the order returned by evalu-
ate_constraints)

Parameters
con_name (str) – Name of constraint

Return type
int

constraint_names()

Returns an ordered list with the names of all the constraints (corresponding to evaluate_constraints)

constraints_lb()

Returns vector of lower bounds for the constraints
Return type

vector-like

constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

17.11. PyNumero 537

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'eq_constraints',
'ineq_constraints',) – ‘duals’, ‘duals_eq’, ‘duals_ineq’} String identifying
the appropriate vector to create.

Return type
numpy.ndarray

eq_constraint_idx(con_name)
Returns the index of the equality constraint named con_name (corresponding to the order returned by
evaluate_eq_constraints)

Parameters
con_name (str) – Name of constraint

Return type
int

eq_constraint_names()

Returns ordered list with names of equality constraints only (corresponding to evaluate_eq_constraints)

evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_eq_constraints(out=None)
Returns the values for the equality constraints evaluated at the values given for the primal variales in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

Return type
vector_like

evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

538 Chapter 17. Third-Party Contributions

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Return type
matrix_like

evaluate_ineq_constraints(out=None)
Returns the values of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_jacobian_eq(out=None)
Returns the Jacobian of the equality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_jacobian_ineq(out=None)
Returns the Jacobian of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

17.11. PyNumero 539

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

get_duals_eq()

Get a copy of the values of the dual variables of the equality constraints as provided in set_duals_eq. These
are the values that will be used in calls to the evaluation methods.

get_duals_ineq()

Get a copy of the values of the dual variables of the inequality constraints as provided in set_duals_eq.
These are the values that will be used in calls to the evaluation methods.

get_eq_constraints_scaling()

Return the desired scaling factors to use for the for the equality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_ineq_constraints_scaling()

Return the desired scaling factors to use for the for the inequality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

ineq_constraint_idx(con_name)
Returns the index of the inequality constraint named con_name (corresponding to the order returned by
evaluate_ineq_constraints)

Parameters
con_name (str) – Name of constraint

Return type
int

ineq_constraint_names()

Returns ordered list with names of inequality constraints only (corresponding to evaluate_ineq_constraints)

ineq_lb()

Returns vector of lower bounds for inequality constraints
Return type

vector-like

540 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

ineq_ub()

Returns vector of upper bounds for inequality constraints
Return type

vector-like

init_duals()

Returns vector with initial values for the dual variables of the constraints

init_duals_eq()

Returns vector with initial values for the dual variables of the equality constraints

init_duals_ineq()

Returns vector with initial values for the dual variables of the inequality constraints

init_primals()

Returns vector with initial values for the primal variables

n_constraints()

Returns number of constraints

n_eq_constraints()

Returns number of equality constraints

n_ineq_constraints()

Returns number of inequality constraints

n_primals()

Returns number of primal variables

nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

nnz_jacobian_eq()

Returns number of nonzero values in jacobian of equality constraints

nnz_jacobian_ineq()

Returns number of nonzero values in jacobian of inequality constraints

primal_idx(var_name)
Returns the index of the primal variable named var_name

Parameters
var_name (str) – Name of primal variable

Return type
int

primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Returns ordered list with names of primal variables

17.11. PyNumero 541

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

set_duals_eq(duals_eq)
Set the value of the dual variables for the equality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_eq (vector_like) – Vector with the values of dual variables for the equality
constraints

set_duals_ineq(duals_ineq)
Set the value of the dual variables for the inequality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_ineq (vector_like) – Vector with the values of dual variables for the inequal-
ity constraints

set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

variable_idx(var_name)
DEPRECATED.

Deprecated since version 6.0.0.dev0: This method has been replaced with primal_idx (will be removed in
(or after) 6.0)

variable_names()

DEPRECATED.

Returns ordered list with names of primal variables

Deprecated since version 6.0.0.dev0: This method has been replaced with primals_names (will be removed
in (or after) 6.0)

542 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

Pyomo NLP Interface

class pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP(pyomo_model, nl_file_options=None)
Bases: AslNLP

constraint_names()

Return an ordered list of the Pyomo constraint names in the order corresponding to internal constraint
order

constraints_lb()

Returns vector of lower bounds for the constraints
Return type

vector-like

constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'eq_constraints',
'ineq_constraints',) – ‘duals’, ‘duals_eq’, ‘duals_ineq’} String identifying
the appropriate vector to create.

Return type
numpy.ndarray

equality_constraint_names()

Return an ordered list of the Pyomo ConData names in the order corresponding to the equality constraints.

evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_eq_constraints(out=None)
Returns the values for the equality constraints evaluated at the values given for the primal variales in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

17.11. PyNumero 543

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Pyomo Documentation, Release 6.5.0

Return type
vector_like

evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

Return type
matrix_like

evaluate_ineq_constraints(out=None)
Returns the values of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_jacobian_eq(out=None)
Returns the Jacobian of the equality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_jacobian_ineq(out=None)
Returns the Jacobian of the inequality constraints evaluated at the values given for the primal variables in
set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

544 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

extract_submatrix_hessian_lag(pyomo_variables_rows, pyomo_variables_cols)
Return the submatrix of the hessian of the lagrangian that corresponds to the list of Pyomo variables
provided

Parameters
• pyomo_variables_rows (list of Pyomo Var or VarData objects) –

List of Pyomo Var or VarData objects corresponding to the desired rows

• pyomo_variables_cols (list of Pyomo Var or VarData objects) –
List of Pyomo Var or VarData objects corresponding to the desired columns

extract_submatrix_jacobian(pyomo_variables, pyomo_constraints)
Return the submatrix of the jacobian that corresponds to the list of Pyomo variables and list of Pyomo
constraints provided

Parameters
• pyomo_variables (list of Pyomo Var or VarData objects) –

• pyomo_constraints (list of Pyomo Constraint or ConstraintData
objects) –

extract_subvector_constraints(pyomo_constraints)
Return the values of the constraints corresponding to the list of Pyomo constraints provided

Parameters
pyomo_constraints (list of Pyomo Constraint or ConstraintData
objects) –

extract_subvector_grad_objective(pyomo_variables)
Compute the gradient of the objective and return the entries corresponding to the given Pyomo variables

Parameters
pyomo_variables (list of Pyomo Var or VarData objects) –

get_constraint_indices(pyomo_constraints)
Return the list of indices for the constraints corresponding to the list of Pyomo constraints provided

Parameters
pyomo_constraints (list of Pyomo Constraint or ConstraintData
objects) –

get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

get_duals_eq()

Get a copy of the values of the dual variables of the equality constraints as provided in set_duals_eq. These
are the values that will be used in calls to the evaluation methods.

get_duals_ineq()

Get a copy of the values of the dual variables of the inequality constraints as provided in set_duals_eq.
These are the values that will be used in calls to the evaluation methods.

17.11. PyNumero 545

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

get_eq_constraints_scaling()

Return the desired scaling factors to use for the for the equality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_equality_constraint_indices(constraints)
Return the list of equality indices for the constraints corresponding to the list of Pyomo constraints pro-
vided.

Parameters
constraints (list of Pyomo Constraints or ConstraintData objects) –

get_ineq_constraints_scaling()

Return the desired scaling factors to use for the for the inequality constraints. None indicates no scaling.
This indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_inequality_constraint_indices(constraints)
Return the list of inequality indices for the constraints corresponding to the list of Pyomo constraints
provided.

Parameters
constraints (list of Pyomo Constraints or ConstraintData objects) –

get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

get_primal_indices(pyomo_variables)
Return the list of indices for the primals corresponding to the list of Pyomo variables provided

Parameters
pyomo_variables (list of Pyomo Var or VarData objects) –

get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_pyomo_constraints()

Return an ordered list of the Pyomo ConData objects in the order corresponding to the primals

get_pyomo_equality_constraints()

Return an ordered list of the Pyomo ConData objects in the order corresponding to the equality constraints.

546 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

get_pyomo_inequality_constraints()

Return an ordered list of the Pyomo ConData objects in the order corresponding to the inequality con-
straints.

get_pyomo_objective()

Return an instance of the active objective function on the Pyomo model. (there can be only one)

get_pyomo_variables()

Return an ordered list of the Pyomo VarData objects in the order corresponding to the primals

ineq_lb()

Returns vector of lower bounds for inequality constraints
Return type

vector-like

ineq_ub()

Returns vector of upper bounds for inequality constraints
Return type

vector-like

inequality_constraint_names()

Return an ordered list of the Pyomo ConData names in the order corresponding to the inequality constraints.

init_duals()

Returns vector with initial values for the dual variables of the constraints

init_duals_eq()

Returns vector with initial values for the dual variables of the equality constraints

init_duals_ineq()

Returns vector with initial values for the dual variables of the inequality constraints

init_primals()

Returns vector with initial values for the primal variables

load_state_into_pyomo(bound_multipliers=None)

n_constraints()

Returns number of constraints

n_eq_constraints()

Returns number of equality constraints

n_ineq_constraints()

Returns number of inequality constraints

n_primals()

Returns number of primal variables

nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

nnz_jacobian_eq()

Returns number of nonzero values in jacobian of equality constraints

17.11. PyNumero 547

Pyomo Documentation, Release 6.5.0

nnz_jacobian_ineq()

Returns number of nonzero values in jacobian of inequality constraints

primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Return an ordered list of the Pyomo variable names in the order corresponding to the primals

primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

pyomo_model()

Return optimization model

report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

set_duals_eq(duals_eq)
Set the value of the dual variables for the equality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_eq (vector_like) – Vector with the values of dual variables for the equality
constraints

set_duals_ineq(duals_ineq)
Set the value of the dual variables for the inequality constraints to be used in calls to the evaluation methods
(hessian_lag)

Parameters
duals_ineq (vector_like) – Vector with the values of dual variables for the inequal-
ity constraints

set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

548 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

variable_names()

DEPRECATED.

Deprecated since version 6.0.0.dev0: This method has been replaced with primals_names (will be removed
in (or after) 6.0)

Projected NLP Interface

class pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP(original_nlp,
primals_ordering)

Bases: _BaseNLPDelegator

constraint_names()

Override this to provide string names for the constraints

constraints_lb()

Returns vector of lower bounds for the constraints
Return type

vector-like

constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'duals'}) – String identifying the ap-
propriate vector to create.

Return type
vector-like

evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

Return type
vector_like

evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

17.11. PyNumero 549

Pyomo Documentation, Release 6.5.0

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

Return type
matrix_like

evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

init_duals()

Returns vector with initial values for the dual variables of the constraints

init_primals()

Returns vector with initial values for the primal variables

550 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

n_constraints()

Returns number of constraints

n_primals()

Returns number of primal variables

nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Override this to provide string names for the primal variables

primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

17.11. PyNumero 551

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

External Grey Box Model

class pyomo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel

Bases: object

This is the base class for building external input output models for use with Pyomo and CyIpopt. See the module
documentation above, and documentation of individual methods.

There are examples in: pyomo/contrib/pynumero/examples/external_grey_box/react-example/

Most methods are documented in the class itself. However, there are methods that are not implemented in the
base class that may need to be implemented to provide support for certain features.

Hessian support:

If you would like to support Hessian computations for your external model, you will need to implement the fol-
lowing methods to support setting the multipliers that are used when computing the Hessian of the Lagrangian. -
set_equality_constraint_multipliers: see documentation in method - set_output_constraint_multipliers: see doc-
umentation in method You will also need to implement the following methods to evaluate the required Hessian
information:
def evaluate_hessian_equality_constraints(self):

Compute the product of the equality constraint multipliers with the hessian of the equality constraints. E.g.,
y_eq^k is the vector of equality constraint multipliers from set_equality_constraint_multipliers, w_eq(u)=0
are the equality constraints, and u^k are the vector of inputs from set_inputs. This method must return
H_eq^k = sum_i (y_eq^k)_i * grad^2_{uu} w_eq(u^k)

def evaluate_hessian_outputs(self):
Compute the product of the output constraint multipliers with the hessian of the outputs. E.g., y_o^k is the
vector of output constraint multipliers from set_output_constraint_multipliers, u^k are the vector of inputs
from set_inputs, and w_o(u) is the function that computes the vector of outputs at the values for the input
variables. This method must return H_o^k = sum_i (y_o^k)_i * grad^2_{uu} w_o(u^k)

Examples that show Hessian support are also found in: pyomo/contrib/pynumero/examples/external_grey_box/react-
example/

equality_constraint_names()

Provide the list of string names corresponding to any residuals for this external model. These should be in
the order corresponding to values returned from evaluate_residuals. Return an empty list if there are no
equality constraints.

evaluate_equality_constraints()

Compute the residuals from the model (using the values set in input_values) and return as a numpy array

evaluate_jacobian_equality_constraints()

Compute the derivatives of the residuals with respect to the inputs (using the values set in input_values).
This should be a scipy matrix with the rows in the order of the residual names and the cols in the order of
the input variables.

evaluate_jacobian_outputs()

Compute the derivatives of the outputs with respect to the inputs (using the values set in input_values).
This should be a scipy matrix with the rows in the order of the output variables and the cols in the order
of the input variables.

evaluate_outputs()

Compute the outputs from the model (using the values set in input_values) and return as a numpy array

finalize_block_construction(pyomo_block)
Implement this callback to provide any additional specifications to the Pyomo block that is created to
represent this external grey box model.

552 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#object

Pyomo Documentation, Release 6.5.0

Note that pyomo_block.inputs and pyomo_block.outputs have been created, and this callback provides an
opportunity to set initial values, bounds, etc.

get_equality_constraint_scaling_factors()

This method is called by the solver interface to get desired values for scaling the equality constraints. None
means no scaling is desired. Note that, depending on the solver, one may need to set solver options so these
factors are used

get_output_constraint_scaling_factors()

This method is called by the solver interface to get desired values for scaling the constraints with output
variables. Returning None means that no scaling of the output constraints is desired. Note that, depending
on the solver, one may need to set solver options so these factors are used

input_names()

Provide the list of string names to corresponding to the inputs of this external model. These should be
returned in the same order that they are to be used in set_input_values.

n_equality_constraints()

This method returns the number of equality constraints. You do not need to overload this method in derived
classes.

n_inputs()

This method returns the number of inputs. You do not need to overload this method in derived classes.

n_outputs()

This method returns the number of outputs. You do not need to overload this method in derived classes.

output_names()

Provide the list of string names corresponding to the outputs of this external model. These should be in
the order corresponding to values returned from evaluate_outputs. Return an empty list if there are no
computed outputs.

set_equality_constraint_multipliers(eq_con_multiplier_values)
This method is called by the solver to set the current values for the multipliers of the equality
constraints. The derived class must cache these if necessary for any subsequent calls to evalu-
ate_hessian_equality_constraints

set_input_values(input_values)
This method is called by the solver to set the current values for the input variables. The derived class must
cache these if necessary for any subsequent calls to evalute_outputs or evaluate_derivatives.

set_output_constraint_multipliers(output_con_multiplier_values)
This method is called by the solver to set the current values for the multipliers of the output constraints.
The derived class must cache these if necessary for any subsequent calls to evaluate_hessian_outputs

Pyomo Grey Box NLP Interface

class pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP(pyomo_model)
Bases: NLP

constraint_names()

Override this to provide string names for the constraints

constraints_lb()

Returns vector of lower bounds for the constraints

17.11. PyNumero 553

Pyomo Documentation, Release 6.5.0

Return type
vector-like

constraints_ub()

Returns vector of upper bounds for the constraints
Return type

vector-like

create_new_vector(vector_type)
Creates a vector of the appropriate length and structure as requested

Parameters
vector_type ({'primals', 'constraints', 'duals'}) – String identifying the ap-
propriate vector to create.

Return type
vector-like

evaluate_constraints(out=None)
Returns the values for the constraints evaluated at the values given for the primal variales in set_primals

Parameters
out (array_like, optional) – Output array. Its type is preserved and it must be of
the right shape to hold the output.

Return type
vector_like

evaluate_eq_constraints(out=None)

evaluate_grad_objective(out=None)
Returns gradient of the objective function evaluated at the values given for the primal variables in
set_primals

Parameters
out (vector_like, optional) – Output vector. Its type is preserved and it must be
of the right shape to hold the output.

Return type
vector_like

evaluate_hessian_lag(out=None)
Return the Hessian of the Lagrangian function evaluated at the values given for the primal variables in
set_primals and the dual variables in set_duals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the hessian already defined. Optional

Return type
matrix_like

evaluate_jacobian(out=None)
Returns the Jacobian of the constraints evaluated at the values given for the primal variables in set_primals

Parameters
out (matrix_like (e.g., coo_matrix), optional) – Output matrix with the
structure of the jacobian already defined.

Return type
matrix_like

554 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

evaluate_objective()

Returns value of objective function evaluated at the values given for the primal variables in set_primals
Return type

float

get_constraints_scaling()

Return the desired scaling factors to use for the for the constraints. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_duals()

Get a copy of the values of the dual variables as provided in set_duals. These are the values that will be
used in calls to the evaluation methods.

get_duals_eq()

get_obj_factor()

Get the value of the objective function factor as set by set_obj_factor. This is the value that will be used
in calls to the evaluation of the hessian of the lagrangian (evaluate_hessian_lag)

get_obj_scaling()

Return the desired scaling factor to use for the for the objective function. None indicates no scaling. This
indicates potential scaling for the model, but the evaluation methods should return unscaled values

Return type
float or None

get_primals()

Get a copy of the values of the primal variables as provided in set_primals. These are the values that will
be used in calls to the evaluation methods

get_primals_scaling()

Return the desired scaling factors to use for the for the primals. None indicates no scaling. This indicates
potential scaling for the model, but the evaluation methods should return unscaled values

Return type
array-like or None

get_pyomo_constraints()

Return an ordered list of the Pyomo ConData objects in the order corresponding to the primals

get_pyomo_objective()

Return an instance of the active objective function on the Pyomo model. (there can be only one)

get_pyomo_variables()

Return an ordered list of the Pyomo VarData objects in the order corresponding to the primals

init_duals()

Returns vector with initial values for the dual variables of the constraints

init_duals_eq()

init_primals()

Returns vector with initial values for the primal variables

load_state_into_pyomo(bound_multipliers=None)

n_constraints()

Returns number of constraints

17.11. PyNumero 555

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

n_eq_constraints()

n_ineq_constraints()

n_primals()

Returns number of primal variables

nnz_hessian_lag()

Returns number of nonzero values in hessian of the lagrangian function

nnz_jacobian()

Returns number of nonzero values in jacobian of equality constraints

nnz_jacobian_eq()

primals_lb()

Returns vector of lower bounds for the primal variables
Return type

vector-like

primals_names()

Override this to provide string names for the primal variables

primals_ub()

Returns vector of upper bounds for the primal variables
Return type

vector-like

pyomo_model()

Return optimization model

report_solver_status(status_code, status_message)
Report the solver status to NLP class using the values for the primals and duals defined in the set methods

set_duals(duals)
Set the value of the dual variables for the constraints to be used in calls to the evaluation methods (hes-
sian_lag)

Parameters
duals (vector_like) – Vector with the values of dual variables for the equality con-
straints

set_duals_eq(duals)

set_obj_factor(obj_factor)
Set the value of the objective function factor to be used in calls to the evaluation of the hessian of the
lagrangian (evaluate_hessian_lag)

Parameters
obj_factor (float) – Value of the objective function factor used in the evaluation of
the hessian of the lagrangian

set_primals(primals)
Set the value of the primal variables to be used in calls to the evaluation methods

Parameters
primals (vector_like) – Vector with the values of primal variables.

556 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#float

Pyomo Documentation, Release 6.5.0

variable_names()

DEPRECATED.

Deprecated since version 6.0.0.dev0: This method has been replaced with primals_names (will be removed
in (or after) 6.0)

PyNumero Linear Solver Interfaces

Linear Solver Base Classes

class pyomo.contrib.pynumero.linalg.base.LinearSolverStatus(value)
Bases: Enum

An enumeration.

error = 3

max_iter = 5

not_enough_memory = 1

singular = 2

successful = 0

warning = 4

class pyomo.contrib.pynumero.linalg.base.LinearSolverResults(status: Optional[LinearSolverStatus]
= None)

Bases: object

class pyomo.contrib.pynumero.linalg.base.LinearSolverInterface

Bases: object

abstract solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error:
bool = True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

class pyomo.contrib.pynumero.linalg.base.DirectLinearSolverInterface

Bases: LinearSolverInterface

abstract do_back_solve(rhs: Union[ndarray, BlockVector], raise_on_error: bool = True)→
Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

abstract do_numeric_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool =
True)→ LinearSolverResults

abstract do_symbolic_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool =
True)→ LinearSolverResults

solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error: bool =
True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

17.11. PyNumero 557

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Pyomo Documentation, Release 6.5.0

HSL MA27

class pyomo.contrib.pynumero.linalg.ma27_interface.MA27(cntl_options=None, icntl_options=None,
iw_factor=1.2, a_factor=2)

Bases: DirectLinearSolverInterface

do_back_solve(rhs: Union[ndarray, BlockVector], raise_on_error: bool = True)→
Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

do_numeric_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

do_symbolic_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

get_cntl(key)

get_icntl(key)

get_info(key)

increase_memory_allocation(factor)

set_cntl(key, value)

set_icntl(key, value)

solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error: bool =
True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

HSL MA57

class pyomo.contrib.pynumero.linalg.ma57_interface.MA57(cntl_options=None, icntl_options=None,
work_factor=1.2, fact_factor=2,
ifact_factor=2)

Bases: DirectLinearSolverInterface

do_back_solve(rhs: Union[ndarray, BlockVector], raise_on_error: bool = True)→
Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

do_numeric_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

do_symbolic_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

get_cntl(key)

get_icntl(key)

get_info(key)

get_rinfo(key)

increase_memory_allocation(factor)

558 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

set_cntl(key, value)

set_icntl(key, value)

solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error: bool =
True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

MUMPS

class pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver(sym=0,
par=1,
comm=None,
cntl_options=None,
ic-
ntl_options=None)

Bases: DirectLinearSolverInterface

A thin wrapper around pymumps which uses the centralized assembled matrix format. In other words ICNTL(5)
= 0 and ICNTL(18) = 0.

Solve matrix * x = rhs for x.

See the Mumps documentation for descriptions of the parameters. The section numbers listed below refer to the
Mumps documentation for version 5.2.1.

Parameters
• sym (int, optional) – See section 5.2.1 of the Mumps documentation

• par (int, optional) – See section 5.1.3

• comm (mpi4py comm, optional) – See section 5.1.3

• cntl_options (dict, optional) – See section 6.2

• icntl_options (dict, optional) – See section 6.1
do_back_solve(rhs: Union[ndarray, BlockVector], raise_on_error: bool = True)→

Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]
Perform back solve with Mumps. Note that both do_symbolic_factorization and do_numeric_factorization
should be called before do_back_solve.

Parameters
rhs (numpy.ndarray or pyomo.contrib.pynumero.sparse.BlockVector) –
The right hand side in matrix * x = rhs.

Returns
result – The x in matrix * x = rhs. If rhs is a BlockVector, then, result will be a Block-
Vector with the same block structure as rhs.

Return type
numpy.ndarray or pyomo.contrib.pynumero.sparse.BlockVector

do_numeric_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

Perform Mumps factorization. Note that do_symbolic_factorization should be called before
do_numeric_factorization.

Parameters
matrix (scipy.sparse.spmatrix or pyomo.contrib.pynumero.sparse.
BlockMatrix) – This matrix must have the same nonzero structure as the matrix
passed into do_symbolic_factorization. The matrix will be converted to coo format if

17.11. PyNumero 559

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix

Pyomo Documentation, Release 6.5.0

it is not already in coo format. If sym is 1 or 2, the matrix will be converted to lower
triangular.

do_symbolic_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

Perform Mumps analysis.
Parameters

matrix (scipy.sparse.spmatrix or pyomo.contrib.pynumero.sparse.
BlockMatrix) – This matrix must have the same nonzero structure as the matrix
passed into do_numeric_factorization. The matrix will be converted to coo format if
it is not already in coo format. If sym is 1 or 2, the matrix will be converted to lower
triangular.

get_cntl(key)

get_icntl(key)

get_info(key)

get_infog(key)

get_rinfo(key)

get_rinfog(key)

increase_memory_allocation(factor)

set_cntl(key, value)

set_icntl(key, value)

solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error: bool =
True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

Scipy

class pyomo.contrib.pynumero.linalg.scipy_interface.ScipyLU

Bases: DirectLinearSolverInterface

do_back_solve(rhs: Union[ndarray, BlockVector], raise_on_error: bool = True)→
Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

do_numeric_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

do_symbolic_factorization(matrix: Union[spmatrix, BlockMatrix], raise_on_error: bool = True)→
LinearSolverResults

solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error: bool =
True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

class pyomo.contrib.pynumero.linalg.scipy_interface.ScipyIterative(method: Callable,
options=None)

Bases: LinearSolverInterface

solve(matrix: Union[spmatrix, BlockMatrix], rhs: Union[ndarray, BlockVector], raise_on_error: bool =
True)→ Tuple[Optional[Union[ndarray, BlockVector]], LinearSolverResults]

560 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Pyomo Documentation, Release 6.5.0

17.11.4 Developers

The development team includes:

• Jose Santiago Rodriguez

• Michael Bynum

• Carl Laird

• Bethany Nicholson

• Robby Parker

• John Siirola

17.11.5 Packages built on PyNumero

• https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/interior_point

• https://github.com/parapint/parapint

17.11.6 Papers utilizing PyNumero

• Rodriguez, J. S., Laird, C. D., & Zavala, V. M. (2020). Scalable preconditioning of block-structured linear
algebra systems using ADMM. Computers & Chemical Engineering, 133, 106478.

17.11.7 Indices and Tables

• genindex

• modindex

• search

17.12 PyROS Solver

PyROS (Pyomo Robust Optimization Solver) is a Pyomo-based meta-solver for non-convex, two-stage adjustable robust
optimization problems.

It was developed by Natalie M. Isenberg, Jason A. F. Sherman, and Chrysanthos E. Gounaris of Carnegie Mellon
University, in collaboration with John D. Siirola of Sandia National Labs. The developers gratefully acknowledge
support from the U.S. Department of Energy’s Institute for the Design of Advanced Energy Systems (IDAES).

17.12.1 Methodology Overview

Below is an overview of the type of optimization models PyROS can accomodate.

• PyROS is suitable for optimization models of continuous variables that may feature non-linearities (including
non-convexities) in both the variables and uncertain parameters.

• PyROS can handle equality constraints defining state variables, including implicit state variables that cannot
be eliminated via reformulation.

17.12. PyROS Solver 561

https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/interior_point
https://github.com/parapint/parapint
https://idaes.org

Pyomo Documentation, Release 6.5.0

• PyROS allows for two-stage optimization problems that may feature both first-stage and second-stage degrees
of freedom.

PyROS is designed to operate on deterministic models of the general form

min
𝑥∈𝒳 ,

𝑧∈R𝑛𝑧 ,𝑦∈R𝑛𝑦

𝑓1 (𝑥) + 𝑓2(𝑥, 𝑧, 𝑦; 𝑞nom)

s.t. 𝑔𝑖(𝑥, 𝑧, 𝑦; 𝑞nom) ≤ 0 ∀ 𝑖 ∈ ℐ
ℎ𝑗(𝑥, 𝑧, 𝑦; 𝑞nom) = 0 ∀ 𝑗 ∈ 𝒥

where:

• 𝑥 ∈ 𝒳 are the “design” variables (i.e., first-stage degrees of freedom), where 𝒳 ⊆ R𝑛𝑥 is the feasible space
defined by the model constraints (including variable bounds specifications) referencing 𝑥 only.

• 𝑧 ∈ R𝑛𝑧 are the “control” variables (i.e., second-stage degrees of freedom)

• 𝑦 ∈ R𝑛𝑦 are the “state” variables

• 𝑞 ∈ R𝑛𝑞 is the vector of model parameters considered uncertain, and 𝑞nom is the vector of nominal values
associated with those.

• 𝑓1 (𝑥) are the terms of the objective function that depend only on design variables

• 𝑓2 (𝑥, 𝑧, 𝑦; 𝑞) are the terms of the objective function that depend on all variables and the uncertain parameters

• 𝑔𝑖 (𝑥, 𝑧, 𝑦; 𝑞) is the 𝑖th inequality constraint function in set ℐ (see Note)

• ℎ𝑗 (𝑥, 𝑧, 𝑦; 𝑞) is the 𝑗th equality constraint function in set 𝒥 (see Note)

Note: PyROS accepts models in which bounds are directly imposed on Var objects representing components of the
variables 𝑧 and 𝑦. These models are cast to the form above by reformulating the bounds as inequality constraints.

Note: A key requirement of PyROS is that each value of (𝑥, 𝑧, 𝑞) maps to a unique value of 𝑦, a property that is assumed
to be properly enforced by the system of equality constraints 𝒥 . If the mapping is not unique, then the selection of
‘state’ (i.e., not degree of freedom) variables 𝑦 is incorrect, and one or more of the 𝑦 variables should be appropriately
redesignated to be part of either 𝑥 or 𝑧.

In order to cast the robust optimization counterpart of the determinstic model, we now assume that the uncertain pa-
rameters may attain any realization in a compact uncertainty set 𝒬 ⊆ R𝑛𝑞 containing the nominal value 𝑞nom. The set
𝒬 may be either continuous or discrete.

Based on the above notation, the form of the robust counterpart addressed by PyROS is

min
𝑥∈𝒳

max
𝑞∈𝒬

min
𝑧∈R𝑛𝑧 ,
𝑦∈R𝑛𝑦

𝑓1 (𝑥) + 𝑓2 (𝑥, 𝑧, 𝑦, 𝑞)

s.t. 𝑔𝑖 (𝑥, 𝑧, 𝑦, 𝑞) ≤ 0 ∀ 𝑖 ∈ ℐ
ℎ𝑗 (𝑥, 𝑧, 𝑦, 𝑞) = 0 ∀ 𝑗 ∈ 𝒥

PyROS solves problems of this form using the Generalized Robust Cutting-Set algorithm developed in [Isenberg_et_al].

When using PyROS, please consider citing the above paper.

562 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

17.12.2 PyROS Required Inputs

The required inputs to the PyROS solver are:

• The deterministic optimization model

• List of first-stage (“design”) variables

• List of second-stage (“control”) variables

• List of parameters considered uncertain

• The uncertainty set

• Subordinate local and global nonlinear programming (NLP) solvers

These are more elaborately presented in the Solver Interface section.

Note: Any variables in the model not specified to be first-stage or second-stage variables are automatically considered
to be state variables.

17.12.3 PyROS Solver Interface

class pyomo.contrib.pyros.PyROS

PyROS (Pyomo Robust Optimization Solver) implementing a generalized robust cutting-set algorithm (GRCS)
to solve two-stage NLP optimization models under uncertainty.

solve(model, first_stage_variables, second_stage_variables, uncertain_params, uncertainty_set,
local_solver, global_solver, **kwds)

Solve a model.
Parameters

• model (ConcreteModel) – The deterministic model.

• first_stage_variables (list of Var) – First-stage model variables (or de-
sign variables).

• second_stage_variables (list of Var) – Second-stage model variables (or
control variables).

• uncertain_params (list of Param) – Uncertain model parameters. The mu-
table attribute for every uncertain parameter objects must be set to True.

• uncertainty_set (UncertaintySet) – Uncertainty set against which the so-
lution(s) returned will be confirmed to be robust.

• local_solver (Solver) – Subordinate local NLP solver.

• global_solver (Solver) – Subordinate global NLP solver.

Returns
return_soln – Summary of PyROS termination outcome.

Return type
ROSolveResults

Keyword Arguments

17.12. PyROS Solver 563

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• time_limit (None or NonNegativeFloat, optional) – Wall time limit for
the execution of the PyROS solver in seconds (including time spent by subsolvers).
If None is provided, then no time limit is enforced.

• keepfiles (bool, default=False) – Export subproblems with a non-
acceptable termination status for debugging purposes. If True is provided, then
the argument subproblem_file_directory must also be specified.

• tee (bool, default=False) – Output subordinate solver logs for all subprob-
lems.

• load_solution (bool, default=True) – Load final solution(s) found by Py-
ROS to the deterministic model provided.

• objective_focus (ObjectiveType, optional) – Objective focus for the
master problems:

– ObjectiveType.nominal: Optimize the objective function subject to the nom-
inal uncertain parameter realization.

– ObjectiveType.worst_case: Optimize the objective function subject to the
worst-case uncertain parameter realization.

By default, ObjectiveType.nominal is chosen.

A worst-case objective focus is required for certification of robust optimality of
the final solution(s) returned by PyROS. If a nominal objective focus is chosen,
then only robust feasibility is guaranteed.

• nominal_uncertain_param_vals (list of float, default=[]) – Nom-
inal uncertain parameter realization. Entries should be provided in an order con-
sistent with the entries of the argument uncertain_params. If an empty list is pro-
vided, then the values of the Param objects specified through uncertain_params
are chosen.

• decision_rule_order (In[0, 1, 2], default=0) – Order (or degree) of
the polynomial decision rule functions used for approximating the adjustability of
the second stage variables with respect to the uncertain parameters.

Choices are:

– 0: static recourse

– 1: affine recourse

– 2: quadratic recourse

• solve_master_globally (bool, default=False) – True to solve all master
problems with the subordinate global solver, False to solve all master problems
with the subordinate local solver. Along with a worst-case objective focus (see
argument objective_focus), solving the master problems to global optimality is
required for certification of robust optimality of the final solution(s) returned by
PyROS. Otherwise, only robust feasibility is guaranteed.

• max_iter (int, default=-1) – Iteration limit. If -1 is provided, then no itera-
tion limit is enforced.

• robust_feasibility_tolerance (NonNegativeFloat, default=0.
0001) – Relative tolerance for assessing maximal inequality constraint violations
during the GRCS separation step.

• separation_priority_order (dict, default={}) – Mapping from model
inequality constraint names to positive integers specifying the priorities of their

564 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

corresponding separation subproblems. A higher integer value indicates a higher
priority. Constraints not referenced in the dict assume a priority of 0. Separation
subproblems are solved in order of decreasing priority.

• progress_logger (str or logging.Logger, default='pyomo.
contrib.pyros') – Logger (or name thereof) used for reporting PyROS solver
progress. If a str is specified, then logging.getLogger(progress_logger)
is used.

• backup_local_solvers (list of Solver, default=[]) – Additional sub-
ordinate local NLP optimizers to invoke in the event the primary local NLP opti-
mizer fails to solve a subproblem to an acceptable termination condition.

• backup_global_solvers (list of Solver, default=[]) – Additional
subordinate global NLP optimizers to invoke in the event the primary global NLP
optimizer fails to solve a subproblem to an acceptable termination condition.

• subproblem_file_directory (None, str, or path-like,
default=None) – Directory to which to export subproblems not successfully
solved to an acceptable termination condition. In the event keepfiles=True is
specified, a str or path-like referring to an existing directory must be provided.

• bypass_local_separation (bool, default=False) – This is an advanced
option. Solve all separation subproblems with the subordinate global solver(s)
only. This option is useful for expediting PyROS in the event that the subordinate
global optimizer(s) provided can quickly solve separation subproblems to global
optimality.

• bypass_global_separation (bool, default=False) – This is an advanced
option. Solve all separation subproblems with the subordinate local solver(s) only.
If True is chosen, then robustness of the final solution(s) returned by PyROS is
not guaranteed, and a warning will be issued at termination. This option is useful
for expediting PyROS in the event that the subordinate global optimizer provided
cannot tractably solve separation subproblems to global optimality.

• p_robustness (dict, default={}) – This is an advanced option. Add p-
robustness constraints to all master subproblems. If an empty dict is provided,
then p-robustness constraints are not added. Otherwise, the dict must map a
str of value 'rho' to a non-negative float. PyROS automatically specifies 1 +
p_robustness['rho'] as an upper bound for the ratio of the objective function
value under any PyROS-sampled uncertain parameter realization to the objective
function under the nominal parameter realization.

Note: Upon successful convergence of PyROS, the solution returned is certified to be robust optimal only if:

1. master problems are solved to global optimality (by specifying solve_master_globally=True)

2. a worst-case objective focus is chosen (by specifying objective_focus=ObjectiveType.worst_case)

Otherwise, the solution returned is certified to only be robust feasible.

17.12. PyROS Solver 565

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Pyomo Documentation, Release 6.5.0

17.12.4 PyROS Uncertainty Sets

Uncertainty sets are represented by subclasses of the UncertaintySet abstract base class. PyROS provides a suite
of pre-implemented subclasses representing commonly used uncertainty sets. Custom user-defined uncertainty set
types may be implemented by subclassing the UncertaintySet class. The intersection of a sequence of concrete
UncertaintySet instances can be easily constructed by instantiating the pre-implemented IntersectionSet sub-
class.

The table that follows provides mathematical definitions of the various abstract and pre-implemented UncertaintySet
subclasses.

Table 17.2: Mathematical definitions of PyROS uncertainty sets of di-
mension 𝑛.

Uncertainty Set Type Input Data Mathematical Definition

BoxSet
𝑞L ∈ R𝑛,
𝑞U ∈ R𝑛 {𝑞 ∈ R𝑛 | 𝑞L ≤ 𝑞 ≤ 𝑞U}

CardinalitySet
𝑞0 ∈ R𝑛,
𝑞 ∈ R𝑛

+,
Γ ∈ [0, 𝑛]

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑞 ∈ R𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑞 = 𝑞0 + 𝑞 ∘ 𝜉
𝑛∑︁

𝑖=1

𝜉𝑖 ≤ Γ

𝜉 ∈ [0, 1]𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭
BudgetSet

𝑞0 ∈ R𝑛,
𝑏 ∈ R𝐿

+,
𝐵 ∈ {0, 1}𝐿×𝑛

{︂
𝑞 ∈ R𝑛

⃒⃒⃒⃒ (︂
𝐵
−𝐼

)︂
𝑞 ≤

(︂
𝑏 + 𝐵𝑞0

−𝑞0

)︂ }︂

FactorModelSet
𝑞0 ∈ R𝑛,
Ψ ∈ R𝑛×𝐹 ,
𝛽 ∈ [0, 1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑞 ∈ R𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑞 = 𝑞0 + Ψ𝜉⃒⃒⃒⃒ 𝐹∑︁
𝑗=1

𝜉𝑗

⃒⃒⃒⃒
≤ 𝛽𝐹

𝜉 ∈ [−1, 1]𝐹

⎫⎪⎪⎪⎬⎪⎪⎪⎭
PolyhedralSet

𝐴 ∈ R𝑚×𝑛,
𝑏 ∈ R𝑚 {𝑞 ∈ R𝑛 | 𝐴𝑞 ≤ 𝑏}

AxisAlignedEllipsoidalSet
𝑞0 ∈ R𝑛,
𝛼 ∈ R𝑛

+

⎧⎪⎪⎨⎪⎪⎩𝑞 ∈ R𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒

𝑛∑︁
𝑖=1:
𝛼𝑖>0

(︂
𝑞𝑖 − 𝑞0𝑖
𝛼𝑖

)︂2

≤ 1

𝑞𝑖 = 𝑞0𝑖 ∀ 𝑖 : 𝛼𝑖 = 0

⎫⎪⎪⎬⎪⎪⎭
EllipsoidalSet

𝑞0 ∈ R𝑛,
𝑃 ∈ S𝑛++,
𝑠 ∈ R+

{𝑞 ∈ R𝑛 | (𝑞 − 𝑞0)ᵀ𝑃−1(𝑞 − 𝑞0) ≤ 𝑠}

UncertaintySet 𝑔 : R𝑛 → R𝑚 {𝑞 ∈ R𝑛 | 𝑔(𝑞) ≤ 0}
DiscreteScenarioSet 𝑞1, 𝑞2, . . . , 𝑞𝑆 ∈ R𝑛 {𝑞1, 𝑞2, . . . , 𝑞𝑆}

IntersectionSet 𝒬1,𝒬2, . . . ,𝒬𝑚 ⊂ R𝑛

𝑚⋂︁
𝑖=1

𝒬𝑖

Note: Each of the PyROS uncertainty set classes inherits from the UncertaintySet abstract base class.

566 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

PyROS Uncertainty Set Classes

class pyomo.contrib.pyros.uncertainty_sets.BoxSet(bounds)
Bases: UncertaintySet

A hyper-rectangle (a.k.a. “box”).
Parameters

bounds ((N, 2) array_like) – Lower and upper bounds for each dimension of the set.

Examples

1D box set (interval):

>>> from pyomo.contrib.pyros import BoxSet
>>> interval = BoxSet(bounds=[(1, 2)])
>>> interval.bounds
array([[1, 2]])

2D box set:

>>> box_set = BoxSet(bounds=[[1, 2], [3, 4]])
>>> box_set.bounds
array([[1, 2],

[3, 4]])

5D hypercube with bounds 0 and 1 in each dimension:

>>> hypercube_5d = BoxSet(bounds=[[0, 1] for idx in range(5)])
>>> hypercube_5d.bounds
array([[0, 1],

[0, 1],
[0, 1],
[0, 1],
[0, 1]])

property bounds

Lower and upper bounds for each dimension of the set.

The bounds of a BoxSet instance can be changed, such that the dimension of the set remains unchanged.
Type

(N, 2) numpy.ndarray

property dim

Dimension N of the box set.
Type

int

property parameter_bounds

Bounds in each dimension of the box set. This is numerically equivalent to the bounds attribute.
Returns

List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

17.12. PyROS Solver 567

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

point_in_set(point)
Determine whether a given point lies in the uncertainty set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
is_in_set – True if the point lies in the uncertainty set, False otherwise.

Return type
bool

Notes

This method is invoked at the outset of a PyROS solver call to determine whether a user-specified nominal
parameter realization lies in the uncertainty set.

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.CardinalitySet(origin, positive_deviation, gamma)
Bases: UncertaintySet

A cardinality-constrained (a.k.a. “gamma”) set.
Parameters

• origin ((N,) array_like) – Origin of the set (e.g., nominal uncertain parameter
values).

• positive_deviation ((N,) array_like) – Maximal non-negative coordinate de-
viation from the origin in each dimension.

• gamma (numeric type) – Upper bound for the number of uncertain parameters which
may realize their maximal deviations from the origin simultaneously.

Examples

A 3D cardinality set:

>>> from pyomo.contrib.pyros import CardinalitySet
>>> gamma_set = CardinalitySet(
... origin=[0, 0, 0],
... positive_deviation=[1.0, 2.0, 1.5],
... gamma=1,
...)
>>> gamma_set.origin
array([0, 0, 0])
>>> gamma_set.positive_deviation
array([1. , 2. , 1.5])
>>> gamma_set.gamma
1

property dim

Dimension N of the cardinality set.

568 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Type
int

property gamma

Upper bound for the number of uncertain parameters which may maximally deviate from their respective
origin values simultaneously. Must be a numerical value ranging from 0 to the set dimension N.

Note that, mathematically, setting gamma to 0 reduces the set to a singleton containing the center, while
setting gamma to the set dimension N makes the set mathematically equivalent to a BoxSet with bounds
numpy.array([origin, origin + positive_deviation]).T.

Type
numeric type

property origin

Origin of the cardinality set (e.g. nominal parameter values).
Type

(N,) numpy.ndarray

property parameter_bounds

Bounds in each dimension of the cardinality set.
Returns

List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

point_in_set(point)
Determine whether a given point lies in the cardinality set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
True if the point lies in the set, False otherwise.

Return type
bool

property positive_deviation

Maximal coordinate deviations from the origin in each dimension. All entries are nonnegative.
Type

(N,) numpy.ndarray

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.BudgetSet(budget_membership_mat, rhs_vec,
origin=None)

Bases: UncertaintySet

A budget set.
Parameters

• budget_membership_mat ((L, N) array_like) – Incidence matrix of the budget
constraints. Each row corresponds to a single budget constraint, and defines which
uncertain parameters (which dimensions) participate in that row’s constraint.

17.12. PyROS Solver 569

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

• rhs_vec ((L,) array_like) – Budget limits (upper bounds) with respect to the ori-
gin of the set.

• origin ((N,) array_like or None, optional) – Origin of the budget set. If
None is provided, then the origin is set to the zero vector.

Examples

3D budget set with one budget constraint and no origin chosen (hence origin defaults to 3D zero vector):

>>> from pyomo.contrib.pyros import BudgetSet
>>> budget_set = BudgetSet(
... budget_membership_mat=[[1, 1, 1]],
... rhs_vec=[2],
...)
>>> budget_set.budget_membership_mat
array([[1, 1, 1]])
>>> budget_set.budget_rhs_vec
array([2])
>>> budget_set.origin
array([0., 0., 0.])

3D budget set with two budget constraints and custom origin:

>>> budget_custom = BudgetSet(
... budget_membership_mat=[[1, 0, 1], [0, 1, 0]],
... rhs_vec=[1, 1],
... origin=[2, 2, 2],
...)
>>> budget_custom.budget_membership_mat
array([[1, 0, 1],

[0, 1, 0]])
>>> budget_custom.budget_rhs_vec
array([1, 1])
>>> budget_custom.origin
array([2, 2, 2])

property budget_membership_mat

Incidence matrix of the budget constraints. Each row corresponds to a single budget constraint and defines
which uncertain parameters participate in that row’s constraint.

Type
(L, N) numpy.ndarray

property budget_rhs_vec

Budget limits (upper bounds) with respect to the origin.
Type

(L,) numpy.ndarray

property coefficients_mat

Coefficient matrix of all polyhedral constraints defining the budget set. Composed from the incidence
matrix used for defining the budget constraints and a coefficient matrix for individual uncertain parameter
nonnegativity constraints.

This attribute cannot be set. The budget constraint incidence matrix may be altered through the bud-
get_membership_mat attribute.

570 Chapter 17. Third-Party Contributions

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Pyomo Documentation, Release 6.5.0

Type
(L + N, N) numpy.ndarray

property dim

Dimension N of the budget set.
Type

int

property origin

Origin of the budget set.
Type

(N,) numpy.ndarray

property parameter_bounds

Bounds in each dimension of the budget set.
Returns

List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

point_in_set(point)
Determine whether a given point lies in the uncertainty set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
is_in_set – True if the point lies in the uncertainty set, False otherwise.

Return type
bool

Notes

This method is invoked at the outset of a PyROS solver call to determine whether a user-specified nominal
parameter realization lies in the uncertainty set.

property rhs_vec

Right-hand side vector for polyhedral constraints defining the budget set. This also includes entries for
nonnegativity constraints on the uncertain parameters.

This attribute cannot be set, and is automatically determined given other attributes.
Type

(L + N,) numpy.ndarray

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.FactorModelSet(origin, number_of_factors, psi_mat,
beta)

Bases: UncertaintySet

A factor model (a.k.a. “net-alpha” model) set.
Parameters

17.12. PyROS Solver 571

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

• origin ((N,) array_like) – Uncertain parameter values around which deviations
are restrained.

• number_of_factors (int) – Natural number representing the dimensionality of the
space to which the set projects.

• psi_mat ((N, F) array_like) – Matrix designating each uncertain parameter’s
contribution to each factor. Each row is associated with a separate uncertain parameter.
Each column is associated with a separate factor. Number of columns F of psi_mat
should be equal to number_of_factors.

• beta (numeric type) – Real value between 0 and 1 specifying the fraction of the
independent factors that can simultaneously attain their extreme values.

Examples

A 4D factor model set with a 2D factor space:

>>> from pyomo.contrib.pyros import FactorModelSet
>>> import numpy as np
>>> fset = FactorModelSet(
... origin=np.zeros(4),
... number_of_factors=2,
... psi_mat=np.full(shape=(4, 2), fill_value=0.1),
... beta=0.5,
...)
>>> fset.origin
array([0., 0., 0., 0.])
>>> fset.number_of_factors
2
>>> fset.psi_mat
array([[0.1, 0.1],

[0.1, 0.1],
[0.1, 0.1],
[0.1, 0.1]])

>>> fset.beta
0.5

property beta

Real number ranging from 0 to 1 representing the fraction of the independent factors that can simultane-
ously attain their extreme values.

Note that, mathematically, setting beta = 0 will enforce that as many factors will be above 0 as there will
be below 0 (i.e., “zero-net-alpha” model). If beta = 1, then the set is numerically equivalent to a BoxSet
with bounds [origin - psi @ np.ones(F), origin + psi @ np.ones(F)].T.

Type
numeric type

property dim

Dimension N of the factor model set.
Type

int

property number_of_factors

Natural number representing the dimensionality F of the space to which the set projects.

572 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

This attribute is immutable, and may only be set at object construction. Typically, the number of factors
is significantly less than the set dimension, but no restriction to that end is imposed here.

Type
int

property origin

Uncertain parameter values around which deviations are restrained.
Type

(N,) numpy.ndarray

property parameter_bounds

Bounds in each dimension of the factor model set.
Returns

List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

point_in_set(point)
Determine whether a given point lies in the factor model set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
True if the point lies in the set, False otherwise.

Return type
bool

property psi_mat

Matrix designating each uncertain parameter’s contribution to each factor. Each row is associated with a
separate uncertain parameter. Each column with a separate factor.

Type
(N, F) numpy.ndarray

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet(lhs_coefficients_mat, rhs_vec)
Bases: UncertaintySet

A bounded convex polyhedron or polytope.
Parameters

• lhs_coefficients_mat ((M, N) array_like) – Left-hand side coefficients for the
linear inequality constraints defining the polyhedral set.

• rhs_vec ((M,) array_like) – Right-hand side values for the linear inequality con-
straints defining the polyhedral set. Each entry is an upper bound for the quantity
lhs_coefficients_mat @ x, where x is an (N,) array representing any point in the
polyhedral set.

17.12. PyROS Solver 573

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

Examples

2D polyhedral set with 4 defining inequalities:

>>> from pyomo.contrib.pyros import PolyhedralSet
>>> pset = PolyhedralSet(
... lhs_coefficients_mat=[[-1, 0], [0, -1], [-1, 1], [1, 0]],
... rhs_vec=[0, 0, 0, 1],
...)
>>> pset.coefficients_mat
array([[-1, 0],

[0, -1],
[-1, 1],
[1, 0]])

>>> pset.rhs_vec
array([0, 0, 0, 1])

property coefficients_mat

Coefficient matrix for the (linear) inequality constraints defining the polyhedral set.

In tandem with the rhs_vec attribute, this matrix should be such that the polyhedral set is nonempty and
bounded. Such a check is performed only at instance construction.

Type
(M, N) numpy.ndarray

property dim

Dimension N of the polyhedral set.
Type

int

property parameter_bounds

Bounds in each dimension of the polyhedral set.

Currently, an empty list is returned, as the bounds cannot, in general, be computed without access to an
optimization solver.

point_in_set(point)
Determine whether a given point lies in the uncertainty set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
is_in_set – True if the point lies in the uncertainty set, False otherwise.

Return type
bool

574 Chapter 17. Third-Party Contributions

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Notes

This method is invoked at the outset of a PyROS solver call to determine whether a user-specified nominal
parameter realization lies in the uncertainty set.

property rhs_vec

Right-hand side values (upper bounds) for the (linear) inequality constraints defining the polyhedral set.
Type

(M,) numpy.ndarray

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet(center, half_lengths)
Bases: UncertaintySet

An axis-aligned ellipsoid.
Parameters

• center ((N,) array_like) – Center of the ellipsoid.

• half_lengths ((N,) aray_like) – Semi-axis lengths of the ellipsoid.

Examples

3D origin-centered unit hypersphere:

>>> from pyomo.contrib.pyros import AxisAlignedEllipsoidalSet
>>> sphere = AxisAlignedEllipsoidalSet(
... center=[0, 0, 0],
... half_lengths=[1, 1, 1]
...)
>>> sphere.center
array([0, 0, 0])
>>> sphere.half_lengths
array([1, 1, 1])

property center

Center of the ellipsoid.
Type

(N,) numpy.ndarray

property dim

Dimension N of the axis-aligned ellipsoidal set.
Type

int

property half_lengths

Semi-axis lengths.
Type

(N,) numpy.ndarray

property parameter_bounds

Bounds in each dimension of the axis-aligned ellipsoidal set.

17.12. PyROS Solver 575

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Pyomo Documentation, Release 6.5.0

Returns
List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

point_in_set(point)
Determine whether a given point lies in the uncertainty set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
is_in_set – True if the point lies in the uncertainty set, False otherwise.

Return type
bool

Notes

This method is invoked at the outset of a PyROS solver call to determine whether a user-specified nominal
parameter realization lies in the uncertainty set.

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet(center, shape_matrix, scale=1)
Bases: UncertaintySet

A general ellipsoid.
Parameters

• center ((N,) array-like) – Center of the ellipsoid.

• shape_matrix ((N, N) array-like) – A positive definite matrix characterizing the
shape and orientation of the ellipsoid.

• scale (numeric type, optional) – Square of the factor by which to scale the semi-
axes of the ellipsoid (i.e. the eigenvectors of the shape matrix). The default is 1.

Examples

3D origin-centered unit hypersphere:

>>> from pyomo.contrib.pyros import EllipsoidalSet
>>> import numpy as np
>>> hypersphere = EllipsoidalSet(
... center=[0, 0, 0],
... shape_matrix=np.eye(3),
... scale=1,
...)
>>> hypersphere.center
array([0, 0, 0])
>>> hypersphere.shape_matrix

(continues on next page)

576 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Pyomo Documentation, Release 6.5.0

(continued from previous page)

array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])

>>> hypersphere.scale
1

A 2D ellipsoid with custom rotation and scaling:

>>> rotated_ellipsoid = EllipsoidalSet(
... center=[1, 1],
... shape_matrix=[[4, 2], [2, 4]],
... scale=0.5,
...)
>>> rotated_ellipsoid.center
array([1, 1])
>>> rotated_ellipsoid.shape_matrix
array([[4, 2],

[2, 4]])
>>> rotated_ellipsoid.scale
0.5

property center

Center of the ellipsoid.
Type

(N,) numpy.ndarray

property dim

Dimension N of the ellipsoidal set.
Type

int

property parameter_bounds

Bounds in each dimension of the ellipsoidal set.
Returns

List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

point_in_set(point)
Determine whether a given point lies in the uncertainty set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
is_in_set – True if the point lies in the uncertainty set, False otherwise.

Return type
bool

17.12. PyROS Solver 577

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Notes

This method is invoked at the outset of a PyROS solver call to determine whether a user-specified nominal
parameter realization lies in the uncertainty set.

property scale

Square of the factor by which to scale the semi-axes of the ellipsoid (i.e. the eigenvectors of the shape
matrix).

Type
numeric type

property shape_matrix

A positive definite matrix characterizing the shape and orientation of the ellipsoid.
Type

(N, N) numpy.ndarray

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.UncertaintySet

Bases: object

An object representing an uncertainty set to be passed to the PyROS solver.

An UncertaintySet object should be viewed as merely a container for data needed to parameterize the set it
represents, such that the object’s attributes do not reference the components of a Pyomo modeling object.

abstract property dim

Dimension of the uncertainty set (number of uncertain parameters in a corresponding optimization model
of interest).

abstract property parameter_bounds

Bounds for the value of each uncertain parameter constrained by the set (i.e. bounds for each set dimen-
sion).

point_in_set(point)
Determine whether a given point lies in the uncertainty set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
is_in_set – True if the point lies in the uncertainty set, False otherwise.

Return type
bool

578 Chapter 17. Third-Party Contributions

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

Pyomo Documentation, Release 6.5.0

Notes

This method is invoked at the outset of a PyROS solver call to determine whether a user-specified nominal
parameter realization lies in the uncertainty set.

class pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet(scenarios)
Bases: UncertaintySet

A discrete set of finitely many uncertain parameter realizations (or scenarios).
Parameters

scenarios ((M, N) array_like) – A sequence of M distinct uncertain parameter realiza-
tions.

Examples

2D set with three scenarios:

>>> from pyomo.contrib.pyros import DiscreteScenarioSet
>>> discrete_set = DiscreteScenarioSet(
... scenarios=[[1, 1], [2, 1], [1, 2]],
...)
>>> discrete_set.scenarios
[(1, 1), (2, 1), (1, 2)]

property dim

Dimension N of the discrete scenario set.
Type

int

property parameter_bounds

Bounds in each dimension of the discrete scenario set.
Returns

List, length N, of 2-tuples. Each tuple specifies the bounds in its corresponding dimen-
sion.

Return type
list of tuples

point_in_set(point)
Determine whether a given point lies in the discrete scenario set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
True if the point lies in the set, False otherwise.

Return type
bool

property scenarios

Uncertain parameter realizations comprising the set. Each tuple is an uncertain parameter realization.

Note that the scenarios attribute may be modified, but only such that the dimension of the set remains
unchanged.

Type
list of tuples

17.12. PyROS Solver 579

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

property type

Brief description of the type of the uncertainty set.
Type

str

class pyomo.contrib.pyros.uncertainty_sets.IntersectionSet(**unc_sets)
Bases: UncertaintySet

An intersection of a sequence of uncertainty sets, each of which is represented by an UncertaintySet object.
Parameters

**unc_sets (dict) – PyROS UncertaintySet objects of which to construct an intersection.
At least two uncertainty sets must be provided. All sets must be of the same dimension.

Examples

Intersection of origin-centered 2D box (square) and 2D hypersphere (circle):

>>> from pyomo.contrib.pyros import (
... BoxSet, AxisAlignedEllipsoidalSet, IntersectionSet,
...)
>>> square = BoxSet(bounds=[[-1.5, 1.5], [-1.5, 1.5]])
>>> circle = AxisAlignedEllipsoidalSet(
... center=[0, 0],
... half_lengths=[2, 2],
...)
>>> # to construct intersection, pass sets as keyword arguments
>>> intersection = IntersectionSet(set1=square, set2=circle)
>>> intersection.all_sets
UncertaintySetList([...])

property all_sets

List of the uncertainty sets of which to take the intersection. Must be of minimum length 2.

This attribute may be set through any iterable of UncertaintySet objects, and exhibits similar behavior to
a list.

Type
UncertaintySetList

property dim

Dimension of the intersection set.
Type

int

property parameter_bounds

Uncertain parameter value bounds for the intersection set.

Currently, an empty list, as the bounds cannot, in general, be computed without access to an optimization
solver.

point_in_set(point)
Determine whether a given point lies in the intersection set.

Parameters
point ((N,) array-like) – Point (parameter value) of interest.

Returns
True if the point lies in the set, False otherwise.

580 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Pyomo Documentation, Release 6.5.0

Return type
bool

property type

Brief description of the type of the uncertainty set.
Type

str

17.12.5 PyROS Usage Example

In this section, we illustrate the usage of PyROS with a modeling example. The deterministic problem of interest is
called hydro (available here), a QCQP taken from the GAMS Model Library. We have converted the model to Pyomo
format using the GAMS Convert tool.

The hydro model features 31 variables, of which 13 are degrees of freedom and 18 are state variables. Moreover, there
are 6 linear inequality constraints, 12 linear equality constraints, 6 non-linear (quadratic) equality constraints, and a
quadratic objective. We have extended this model by converting one objective coefficient, two constraint coefficients,
and one constraint right-hand side into Param objects so that they can be considered uncertain later on.

Note: Per our analysis, the hydro problem satisfies the requirement that each value of (𝑥, 𝑧, 𝑞) maps to a unique value
of 𝑦, which, in accordance with our earlier note, indicates a proper partitioning of the model variables into (first-stage
and second-stage) degrees of freedom and state variables.

Step 0: Import Pyomo and the PyROS Module

In anticipation of using the PyROS solver and building the deterministic Pyomo model:

>>> # === Required import ===
>>> import pyomo.environ as pyo
>>> import pyomo.contrib.pyros as pyros

>>> # === Instantiate the PyROS solver object ===
>>> pyros_solver = pyo.SolverFactory("pyros")

Step 1: Define the Deterministic Problem

The deterministic Pyomo model for hydro is shown below.

Note: Primitive data (Python literals) that have been hard-coded within a deterministic model cannot be later consid-
ered uncertain, unless they are first converted to Param objects within the ConcreteModel object. Furthermore, any
Param object that is to be later considered uncertain must have the property mutable=True.

Note: In case modifying the mutable property inside the deterministic model object itself is not straightforward in
your context, you may consider adding the following statement after import pyomo.environ as pyo but before
defining the model object: pyo.Param.DefaultMutable = True. For all Param objects declared after this state-
ment, the attribute mutable is set to True by default. Hence, non-mutable Param objects are now declared by explicitly
passing the argument mutable=False to the Param constructor.

17.12. PyROS Solver 581

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_hydro.html
https://www.gams.com/latest/gamslib_ml/libhtml/
https://www.gams.com/latest/docs/S_CONVERT.html

Pyomo Documentation, Release 6.5.0

>>> # === Construct the Pyomo model object ===
>>> m = pyo.ConcreteModel()
>>> m.name = "hydro"

>>> # === Define variables ===
>>> m.x1 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x2 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x3 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x4 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x5 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x6 = pyo.Var(within=pyo.Reals,bounds=(150,1500),initialize=150)
>>> m.x7 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x8 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x9 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x10 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x11 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x12 = pyo.Var(within=pyo.Reals,bounds=(0,1000),initialize=0)
>>> m.x13 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x14 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x15 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x16 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x17 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x18 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x19 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x20 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x21 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x22 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x23 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x24 = pyo.Var(within=pyo.Reals,bounds=(0,None),initialize=0)
>>> m.x25 = pyo.Var(within=pyo.Reals,bounds=(100000,100000),initialize=100000)
>>> m.x26 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x27 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x28 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x29 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x30 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)
>>> m.x31 = pyo.Var(within=pyo.Reals,bounds=(60000,120000),initialize=60000)

>>> # === Define parameters ===
>>> m.set_of_params = pyo.Set(initialize=[0, 1, 2, 3])
>>> nominal_values = {0:82.8*0.0016, 1:4.97, 2:4.97, 3:1800}
>>> m.p = pyo.Param(m.set_of_params, initialize=nominal_values, mutable=True)

>>> # === Specify the objective function ===
>>> m.obj = pyo.Objective(expr=m.p[0]*m.x1**2 + 82.8*8*m.x1 + 82.8*0.0016*m.x2**2 +
... 82.8*82.8*8*m.x2 + 82.8*0.0016*m.x3**2 + 82.8*8*m.x3 +
... 82.8*0.0016*m.x4**2 + 82.8*8*m.x4 + 82.8*0.0016*m.
→˓x5**2 +
... 82.8*8*m.x5 + 82.8*0.0016*m.x6**2 + 82.8*8*m.x6 +␣
→˓248400,
... sense=pyo.minimize)

>>> # === Specify the constraints ===
>>> m.c2 = pyo.Constraint(expr=-m.x1 - m.x7 + m.x13 + 1200<= 0)

(continues on next page)

582 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> m.c3 = pyo.Constraint(expr=-m.x2 - m.x8 + m.x14 + 1500 <= 0)
>>> m.c4 = pyo.Constraint(expr=-m.x3 - m.x9 + m.x15 + 1100 <= 0)
>>> m.c5 = pyo.Constraint(expr=-m.x4 - m.x10 + m.x16 + m.p[3] <= 0)
>>> m.c6 = pyo.Constraint(expr=-m.x5 - m.x11 + m.x17 + 950 <= 0)
>>> m.c7 = pyo.Constraint(expr=-m.x6 - m.x12 + m.x18 + 1300 <= 0)
>>> m.c8 = pyo.Constraint(expr=12*m.x19 - m.x25 + m.x26 == 24000)
>>> m.c9 = pyo.Constraint(expr=12*m.x20 - m.x26 + m.x27 == 24000)
>>> m.c10 = pyo.Constraint(expr=12*m.x21 - m.x27 + m.x28 == 24000)
>>> m.c11 = pyo.Constraint(expr=12*m.x22 - m.x28 + m.x29 == 24000)
>>> m.c12 = pyo.Constraint(expr=12*m.x23 - m.x29 + m.x30 == 24000)
>>> m.c13 = pyo.Constraint(expr=12*m.x24 - m.x30 + m.x31 == 24000)
>>> m.c14 = pyo.Constraint(expr=-8e-5*m.x7**2 + m.x13 == 0)
>>> m.c15 = pyo.Constraint(expr=-8e-5*m.x8**2 + m.x14 == 0)
>>> m.c16 = pyo.Constraint(expr=-8e-5*m.x9**2 + m.x15 == 0)
>>> m.c17 = pyo.Constraint(expr=-8e-5*m.x10**2 + m.x16 == 0)
>>> m.c18 = pyo.Constraint(expr=-8e-5*m.x11**2 + m.x17 == 0)
>>> m.c19 = pyo.Constraint(expr=-8e-5*m.x12**2 + m.x18 == 0)
>>> m.c20 = pyo.Constraint(expr=-4.97*m.x7 + m.x19 == 330)
>>> m.c21 = pyo.Constraint(expr=-m.p[1]*m.x8 + m.x20 == 330)
>>> m.c22 = pyo.Constraint(expr=-4.97*m.x9 + m.x21 == 330)
>>> m.c23 = pyo.Constraint(expr=-4.97*m.x10 + m.x22 == 330)
>>> m.c24 = pyo.Constraint(expr=-m.p[2]*m.x11 + m.x23 == 330)
>>> m.c25 = pyo.Constraint(expr=-4.97*m.x12 + m.x24 == 330)

Step 2: Define the Uncertainty

First, we need to collect into a list those Param objects of our model that represent potentially uncertain parameters.
For the purposes of our example, we shall assume uncertainty in the model parameters [m.p[0], m.p[1], m.p[2],
m.p[3]], for which we can conveniently utilize the object m.p (itself an indexed Param object).

>>> # === Specify which parameters are uncertain ===
>>> # We can pass IndexedParams this way to PyROS,
>>> # or as an expanded list per index
>>> uncertain_parameters = [m.p]

Note: Any Param object that is to be considered uncertain by PyROS must have the property mutable=True.

PyROS will seek to identify solutions that remain feasible for any realization of these parameters included in an un-
certainty set. To that end, we need to construct an UncertaintySet object. In our example, let us utilize the BoxSet
constructor to specify an uncertainty set of simple hyper-rectangular geometry. For this, we will assume each parameter
value is uncertain within a percentage of its nominal value. Constructing this specific UncertaintySet object can be
done as follows:

>>> # === Define the pertinent data ===
>>> relative_deviation = 0.15
>>> bounds = [
... (nominal_values[i] - relative_deviation*nominal_values[i],
... nominal_values[i] + relative_deviation*nominal_values[i])
... for i in range(4)
...]

(continues on next page)

17.12. PyROS Solver 583

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> # === Construct the desirable uncertainty set ===
>>> box_uncertainty_set = pyros.BoxSet(bounds=bounds)

Step 3: Solve with PyROS

PyROS requires the user to supply one local and one global NLP solver to use for solving sub-problems. For conve-
nience, we shall have PyROS invoke BARON as both the local and the global NLP solver:

>>> # === Designate local and global NLP solvers ===
>>> local_solver = pyo.SolverFactory('baron')
>>> global_solver = pyo.SolverFactory('baron')

Note: Additional NLP optimizers can be automatically used in the event the primary subordinate local or global
optimizer passed to the PyROS solve()method does not successfully solve a subproblem to an appropriate termination
condition. These alternative solvers are provided through the optional keyword arguments backup_local_solvers
and backup_global_solvers.

The final step in solving a model with PyROS is to construct the remaining required inputs, namely
first_stage_variables and second_stage_variables. Below, we present two separate cases.

PyROS Termination Conditions

PyROS will return one of six termination conditions upon completion. These termination conditions are defined
through the pyrosTerminationCondition enumeration and tabulated below.

Table 17.3: PyROS termination conditions.
Termination Condition Description
robust_optimal The final solution is robust optimal
robust_feasible The final solution is robust feasible
robust_infeasible The posed problem is robust infeasible
max_iter Maximum number of GRCS iteration reached
time_out Maximum number of time reached
subsolver_error Unacceptable return status(es) from a user-supplied sub-solver

A Single-Stage Problem

If we choose to designate all variables as either design or state variables, without any control variables (i.e., all degrees
of freedom are first-stage), we can use PyROS to solve the single-stage problem as shown below. In particular, let us
instruct PyROS that variables m.x1 through m.x6, m.x19 through m.x24, and m.x31 correspond to first-stage degrees
of freedom.

>>> # === Designate which variables correspond to first-stage
>>> # and second-stage degrees of freedom ===
>>> first_stage_variables =[
... m.x1, m.x2, m.x3, m.x4, m.x5, m.x6,
... m.x19, m.x20, m.x21, m.x22, m.x23, m.x24, m.x31,

(continues on next page)

584 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

...]
>>> second_stage_variables = []
>>> # The remaining variables are implicitly designated to be state variables

>>> # === Call PyROS to solve the robust optimization problem ===
>>> results_1 = pyros_solver.solve(
... model=m,
... first_stage_variables=first_stage_variables,
... second_stage_variables=second_stage_variables,
... uncertain_params=uncertain_parameters,
... uncertainty_set=box_uncertainty_set,
... local_solver=local_solver,
... global_solver=global_solver,
... objective_focus=pyros.ObjectiveType.worst_case,
... solve_master_globally=True,
... load_solution=False,
...)
===
PyROS: Pyomo Robust Optimization Solver ...
===
...
INFO: Robust optimal solution identified. Exiting PyROS.

>>> # === Query results ===
>>> time = results_1.time
>>> iterations = results_1.iterations
>>> termination_condition = results_1.pyros_termination_condition
>>> objective = results_1.final_objective_value
>>> # === Print some results ===
>>> single_stage_final_objective = round(objective,-1)
>>> print(f"Final objective value: {single_stage_final_objective}")
Final objective value: 48367380.0
>>> print(f"PyROS termination condition: {termination_condition}")
PyROS termination condition: pyrosTerminationCondition.robust_optimal

PyROS Results Object

The results object returned by PyROS allows you to query the following information from the solve call:

• iterations: total iterations of the algorithm

• time: total wallclock time (or elapsed time) in seconds

• pyros_termination_condition: the GRCS algorithm termination condition

• final_objective_value: the final objective function value.

The preceding code snippet demonstrates how to retrieve this information.

If we pass load_solution=True (the default setting) to the solve() method, then the solution at which PyROS
terminates will be loaded to the variables of the original deterministic model. Note that in the preceding code snippet,
we set load_solution=False to ensure the next set of runs shown here can utilize the initial point loaded to the
original deterministic model, as the initial point may affect the performance of sub-solvers.

17.12. PyROS Solver 585

Pyomo Documentation, Release 6.5.0

Note: The reported final_objective_value and final model variable values depend on the selection of the op-
tion objective_focus. The final_objective_value is the sum of first-stage and second-stage objective func-
tions. If objective_focus = ObjectiveType.nominal, second-stage objective and variables are evaluated at
the nominal realization of the uncertain parameters, 𝑞nom. If objective_focus = ObjectiveType.worst_case,
second-stage objective and variables are evaluated at the worst-case realization of the uncertain parameters, 𝑞𝑘* where
𝑘* = argmax𝑘∈𝒦 𝑓2(𝑥, 𝑧𝑘, 𝑦𝑘, 𝑞𝑘).

A Two-Stage Problem

For this next set of runs, we will assume that some of the previously designated first-stage degrees of freedom are in fact
second-stage degrees of freedom. PyROS handles second-stage degrees of freedom via the use of polynomial decision
rules, of which the degree is controlled through the optional keyword argument decision_rule_order to the PyROS
solve() method. In this example, we select affine decision rules by setting decision_rule_order=1:

>>> # === Define the variable partitioning
>>> first_stage_variables =[m.x5, m.x6, m.x19, m.x22, m.x23, m.x24, m.x31]
>>> second_stage_variables = [m.x1, m.x2, m.x3, m.x4, m.x20, m.x21]
>>> # The remaining variables are implicitly designated to be state variables

>>> # === Call PyROS to solve the robust optimization problem ===
>>> results_2 = pyros_solver.solve(
... model=m,
... first_stage_variables=first_stage_variables,
... second_stage_variables=second_stage_variables,
... uncertain_params=uncertain_parameters,
... uncertainty_set=box_uncertainty_set,
... local_solver=local_solver,
... global_solver=global_solver,
... objective_focus=pyros.ObjectiveType.worst_case,
... solve_master_globally=True,
... decision_rule_order=1,
...)
===
PyROS: Pyomo Robust Optimization Solver ...
...
INFO: Robust optimal solution identified. Exiting PyROS.

>>> # === Compare final objective to the single-stage solution
>>> two_stage_final_objective = round(
... pyo.value(results_2.final_objective_value),
... -1,
...)
>>> percent_difference = 100 * (
... two_stage_final_objective - single_stage_final_objective
...) / (single_stage_final_objective)
>>> print("Percent objective change relative to constant decision rules "
... f"objective: {percent_difference:.2f}")
Percent objective change relative to constant decision rules objective: -24...

For this example, we notice a ~25% decrease in the final objective value when switching from a static decision rule (no
second-stage recourse) to an affine decision rule.

586 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

The Price of Robustness

In conjunction with standard Python control flow tools, PyROS facilitates a “price of robustness” analysis for a model of
interest through the evaluation and comparison of the robust optimal objective function value across any appropriately
constructed hierarchy of uncertainty sets. In this example, we consider a sequence of box uncertainty sets centered on
the nominal uncertain parameter realization, such that each box is parameterized by a real value specifying a relative
box size. To this end, we construct an iterable called relative_deviation_list whose entries are float values
representing the relative sizes. We then loop through relative_deviation_list so that for each relative size, the
corresponding robust optimal objective value can be evaluated by creating an appropriate BoxSet instance and invoking
the PyROS solver:

>>> # This takes a long time to run and therefore is not a doctest
>>> # === An array of maximum relative deviations from the nominal uncertain
>>> # parameter values to utilize in constructing box sets
>>> relative_deviation_list = [0.00, 0.10, 0.20, 0.30, 0.40]
>>> # === Final robust optimal objectives
>>> robust_optimal_objectives = []
>>> for relative_deviation in relative_deviation_list:
... bounds = [
... (nominal_values[i] - relative_deviation*nominal_values[i],
... nominal_values[i] + relative_deviation*nominal_values[i])
... for i in range(4)
...]
... box_uncertainty_set = pyros.BoxSet(bounds = bounds)
... results = pyros_solver.solve(
... model=m,
... first_stage_variables=first_stage_variables,
... second_stage_variables=second_stage_variables,
... uncertain_params=uncertain_parameters,
... uncertainty_set= box_uncertainty_set,
... local_solver=local_solver,
... global_solver=global_solver,
... objective_focus=pyros.ObjectiveType.worst_case,
... solve_master_globally=True,
... decision_rule_order=1,
...)
... is_robust_optimal = (
... results.pyros_termination_condition
... == pyros.pyrosTerminationCondition.robust_optimal
...)
... if not is_robust_optimal:
... print(f"Instance for relative deviation: {relative_deviation} "
... "not solved to robust optimality.")
... robust_optimal_objectives.append("-----")
... else:
... robust_optimal_objectives.append(str(results.final_objective_value))

For this example, we obtain the following price of robustness results:

17.12. PyROS Solver 587

Pyomo Documentation, Release 6.5.0

Table 17.4: Price of robustness results.
Uncertainty Set Size (+/-) o Robust Optimal Objective % Increase x

0.00 35,837,659.18 0.00 %
0.10 36,135,191.59 0.82 %
0.20 36,437,979.81 1.64 %
0.30 43,478,190.92 17.57 %
0.40 robust_infeasible —–

Notice that PyROS was successfully able to determine the robust infeasibility of the problem under the largest uncer-
tainty set.
o Relative Deviation from Nominal Realization
x Relative to Deterministic Optimal Objective
This example clearly illustrates the potential impact of the uncertainty set size on the robust optimal objective function
value and demonstrates the ease of implementing a price of robustness study for a given optimization problem under
uncertainty.

Note: Please provide feedback and/or report any problems by opening an issue on the Pyomo GitHub page.

17.13 Sensitivity Toolbox

The sensitivity toolbox provides a Pyomo interface to sIPOPT and k_aug to very quickly compute approximate solutions
to nonlinear programs with a small perturbation in model parameters.

See the sIPOPT documentation or the following paper for additional details:

H. Pirnay, R. Lopez-Negrete, and L.T. Biegler, Optimal Sensitivity based on IPOPT, Math. Prog. Comp.,
4(4):307–331, 2012.

The details of k_aug can be found in the following link:

David Thierry (2020). k_aug, https://github.com/dthierry/k_aug

17.13.1 Using the Sensitivity Toolbox

We will start with a motivating example:

min
𝑥1,𝑥2,𝑥3

𝑥2
1 + 𝑥2

2 + 𝑥2
3

s.t. 6𝑥1 + 3𝑥2 + 2𝑥3 − 𝑝1 = 0

𝑝2𝑥1 + 𝑥2 − 𝑥3 − 1 = 0

𝑥1, 𝑥2, 𝑥3 ≥ 0

Here 𝑥1, 𝑥2, and 𝑥3 are the decision variables while 𝑝1 and 𝑝2 are parameters. At first, let’s consider 𝑝1 = 4.5 and
𝑝2 = 1.0. Below is the model implemented in Pyomo.

Import Pyomo and the sensitivity toolbox
>>> from pyomo.environ import *
>>> from pyomo.contrib.sensitivity_toolbox.sens import sensitivity_calculation

(continues on next page)

588 Chapter 17. Third-Party Contributions

https://github.com/Pyomo/pyomo/issues/new/choose
https://projects.coin-or.org/Ipopt/wiki/sIpopt
https://link.springer.com/article/10.1007/s12532-012-0043-2
https://github.com/dthierry/k_aug

Pyomo Documentation, Release 6.5.0

(continued from previous page)

Create a concrete model
>>> m = ConcreteModel()

Define the variables with bounds and initial values
>>> m.x1 = Var(initialize = 0.15, within=NonNegativeReals)
>>> m.x2 = Var(initialize = 0.15, within=NonNegativeReals)
>>> m.x3 = Var(initialize = 0.0, within=NonNegativeReals)

Define the parameters
>>> m.eta1 = Param(initialize=4.5,mutable=True)
>>> m.eta2 = Param(initialize=1.0,mutable=True)

Define the constraints and objective
>>> m.const1 = Constraint(expr=6*m.x1+3*m.x2+2*m.x3-m.eta1 ==0)
>>> m.const2 = Constraint(expr=m.eta2*m.x1+m.x2-m.x3-1 ==0)
>>> m.cost = Objective(expr=m.x1**2+m.x2**2+m.x3**2)

The solution of this optimization problem is 𝑥*
1 = 0.5, 𝑥*

2 = 0.5, and 𝑥*
3 = 0.0. But what if we change the parameter

values to 𝑝1 = 4.0 and 𝑝2 = 1.0? Is there a quick way to approximate the new solution 𝑥̂*
1, 𝑥̂*

2, and 𝑥̂*
3? Yes! This is

the main functionality of sIPOPT and k_aug.

Next we define the perturbed parameter values 𝑝1 and 𝑝2:

>>> m.perturbed_eta1 = Param(initialize = 4.0)
>>> m.perturbed_eta2 = Param(initialize = 1.0)

And finally we call sIPOPT or k_aug:

>>> m_sipopt = sensitivity_calculation('sipopt', m, [m.eta1, m.eta2], [m.perturbed_eta1,␣
→˓m.perturbed_eta2], tee=False)
>>> m_kaug_dsdp = sensitivity_calculation('k_aug', m, [m.eta1, m.eta2], [m.perturbed_
→˓eta1, m.perturbed_eta2], tee=False)

The first argument specifies the method, either ‘sipopt’ or ‘k_aug’. The second argument is the Pyomo model. The third
argument is a list of the original parameters. The fourth argument is a list of the perturbed parameters. It’s important
that these two lists are the same length and in the same order.

First, we can inspect the initial point:

>>> print("eta1 = %0.3f" % m.eta1())
eta1 = 4.500

>>> print("eta2 = %0.3f" % m.eta2())
eta2 = 1.000

Initial point (not feasible):
>>> print("Objective = %0.3f" % m.cost())
Objective = 0.045

>>> print("x1 = %0.3f" % m.x1())
x1 = 0.150

>>> print("x2 = %0.3f" % m.x2())
x2 = 0.150

(continues on next page)

17.13. Sensitivity Toolbox 589

Pyomo Documentation, Release 6.5.0

(continued from previous page)

>>> print("x3 = %0.3f" % m.x3())
x3 = 0.000

Next, we inspect the solution 𝑥*
1, 𝑥*

2, and 𝑥*
3:

Solution with the original parameter values:
>>> print("Objective = %0.3f" % m_sipopt.cost())
Objective = 0.500

>>> print("x1 = %0.3f" % m_sipopt.x1())
x1 = 0.500

>>> print("x2 = %0.3f" % m_sipopt.x2())
x2 = 0.500

>>> print("x3 = %0.3f" % m_sipopt.x3())
x3 = 0.000

Note that k_aug does not save the solution with the original parameter values. Finally, we inspect the approximate
solution 𝑥̂*

1, 𝑥̂*
2, and 𝑥̂*

3:

sIPOPT
New parameter values:
>>> print("eta1 = %0.3f" %m_sipopt.perturbed_eta1())
eta1 = 4.000

>>> print("eta2 = %0.3f" % m_sipopt.perturbed_eta2())
eta2 = 1.000

(Approximate) solution with the new parameter values:
>>> x1 = m_sipopt.sens_sol_state_1[m_sipopt.x1]
>>> x2 = m_sipopt.sens_sol_state_1[m_sipopt.x2]
>>> x3 = m_sipopt.sens_sol_state_1[m_sipopt.x3]
>>> print("Objective = %0.3f" % (x1**2 + x2**2 + x3**2))
Objective = 0.556

>>> print("x1 = %0.3f" % x1)
x1 = 0.333

>>> print("x2 = %0.3f" % x2)
x2 = 0.667

>>> print("x3 = %0.3f" % x3)
x3 = -0.000

k_aug
New parameter values:
>>> print("eta1 = %0.3f" %m_kaug_dsdp.perturbed_eta1())
eta1 = 4.000

>>> print("eta2 = %0.3f" % m_kaug_dsdp.perturbed_eta2())
(continues on next page)

590 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

(continued from previous page)

eta2 = 1.000

(Approximate) solution with the new parameter values:
>>> x1 = m_kaug_dsdp.x1()
>>> x2 = m_kaug_dsdp.x2()
>>> x3 = m_kaug_dsdp.x3()
>>> print("Objective = %0.3f" % (x1**2 + x2**2 + x3**2))
Objective = 0.556

>>> print("x1 = %0.3f" % x1)
x1 = 0.333

>>> print("x2 = %0.3f" % x2)
x2 = 0.667

>>> print("x3 = %0.3f" % x3)
x3 = -0.000

17.13.2 Installing sIPOPT and k_aug

The sensitivity toolbox requires either sIPOPT or k_aug to be installed and available in your system PATH. See the
sIPOPT and k_aug documentation for detailed instructions:

• https://coin-or.github.io/Ipopt/INSTALL.html

• https://projects.coin-or.org/Ipopt/wiki/sIpopt

• https://coin-or.github.io/coinbrew/

• https://github.com/dthierry/k_aug

Note: If you get an error that ipopt_sens or k_aug and dot_sens cannot be found, double check your installation
and make sure the build directories containing the executables were added to your system PATH.

17.13.3 Sensitivity Toolbox Interface

pyomo.contrib.sensitivity_toolbox.sens.sensitivity_calculation(method, instance, paramList,
perturbList, cloneModel=True,
tee=False, keepfiles=False,
solver_options=None)

This function accepts a Pyomo ConcreteModel, a list of parameters, and their corresponding perturbation list.
The model is then augmented with dummy constraints required to call sipopt or k_aug to get an approximation
of the perturbed solution.

Parameters
• method (string) – ‘sipopt’ or ‘k_aug’

• instance (Block) – pyomo block or model object

• paramSubList (list) – list of mutable parameters or fixed variables

• perturbList (list) – list of perturbed parameter values

17.13. Sensitivity Toolbox 591

https://coin-or.github.io/Ipopt/INSTALL.html
https://projects.coin-or.org/Ipopt/wiki/sIpopt
https://coin-or.github.io/coinbrew/
https://github.com/dthierry/k_aug
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Pyomo Documentation, Release 6.5.0

• cloneModel (bool, optional) – indicator to clone the model. If set to False, the
original model will be altered

• tee (bool, optional) – indicator to stream solver log

• keepfiles (bool, optional) – preserve solver interface files

• solver_options (dict, optional) – Provides options to the solver (also the name
of an attribute)

Return type
The model that was manipulated by the sensitivity interface

17.14 Trust Region Framework Method Solver

The Trust Region Framework (TRF) method solver allows users to solve hybrid glass box/black box optimization
problems in which parts of the system are modeled with open, equation-based models and parts of the system are black
boxes. This method utilizes surrogate models that substitute high-fidelity models with low-fidelity basis functions,
thus avoiding the direct implementation of the large, computationally expensive high-fidelity models. This is done
iteratively, resulting in fewer calls to the computationally expensive functions.

This module implements the method from Yoshio & Biegler [Yoshio & Biegler, 2021] and represents a rewrite of the
original 2018 implementation of the algorithm from Eason & Biegler [Eason & Biegler, 2018].

In the context of this updated module, black box functions are implemented as Pyomo External Functions.

This work was conducted as part of the Institute for the Design of Advanced Energy Systems (IDAES) with support
through the Simulation-Based Engineering, Crosscutting Research Program within the U.S. Department of Energy’s
Office of Fossil Energy and Carbon Management.

17.14.1 Methodology Overview

The formulation of the original hybrid problem is:

min 𝑓 (𝑧, 𝑤, 𝑑 (𝑤))

s.t. ℎ (𝑧, 𝑤, 𝑑 (𝑤)) = 0

𝑔 (𝑧, 𝑤, 𝑑 (𝑤)) ≤ 0

where:

• 𝑤 ∈ R𝑚 are the inputs to the external functions

• 𝑧 ∈ R𝑛 are the remaining decision variables (i.e., degrees of freedom)

• 𝑑(𝑤) : R𝑚 → R𝑝 are the outputs of the external functions as a function of 𝑤

• 𝑓 , h, g, d are all assumed to be twice continuously differentiable

This formulation is reworked to separate all external function information as follows to enable the usage of the trust
region method:

min
𝑥

𝑓 (𝑥)

s.t. ℎ (𝑥) = 0

𝑔 (𝑥) ≤ 0

𝑦 = 𝑑 (𝑤)

where:

592 Chapter 17. Third-Party Contributions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1002/aic.17054
https://doi.org/10.1002/aic.16364
https://idaes.org

Pyomo Documentation, Release 6.5.0

• 𝑦 ∈ R𝑝 are the outputs of the external functions

• 𝑥𝑇 = [𝑤𝑇 , 𝑦𝑇 , 𝑧𝑇] is a set of all inputs and outputs

Using this formulation and a user-supplied low-fidelity/ideal model basis function 𝑏 (𝑤), the algorithm iteratively solves
subproblems using the surrogate model:

𝑟𝑘 (𝑤) = 𝑏 (𝑤) + (𝑑 (𝑤𝑘) − 𝑏 (𝑤𝑘)) + (∇𝑑 (𝑤𝑘) −∇𝑏 (𝑤𝑘))
𝑇

(𝑤 − 𝑤𝑘)

This acts similarly to Newton’s method in that small, incremental steps are taken towards an optimal solution. At each
iteration, the current solution of the subproblem is compared to the previous solution to ensure that the iteration has
moved in a direction towards an optimal solution. If not true, the step is rejected. If true, the step is accepted and the
surrogate model is updated for the next iteration.

When using TRF, please consider citing the above papers.

17.14.2 TRF Inputs

The required inputs to the TRF solve method are the following:

• The optimization model

• List of degree of freedom variables within the model

The optional input to the TRF solve method is the following:

• The external function surrogate model rule (“basis function”)

17.14.3 TRF Solver Interface

Note: The keyword arguments can be updated at solver instantiation or later when the solve method is called.

class pyomo.contrib.trustregion.TRF.TrustRegionSolver(**kwds)
The Trust Region Solver is a ‘solver’ based on the 2016/2018/2020 AiChE papers by Eason (2016/2018), Yoshio
(2020), and Biegler.

solve(model, degrees_of_freedom_variables, ext_fcn_surrogate_map_rule=None, **kwds)
This method calls the TRF algorithm.

Parameters
• model (ConcreteModel) – The model to be solved using the Trust Region Frame-

work.

• degrees_of_freedom_variables (List of Vars) – User-supplied input.
The user must provide a list of vars which are the degrees of freedom or deci-
sion variables within the model.

• ext_fcn_surrogate_map_rule (Function, optional) – In the 2020
Yoshio/Biegler paper, this is refered to as the basis function b(w). This is the
low-fidelity model with which to solve the original process model problem and
which is integrated into the surrogate model. The default is 0 (i.e., no basis func-
tion rule.)

Keyword Arguments
• solver – Solver to use. Default = ipopt.

17.14. Trust Region Framework Method Solver 593

Pyomo Documentation, Release 6.5.0

• keepfiles – Optional. Whether or not to write files of sub-problems for use in
debugging. Default = False.

• tee – Optional. Sets the tee for sub-solver(s) utilized. Default = False.

• verbose – Optional. When True, print each iteration’s relevant information to
the console as well as to the log. Default = False.

• trust_radius – Initial trust region radius delta_0. Default = 1.0.

• minimum_radius – Minimum allowed trust region radius delta_min. Default
= 1e-6.

• maximum_radius – Maximum allowed trust region radius. If trust region radius
reaches maximum allowed, solver will exit. Default = 100 * trust_radius.

• maximum_iterations – Maximum allowed number of iterations. Default = 50.

• feasibility_termination – Feasibility measure termination tolerance
epsilon_theta. Default = 1e-5.

• step_size_termination – Step size termination tolerance epsilon_s.
Matches the feasibility termination tolerance by default.

• minimum_feasibility – Minimum feasibility measure theta_min. Default =
1e-4.

• switch_condition_kappa_theta – Switching condition parameter
kappa_theta. Contained in open set (0, 1). Default = 0.1.

• switch_condition_gamma_s – Switching condition parameter gamma_s. Must
satisfy: gamma_s > 1/(1+mu) where mu is contained in set (0, 1]. Default = 2.0.

• radius_update_param_gamma_c – Lower trust region update parameter
gamma_c. Default = 0.5.

• radius_update_param_gamma_e – Upper trust region update parameter
gamma_e. Default = 2.5.

• ratio_test_param_eta_1 – Lower ratio test parameter eta_1. Must satisfy: 0
< eta_1 <= eta_2 < 1. Default = 0.05.

• ratio_test_param_eta_2 – Lower ratio test parameter eta_2. Must satisfy: 0
< eta_1 <= eta_2 < 1. Default = 0.2.

• maximum_feasibility – Maximum allowable feasibility measure theta_max.
Parameter for use in filter method.Default = 50.0.

• param_filter_gamma_theta – Fixed filter parameter gamma_theta within (0,
1). Default = 0.01

• param_filter_gamma_f – Fixed filter parameter gamma_fwithin (0, 1). Default
= 0.01

594 Chapter 17. Third-Party Contributions

Pyomo Documentation, Release 6.5.0

17.14.4 TRF Usage Example

Two examples can be found in the examples subdirectory. One of them is implemented below.

Step 0: Import Pyomo

>>> # === Required imports ===
>>> import pyomo.environ as pyo

Step 1: Define the external function and its gradient

>>> # === Define a 'black box' function and its gradient ===
>>> def ext_fcn(a, b):
... return pyo.sin(a - b)
>>> def grad_ext_fcn(args, fixed):
... a, b = args[:2]
... return [pyo.cos(a - b), -pyo.cos(a - b)]

Step 2: Create the model

>>> # === Construct the Pyomo model object ===
>>> def create_model():
... m = pyo.ConcreteModel()
... m.name = 'Example 1: Eason'
... m.z = pyo.Var(range(3), domain=pyo.Reals, initialize=2.)
... m.x = pyo.Var(range(2), initialize=2.)
... m.x[1] = 1.0
...
... m.ext_fcn = pyo.ExternalFunction(ext_fcn, grad_ext_fcn)
...
... m.obj = pyo.Objective(
... expr=(m.z[0]-1.0)**2 + (m.z[0]-m.z[1])**2 + (m.z[2]-1.0)**2 \
... + (m.x[0]-1.0)**4 + (m.x[1]-1.0)**6
...)
...
... m.c1 = pyo.Constraint(
... expr=m.x[0] * m.z[0]**2 + m.ext_fcn(m.x[0], m.x[1]) == 2*pyo.sqrt(2.0)
...)
... m.c2 = pyo.Constraint(expr=m.z[2]**4 * m.z[1]**2 + m.z[1] == 8+pyo.sqrt(2.0))
... return m
>>> model = create_model()

17.14. Trust Region Framework Method Solver 595

https://github.com/Pyomo/pyomo/tree/main/pyomo/contrib/trustregion/examples

Pyomo Documentation, Release 6.5.0

Step 3: Solve with TRF

Note: Reminder from earlier that the solve method requires the user pass the model and a list of variables which
represent the degrees of freedom in the model. The user may also pass a low-fidelity/ideal model (or “basis function”)
to this method to improve convergence.

>>> # === Instantiate the TRF solver object ===
>>> trf_solver = pyo.SolverFactory('trustregion')
>>> # === Solve with TRF ===
>>> result = trf_solver.solve(model, [model.z[0], model.z[1], model.z[2]])
EXIT: Optimal solution found.
...

The solve method returns a clone of the original model which has been run through TRF algorithm, thus leaving the
original model intact.

Warning: TRF is still under a beta release. Please provide feedback and/or report any problems by opening an
issue on the Pyomo GitHub page.

Contributed Pyomo interfaces to other packages:

17.15 MC++ Interface

The Pyomo-MC++ interface allows for bounding of factorable functions using the MC++ library developed by the
OMEGA research group at Imperial College London. Documentation for MC++ may be found on the MC++ website.

17.15.1 Default Installation

Pyomo now supports automated downloading and compilation of MC++. To install MC++ and other third party com-
piled extensions, run:

pyomo download-extensions
pyomo build-extensions

To get and install just MC++, run the following commands in the pyomo/contrib/mcpp directory:

python getMCPP.py
python build.py

This should install MC++ to the pyomo plugins directory, by default located at $HOME/.pyomo/.

596 Chapter 17. Third-Party Contributions

https://github.com/Pyomo/pyomo/issues/new/choose
https://github.com/omega-icl/mcpp

Pyomo Documentation, Release 6.5.0

17.15.2 Manual Installation

Support for MC++ has only been validated by Pyomo developers using Linux and OSX. Installation instructions for
the MC++ library may be found on the MC++ website.

We assume that you have installed MC++ into a directory of your choice. We will denote this directory by $MCPP_PATH.
For example, you should see that the file $MCPP_PATH/INSTALL exists.

Navigate to the pyomo/contrib/mcpp directory in your pyomo installation. This directory should contain a file named
mcppInterface.cpp. You will need to compile this file using the following command:

g++ -I $MCPP_PATH/src/3rdparty/fadbad++ -I $MCPP_PATH/src/mc -I /usr/include/python3.7 -
→˓fPIC -O2 -c mcppInterface.cpp

This links the MC++ required library FADBAD++, MC++ itself, and Python to compile the Pyomo-MC++ interface. If
successful, you will now have a file named mcppInterface.o in your working directory. If you are not using Python
3.7, you will need to link to the appropriate Python version. You now need to create a shared object file with the
following command:

g++ -shared mcppInterface.o -o mcppInterface.so

You may then test your installation by running the test file:

python test_mcpp.py

17.16 z3 SMT Sat Solver Interface

The z3 Satisfiability Solver interface can convert pyomo variables and expressions for use with the z3 Satisfiability
Solver

17.16.1 Installation

z3 is required for use of the Sat Solver can be installed via the command

pip install z3-solver

17.16.2 Using z3 Sat Solver

To use the sat solver define your pyomo model as usual:

Required import
>>> from pyomo.environ import *
>>> from pyomo.contrib.satsolver.satsolver import SMTSatSolver

Create a simple model
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var()
>>> m.obj = Objective(expr=m.x**2 + m.y**2)
>>> m.c = Constraint(expr=m.y >= -2*m.x + 5)

(continues on next page)

17.16. z3 SMT Sat Solver Interface 597

https://github.com/omega-icl/mcpp

Pyomo Documentation, Release 6.5.0

(continued from previous page)

Invoke the sat solver using optional argument model to automatically process
pyomo model
>>> is_feasible = SMTSatSolver(model = m).check()

Contributed packages distributed independently of Pyomo, but accessible through pyomo.contrib:

• pyomo.contrib.simplemodel

598 Chapter 17. Third-Party Contributions

http://pyomo-simplemodel.readthedocs.io/en/latest

CHAPTER

EIGHTEEN

RELATED PACKAGES

The following is list of software packages that utilize or build off of Pyomo. This is certainly not a comprehensive list.1

18.1 Modeling Extensions

Package
Name

Link Description

Coramin https://github.com/coramin/
coramin

A suite of tools for developing MINLP algorithms

PAO https://github.com/or-fusion/pao Formulation and solution of multilevel optimization prob-
lems

18.2 Solvers and Solution Strategies

Package
Name

Link Description

Galini https://github.com/cog-imperial/galini An extensible, Python-based MIQCQP Solver
mpi-sppy https://github.com/pyomo/mpi-sppy Parallel solution of stochastic programming prob-

lems
Parapint https://github.com/parapint/parapint Parallel solution of structured NLPs.
Suspect https://github.com/cog-imperial/

suspect
FBBT and convexity detection

1 Please note that the Pyomo team does not evaluate or endorse the packages listed above.

599

https://github.com/coramin/coramin
https://github.com/coramin/coramin
https://github.com/or-fusion/pao
https://github.com/cog-imperial/galini
https://github.com/pyomo/mpi-sppy
https://github.com/parapint/parapint
https://github.com/cog-imperial/suspect
https://github.com/cog-imperial/suspect

Pyomo Documentation, Release 6.5.0

18.3 Domain-Specific Applications

Package
Name

Link Description

Chama https://github.com/sandialabs/
chama

Sensor placement optimization

Egret https://github.com/
grid-parity-exchange/egret

Formulation and solution of unit commitment and optimal
power flow problems

IDAES https://github.com/idaes/idaes-pse Institute for the Design of Advanced Energy Systems
Prescient https://github.com/

grid-parity-exchange/prescient
Production Cost Model for power systems simulation and
analysis

PyPSA https://github.com/pypsa/pypsa Python for Power system Analysis

600 Chapter 18. Related Packages

https://github.com/sandialabs/chama
https://github.com/sandialabs/chama
https://github.com/grid-parity-exchange/egret
https://github.com/grid-parity-exchange/egret
https://github.com/idaes/idaes-pse
https://github.com/grid-parity-exchange/prescient
https://github.com/grid-parity-exchange/prescient
https://github.com/pypsa/pypsa

CHAPTER

NINETEEN

BIBLIOGRAPHY

601

Pyomo Documentation, Release 6.5.0

602 Chapter 19. Bibliography

CHAPTER

TWENTY

INDICES AND TABLES

• genindex

• modindex

• search

603

Pyomo Documentation, Release 6.5.0

604 Chapter 20. Indices and Tables

CHAPTER

TWENTYONE

PYOMO RESOURCES

The Pyomo home page provides resources for Pyomo users:

• http://pyomo.org

Pyomo development is hosted at GitHub:

• https://github.com/Pyomo/pyomo

See the Pyomo Forum for online discussions of Pyomo:

• http://groups.google.com/group/pyomo-forum/

605

http://pyomo.org
https://github.com/Pyomo/pyomo
http://groups.google.com/group/pyomo-forum/

Pyomo Documentation, Release 6.5.0

606 Chapter 21. Pyomo Resources

BIBLIOGRAPHY

[AMPL] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical Programming,
2nd Edition. Duxbury Press, 2002.

[AIMMS] http://www.aimms.com/

[GAMS] http://www.gams.com

[Isenberg_et_al] Isenberg, NM, Akula, P, Eslick, JC, Bhattacharyya, D, Miller, DC, Gounaris, CE. A generalized
cutting-set approach for nonlinear robust optimization in process systems engineering. AIChE J. 2021;
67:e17175. DOI 10.1002/aic.17175

[mpisppy] Bernard Knueven, David Mildebrath, Christopher Muir, John D Siirola, Jean-Paul Watson, and David L
Woodruff, A Parallel Hub-and-Spoke System for Large-Scale Scenario-Based Optimization Under Uncer-
tainty, pre-print, 2020

[ParmestPaper] Katherine A. Klise, Bethany L. Nicholson, Andrea Staid, David L.Woodruff. Parmest: Parameter Es-
timation Via Pyomo. Computer Aided Chemical Engineering, 47 (2019): 41-46.

[PyomoBookI] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff. Pyomo – Optimization Model-
ing in Python, Springer, 2012.

[PyomoBookII] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, J. D. Siirola.
Pyomo - Optimization Modeling in Python, 2nd Edition. Springer Optimization and Its Applications, Vol
67. Springer, 2017.

[PyomoJournal] William E. Hart, Jean-Paul Watson, David L. Woodruff. “Pyomo: modeling and solving mathematical
programs in Python,” Mathematical Programming Computation, Volume 3, Number 3, August 2011

[PyomoDAE] Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, and Lorenz T. Biegler. “py-
omo.dae: a modeling and automatic discretization framework for optimization with differential and alge-
braic equations.” Mathematical Programming Computation 10(2) (2018): 187-223.

[RooneyBiegler] W.C. Rooney, L.T. Biegler, “Design for model parameter uncertainty using nonlinear confidence
regions”, AIChE Journal, 47(8), 2001

[SemiBatch] O. Abel, W. Marquardt, “Scenario-integrated modeling and optimization of dynamic systems”, AIChE
Journal, 46(4), 2000

[Vielma_et_al] J. P. Vielma, S. Ahmed, G. Nemhauser. “Mixed-Integer Models for Non-separable Piecewise Linear
Optimization: Unifying framework and Extensions”, Operations Research 58, 2010. pp. 303-315.

607

http://www.aimms.com/
http://www.gams.com
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.17175

Pyomo Documentation, Release 6.5.0

608 Bibliography

PYTHON MODULE INDEX

p
pyomo.common.dependencies, 212
pyomo.common.deprecation, 215
pyomo.common.fileutils, 218
pyomo.common.formatting, 224
pyomo.common.tempfiles, 225
pyomo.common.timing, 228
pyomo.contrib.appsi, 333
pyomo.contrib.appsi.solvers, 344
pyomo.contrib.community_detection.community_graph,

431
pyomo.contrib.community_detection.detection,

429
pyomo.contrib.iis.iis, 451
pyomo.contrib.incidence_analysis.connected,

464
pyomo.contrib.incidence_analysis.dulmage_mendelsohn,

465
pyomo.contrib.incidence_analysis.interface,

458
pyomo.contrib.incidence_analysis.matching,

463
pyomo.contrib.incidence_analysis.scc_solver,

467
pyomo.contrib.incidence_analysis.triangularize,

464
pyomo.contrib.parmest.graphics, 508
pyomo.contrib.parmest.parmest, 503
pyomo.contrib.parmest.scenariocreator, 507
pyomo.contrib.pynumero, 520
pyomo.contrib.pynumero.interfaces, 525
pyomo.contrib.pynumero.linalg, 557
pyomo.contrib.pynumero.sparse, 520
pyomo.core.base.units_container, 156
pyomo.core.kernel.base, 401
pyomo.core.kernel.heterogeneous_container,

403
pyomo.core.kernel.homogeneous_container, 403
pyomo.core.kernel.piecewise_library.util, 396
pyomo.core.kernel.suffix, 385

609

Pyomo Documentation, Release 6.5.0

610 Python Module Index

INDEX

Symbols
_ArcData (class in pyomo.network.arc), 139
_PortData (class in pyomo.network.port), 137
__abs__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__add__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__bool__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__call__() (pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction

method), 390
__call__() (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction

method), 391
__call__() (pyomo.core.kernel.piecewise_library.transforms_nd.PiecewiseLinearFunctionND

method), 395
__call__() (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND

method), 396
__call__() (pyomo.repn.plugins.gams_writer.ProblemWriter_gams

method), 312
__deepcopy__() (pyomo.core.kernel.dict_container.DictContainer

method), 409
__deepcopy__() (pyomo.core.kernel.list_container.ListContainer

method), 407
__deepcopy__() (pyomo.core.kernel.tuple_container.TupleContainer

method), 404
__div__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__eq__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__eq__() (pyomo.core.kernel.dict_container.DictContainer

method), 409
__eq__() (pyomo.core.kernel.list_container.ListContainer

method), 407
__eq__() (pyomo.core.kernel.tuple_container.TupleContainer

method), 404
__float__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__ge__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__getattr__() (pyomo.network.arc._ArcData method),

140
__getattr__() (pyomo.network.port._PortData

method), 137
__getitem__() (pyomo.dataportal.DataPortal.DataPortal

method), 331
__getstate__() (pyomo.core.kernel.dict_container.DictContainer

method), 410
__getstate__() (pyomo.core.kernel.list_container.ListContainer

method), 407
__getstate__() (pyomo.core.kernel.tuple_container.TupleContainer

method), 405
__gt__() (pyomo.core.expr.numvalue.NumericValue

method), 286
__hash__ (pyomo.core.expr.numvalue.NumericValue at-

tribute), 287
__hash__ (pyomo.core.kernel.dict_container.DictContainer

attribute), 410
__hash__ (pyomo.core.kernel.list_container.ListContainer

attribute), 407
__hash__ (pyomo.core.kernel.tuple_container.TupleContainer

attribute), 405
__iadd__() (pyomo.core.expr.numvalue.NumericValue

method), 287
__idiv__() (pyomo.core.expr.numvalue.NumericValue

method), 287
__imul__() (pyomo.core.expr.numvalue.NumericValue

method), 287
__init__() (pyomo.contrib.doe.doe.DesignOfExperiments

method), 435
__init__() (pyomo.contrib.doe.measurements.Measurements

method), 439
__init__() (pyomo.contrib.doe.result.FisherResults

method), 440
__init__() (pyomo.contrib.doe.result.GridSearchResult

method), 440
__init__() (pyomo.contrib.doe.scenario.Scenario_generator

method), 439
__init__() (pyomo.core.expr.current.NumericExpression

method), 291
__init__() (pyomo.core.kernel.dict_container.DictContainer

method), 410
__init__() (pyomo.core.kernel.list_container.ListContainer

method), 407
__init__() (pyomo.core.kernel.tuple_container.TupleContainer

611

Pyomo Documentation, Release 6.5.0

method), 405
__init__() (pyomo.dataportal.DataPortal.DataPortal

method), 331
__init__() (pyomo.dataportal.TableData.TableData

method), 333
__init__() (pyomo.environ.ExternalFunction method),

256
__init_subclass__() (py-

omo.core.kernel.dict_container.DictContainer
class method), 410

__init_subclass__() (py-
omo.core.kernel.list_container.ListContainer
class method), 407

__init_subclass__() (py-
omo.core.kernel.tuple_container.TupleContainer
class method), 405

__int__() (pyomo.core.expr.numvalue.NumericValue
method), 287

__ipow__() (pyomo.core.expr.numvalue.NumericValue
method), 287

__isub__() (pyomo.core.expr.numvalue.NumericValue
method), 287

__itruediv__() (pyomo.core.expr.numvalue.NumericValue
method), 287

__le__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__lt__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__mul__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__ne__() (pyomo.core.kernel.dict_container.DictContainer
method), 410

__ne__() (pyomo.core.kernel.list_container.ListContainer
method), 407

__ne__() (pyomo.core.kernel.tuple_container.TupleContainer
method), 405

__neg__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__pos__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__pow__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__radd__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__rdiv__() (pyomo.core.expr.numvalue.NumericValue
method), 288

__rmul__() (pyomo.core.expr.numvalue.NumericValue
method), 289

__rpow__() (pyomo.core.expr.numvalue.NumericValue
method), 289

__rsub__() (pyomo.core.expr.numvalue.NumericValue
method), 289

__rtruediv__() (pyomo.core.expr.numvalue.NumericValue
method), 289

__setitem__() (pyomo.dataportal.DataPortal.DataPortal
method), 331

__setstate__() (pyomo.core.kernel.dict_container.DictContainer
method), 410

__setstate__() (pyomo.core.kernel.list_container.ListContainer
method), 407

__setstate__() (pyomo.core.kernel.tuple_container.TupleContainer
method), 405

__str__() (pyomo.core.kernel.dict_container.DictContainer
method), 410

__str__() (pyomo.core.kernel.list_container.ListContainer
method), 407

__str__() (pyomo.core.kernel.tuple_container.TupleContainer
method), 405

__sub__() (pyomo.core.expr.numvalue.NumericValue
method), 289

__subclasshook__() (py-
omo.core.kernel.dict_container.DictContainer
class method), 410

__subclasshook__() (py-
omo.core.kernel.list_container.ListContainer
class method), 407

__subclasshook__() (py-
omo.core.kernel.tuple_container.TupleContainer
class method), 405

__truediv__() (pyomo.core.expr.numvalue.NumericValue
method), 289

__weakref__ (pyomo.dataportal.DataPortal.DataPortal
attribute), 331

__weakref__ (pyomo.dataportal.TableData.TableData
attribute), 333

_active (pyomo.core.kernel.base.ICategorizedObject
attribute), 401

_apply_operation() (py-
omo.core.expr.current.DivisionExpression
method), 297

_apply_operation() (py-
omo.core.expr.current.EqualityExpression
method), 300

_apply_operation() (py-
omo.core.expr.current.Expr_ifExpression
method), 304

_apply_operation() (py-
omo.core.expr.current.ExternalFunctionExpression
method), 294

_apply_operation() (py-
omo.core.expr.current.GetItemExpression
method), 302

_apply_operation() (py-
omo.core.expr.current.InequalityExpression
method), 298

_apply_operation() (py-
omo.core.expr.current.NegationExpression
method), 292

612 Index

Pyomo Documentation, Release 6.5.0

_apply_operation() (py-
omo.core.expr.current.ProductExpression
method), 295

_apply_operation() (py-
omo.core.expr.current.UnaryFunctionExpression
method), 306

args (pyomo.core.expr.current.GetItemExpression at-
tribute), 302

_brow_lengths (pyomo.contrib.pynumero.sparse.block_vector.BlockVector
attribute), 524

_changed (pyomo.dae.ContinuousSet attribute), 104
_compute_polynomial_degree() (py-

omo.core.expr.current.DivisionExpression
method), 297

_compute_polynomial_degree() (py-
omo.core.expr.current.Expr_ifExpression
method), 304

_compute_polynomial_degree() (py-
omo.core.expr.current.ExternalFunctionExpression
method), 294

_compute_polynomial_degree() (py-
omo.core.expr.current.GetItemExpression
method), 302

_compute_polynomial_degree() (py-
omo.core.expr.current.NegationExpression
method), 292

_compute_polynomial_degree() (py-
omo.core.expr.current.NumericExpression
method), 291

_compute_polynomial_degree() (py-
omo.core.expr.current.ProductExpression
method), 296

_compute_polynomial_degree() (py-
omo.core.expr.current.UnaryFunctionExpression
method), 307

_compute_polynomial_degree() (py-
omo.core.expr.numvalue.NumericValue
method), 289

_ctype (pyomo.core.kernel.base.ICategorizedObject at-
tribute), 401

_discretization_info (pyomo.dae.ContinuousSet at-
tribute), 104

_else (pyomo.core.expr.current.Expr_ifExpression at-
tribute), 305

_fcn (pyomo.core.expr.current.ExternalFunctionExpression
attribute), 294

_fcn (pyomo.core.expr.current.UnaryFunctionExpression
attribute), 307

_fe (pyomo.dae.ContinuousSet attribute), 104
_if (pyomo.core.expr.current.Expr_ifExpression at-

tribute), 305
_is_fixed() (pyomo.core.expr.current.Expr_ifExpression

method), 305
_is_fixed() (pyomo.core.expr.current.GetItemExpression

method), 303
_is_fixed() (pyomo.core.expr.current.ProductExpression

method), 296
_name (pyomo.core.expr.current.UnaryFunctionExpression

attribute), 307
_nargs (pyomo.core.expr.current.SumExpression at-

tribute), 301
_nblocks (pyomo.contrib.pynumero.sparse.block_vector.BlockVector

attribute), 524
_parent (pyomo.core.kernel.base.ICategorizedObject

attribute), 401
_resolve_template() (py-

omo.core.expr.current.GetItemExpression
method), 303

_shared_args (pyomo.core.expr.current.SumExpression
attribute), 301

_storage_key (pyomo.core.kernel.base.ICategorizedObject
attribute), 401

_strict (pyomo.core.expr.current.InequalityExpression
attribute), 299

_then (pyomo.core.expr.current.Expr_ifExpression at-
tribute), 305

_to_string() (pyomo.core.expr.current.DivisionExpression
method), 297

_to_string() (pyomo.core.expr.current.EqualityExpression
method), 300

_to_string() (pyomo.core.expr.current.Expr_ifExpression
method), 305

_to_string() (pyomo.core.expr.current.ExternalFunctionExpression
method), 294

_to_string() (pyomo.core.expr.current.GetItemExpression
method), 303

_to_string() (pyomo.core.expr.current.InequalityExpression
method), 299

_to_string() (pyomo.core.expr.current.NegationExpression
method), 293

_to_string() (pyomo.core.expr.current.ProductExpression
method), 296

_to_string() (pyomo.core.expr.current.UnaryFunctionExpression
method), 307

_undefined_brows (py-
omo.contrib.pynumero.sparse.block_vector.BlockVector
attribute), 524

A
A (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381
AbsExpression (class in pyomo.core.expr.current), 308
AbstractModel (class in pyomo.environ), 242
activate() (pyomo.core.kernel.base.ICategorizedObject

method), 401
activate() (pyomo.core.kernel.base.ICategorizedObjectContainer

method), 402

Index 613

Pyomo Documentation, Release 6.5.0

activate() (pyomo.core.kernel.dict_container.DictContainer
method), 410

activate() (pyomo.core.kernel.list_container.ListContainer
method), 408

activate() (pyomo.core.kernel.tuple_container.TupleContainer
method), 405

activate() (pyomo.environ.AbstractModel method),
242

activate() (pyomo.environ.Block method), 249
activate() (pyomo.environ.ConcreteModel method),

235
activate() (pyomo.environ.Constraint method), 253
activate() (pyomo.environ.Objective method), 260
active (pyomo.core.kernel.base.ICategorizedObject

property), 401
active (pyomo.core.kernel.dict_container.DictContainer

property), 410
active (pyomo.core.kernel.list_container.ListContainer

property), 408
active (pyomo.core.kernel.tuple_container.TupleContainer

property), 405
active (pyomo.environ.AbstractModel property), 242
active (pyomo.environ.Block property), 249
active (pyomo.environ.ConcreteModel property), 235
active (pyomo.environ.Constraint property), 253
active (pyomo.environ.ExternalFunction property), 256
active (pyomo.environ.Objective property), 260
active (pyomo.environ.Param property), 264
active (pyomo.environ.RangeSet property), 269
active (pyomo.environ.Set property), 273
active (pyomo.environ.Var property), 277
active_blocks() (pyomo.environ.AbstractModel

method), 242
active_blocks() (pyomo.environ.ConcreteModel

method), 235
active_component_data() (py-

omo.environ.AbstractModel method), 242
active_component_data() (py-

omo.environ.ConcreteModel method), 235
active_components() (pyomo.environ.AbstractModel

method), 242
active_components() (pyomo.environ.ConcreteModel

method), 235
add() (pyomo.common.config.ConfigDict method), 207
add() (pyomo.common.config.ConfigList method), 208
add() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
add() (pyomo.contrib.appsi.base.SolverConfig method),

339
add() (pyomo.contrib.appsi.base.UpdateConfig method),

343
add() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
add() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 354
add() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 350
add() (pyomo.core.expr.current.SumExpression

method), 301
add() (pyomo.environ.Var method), 277
add() (pyomo.network.port._PortData method), 137
add_block() (pyomo.contrib.appsi.base.PersistentSolver

method), 337
add_block() (pyomo.contrib.appsi.solvers.cbc.Cbc

method), 360
add_block() (pyomo.contrib.appsi.solvers.cplex.Cplex

method), 356
add_block() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 344
add_block() (pyomo.contrib.appsi.solvers.highs.Highs

method), 363
add_block() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 352
add_block() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 314
add_block() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 319
add_block() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 326
add_column() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 314
add_column() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 319
add_column() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 326
add_component() (pyomo.environ.AbstractModel

method), 242
add_component() (pyomo.environ.ConcreteModel

method), 235
add_constraint() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 314

add_constraint() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 319

add_constraint() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 326

add_constraints() (py-
omo.contrib.appsi.base.PersistentSolver
method), 337

add_constraints() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
360

add_constraints() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
356

add_constraints() (py-

614 Index

Pyomo Documentation, Release 6.5.0

omo.contrib.appsi.solvers.gurobi.Gurobi
method), 344

add_constraints() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 363

add_constraints() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
352

add_options() (pyomo.dataportal.TableData.TableData
method), 333

add_params() (pyomo.contrib.appsi.base.PersistentSolver
method), 337

add_params() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 360

add_params() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 356

add_params() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 344

add_params() (pyomo.contrib.appsi.solvers.highs.Highs
method), 363

add_params() (pyomo.contrib.appsi.solvers.ipopt.Ipopt
method), 352

add_sos_constraint() (py-
omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 314

add_sos_constraint() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 319

add_sos_constraint() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 326

add_sos_constraints() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

add_sos_constraints() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 363

add_tempfile() (pyomo.common.tempfiles.TempfileContext
method), 228

add_tempfile() (pyomo.common.tempfiles.TempfileManagerClass
method), 226

add_var() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 314

add_var() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 319

add_var() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 327

add_variables() (py-
omo.contrib.appsi.base.PersistentSolver
method), 337

add_variables() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
360

add_variables() (py-

omo.contrib.appsi.solvers.cplex.Cplex method),
356

add_variables() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

add_variables() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 363

add_variables() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
352

addone() (pyomo.contrib.parmest.scenariocreator.ScenarioSet
method), 508

alias (pyomo.core.expr.symbol_map.SymbolMap
attribute), 284

all_blocks() (pyomo.environ.AbstractModel method),
242

all_blocks() (pyomo.environ.ConcreteModel method),
236

all_component_data() (py-
omo.environ.AbstractModel method), 242

all_component_data() (py-
omo.environ.ConcreteModel method), 236

all_components() (pyomo.environ.AbstractModel
method), 242

all_components() (pyomo.environ.ConcreteModel
method), 236

all_sets (pyomo.contrib.pyros.uncertainty_sets.IntersectionSet
property), 580

AmplNLP (class in py-
omo.contrib.pynumero.interfaces.ampl_nlp),
537

append() (pyomo.common.config.ConfigList method),
208

append() (pyomo.core.kernel.list_container.ListContainer
method), 408

append_bootstrap() (py-
omo.contrib.parmest.scenariocreator.ScenarioSet
method), 508

apply_to() (pyomo.contrib.preprocessing.plugins.bounds_to_vars.ConstraintToVarBoundTransform
method), 483

apply_to() (pyomo.contrib.preprocessing.plugins.constraint_tightener.TightenContraintFromVars
method), 484

apply_to() (pyomo.contrib.preprocessing.plugins.deactivate_trivial_constraints.TrivialConstraintDeactivator
method), 485

apply_to() (pyomo.contrib.preprocessing.plugins.detect_fixed_vars.FixedVarDetector
method), 485

apply_to() (pyomo.contrib.preprocessing.plugins.equality_propagate.FixedVarPropagator
method), 486

apply_to() (pyomo.contrib.preprocessing.plugins.equality_propagate.VarBoundPropagator
method), 486

apply_to() (pyomo.contrib.preprocessing.plugins.induced_linearity.InducedLinearity
method), 484

apply_to() (pyomo.contrib.preprocessing.plugins.init_vars.InitMidpoint

Index 615

Pyomo Documentation, Release 6.5.0

method), 486
apply_to() (pyomo.contrib.preprocessing.plugins.init_vars.InitZero

method), 487
apply_to() (pyomo.contrib.preprocessing.plugins.remove_zero_terms.RemoveZeroTerms

method), 487
apply_to() (pyomo.contrib.preprocessing.plugins.strip_bounds.VariableBoundStripper

method), 487
apply_to() (pyomo.contrib.preprocessing.plugins.var_aggregator.VariableAggregator

method), 483
apply_to() (pyomo.contrib.preprocessing.plugins.zero_sum_propagator.ZeroSumPropagator

method), 488
Arc (class in pyomo.network), 139
arcs() (pyomo.network.port._PortData method), 137
args (pyomo.core.expr.current.NumericExpression prop-

erty), 291
args (pyomo.core.expr.current.SumExpression property),

301
as_domain() (pyomo.core.kernel.conic.dual_exponential

class method), 400
as_domain() (pyomo.core.kernel.conic.dual_power

class method), 401
as_domain() (pyomo.core.kernel.conic.primal_exponential

class method), 399
as_domain() (pyomo.core.kernel.conic.primal_power

class method), 400
as_domain() (pyomo.core.kernel.conic.quadratic class

method), 398
as_domain() (pyomo.core.kernel.conic.rotated_quadratic

class method), 399
AslNLP (class in pyomo.contrib.pynumero.interfaces.ampl_nlp),

533
attempt_import() (in module py-

omo.common.dependencies), 213
available() (pyomo.common.fileutils.PathData

method), 221
available() (pyomo.contrib.appsi.base.PersistentSolver

method), 337
available() (pyomo.contrib.appsi.base.Solver

method), 335
available() (pyomo.contrib.appsi.solvers.cbc.Cbc

method), 360
available() (pyomo.contrib.appsi.solvers.cplex.Cplex

method), 356
available() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 345
available() (pyomo.contrib.appsi.solvers.highs.Highs

method), 363
available() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 352
available() (pyomo.contrib.gdpopt.GDPopt.GDPoptSolver

method), 450
available() (pyomo.contrib.mindtpy.MindtPy.MindtPySolver

method), 473
available() (pyomo.contrib.multistart.multi.MultiStart

method), 481
available() (pyomo.dataportal.TableData.TableData

method), 333
available() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 314
available() (pyomo.solvers.plugins.solvers.GAMS.GAMSDirect

method), 312
available() (pyomo.solvers.plugins.solvers.GAMS.GAMSShell

method), 311
available() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 319
available() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 327
AxisAlignedEllipsoidalSet (class in py-

omo.contrib.pyros.uncertainty_sets), 575

B
BadLicense (pyomo.contrib.appsi.base.PersistentSolver.Availability

attribute), 337
BadLicense (pyomo.contrib.appsi.base.Solver.Availability

attribute), 335
BadLicense (pyomo.contrib.appsi.solvers.cbc.Cbc.Availability

attribute), 360
BadLicense (pyomo.contrib.appsi.solvers.cplex.Cplex.Availability

attribute), 356
BadLicense (pyomo.contrib.appsi.solvers.gurobi.Gurobi.Availability

attribute), 344
BadLicense (pyomo.contrib.appsi.solvers.highs.Highs.Availability

attribute), 363
BadLicense (pyomo.contrib.appsi.solvers.ipopt.Ipopt.Availability

attribute), 351
BadVersion (pyomo.contrib.appsi.base.PersistentSolver.Availability

attribute), 337
BadVersion (pyomo.contrib.appsi.base.Solver.Availability

attribute), 335
BadVersion (pyomo.contrib.appsi.solvers.cbc.Cbc.Availability

attribute), 360
BadVersion (pyomo.contrib.appsi.solvers.cplex.Cplex.Availability

attribute), 356
BadVersion (pyomo.contrib.appsi.solvers.gurobi.Gurobi.Availability

attribute), 344
BadVersion (pyomo.contrib.appsi.solvers.highs.Highs.Availability

attribute), 363
BadVersion (pyomo.contrib.appsi.solvers.ipopt.Ipopt.Availability

attribute), 352
best_feasible_objective (py-

omo.contrib.appsi.base.Results attribute),
334

best_objective_bound (py-
omo.contrib.appsi.base.Results attribute),
334

beta (pyomo.contrib.pyros.uncertainty_sets.FactorModelSet
property), 572

block (class in pyomo.core.kernel.block), 375

616 Index

Pyomo Documentation, Release 6.5.0

Block (class in pyomo.environ), 248
block_data_objects() (py-

omo.environ.AbstractModel method), 243
block_data_objects() (py-

omo.environ.ConcreteModel method), 236
block_dict (class in pyomo.core.kernel.block), 376
block_list (class in pyomo.core.kernel.block), 376
block_sizes() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector

method), 524
block_triangularize() (in module py-

omo.contrib.incidence_analysis.triangularize),
464

block_triangularize() (py-
omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 458

block_tuple (class in pyomo.core.kernel.block), 376
BlockVector (class in py-

omo.contrib.pynumero.sparse.block_vector),
523

body (pyomo.core.kernel.constraint.constraint property),
379

body (pyomo.core.kernel.constraint.linear_constraint
property), 380

bound (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
property), 391

bound (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND
property), 396

bounds (pyomo.contrib.pyros.uncertainty_sets.BoxSet
property), 567

BoxSet (class in pyomo.contrib.pyros.uncertainty_sets),
567

breakpoints (pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction
property), 390

breakpoints (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
property), 391

bshape (pyomo.contrib.pynumero.sparse.block_vector.BlockVector
property), 525

budget_membership_mat (py-
omo.contrib.pyros.uncertainty_sets.BudgetSet
property), 570

budget_rhs_vec (pyomo.contrib.pyros.uncertainty_sets.BudgetSet
property), 570

BudgetSet (class in py-
omo.contrib.pyros.uncertainty_sets), 569

byObject (pyomo.core.expr.symbol_map.SymbolMap at-
tribute), 284

bySymbol (pyomo.core.expr.symbol_map.SymbolMap at-
tribute), 284

C
calculate_FIM() (py-

omo.contrib.doe.result.FisherResults method),
440

calculation_order() (py-
omo.network.SequentialDecomposition
method), 145

canonical_form() (py-
omo.core.kernel.constraint.linear_constraint
method), 380

CardinalitySet (class in py-
omo.contrib.pyros.uncertainty_sets), 568

Cbc (class in pyomo.contrib.appsi.solvers.cbc), 360
Cbc.Availability (class in py-

omo.contrib.appsi.solvers.cbc), 360
cbc_options (pyomo.contrib.appsi.solvers.cbc.Cbc

property), 361
CbcConfig (class in pyomo.contrib.appsi.solvers.cbc),

359
cbCut() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 345
cbCut() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 319
cbGet() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 345
cbGetNodeRel() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 345
cbGetNodeRel() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 319
cbGetSolution() (py-

omo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

cbGetSolution() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 320

cbLazy() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

cbLazy() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 320

cbSetSolution() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

cbUseSolution() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

center (pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet
property), 575

center (pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet
property), 577

characterize_function() (in module py-
omo.core.kernel.piecewise_library.util),
396

check_convexity_conditions() (py-
omo.core.kernel.conic.dual_exponential
method), 400

check_convexity_conditions() (py-
omo.core.kernel.conic.dual_power method),
401

Index 617

Pyomo Documentation, Release 6.5.0

check_convexity_conditions() (py-
omo.core.kernel.conic.primal_exponential
method), 399

check_convexity_conditions() (py-
omo.core.kernel.conic.primal_power method),
400

check_convexity_conditions() (py-
omo.core.kernel.conic.quadratic method),
398

check_convexity_conditions() (py-
omo.core.kernel.conic.rotated_quadratic
method), 399

check_for_new_or_removed_constraints (py-
omo.contrib.appsi.base.UpdateConfig at-
tribute), 342

check_for_new_or_removed_params (py-
omo.contrib.appsi.base.UpdateConfig at-
tribute), 342

check_for_new_or_removed_vars (py-
omo.contrib.appsi.base.UpdateConfig at-
tribute), 342

check_subset() (pyomo.contrib.doe.measurements.Measurements
method), 439

check_values() (pyomo.environ.Set method), 273
child() (pyomo.core.kernel.base.ICategorizedObjectContainer

method), 402
child() (pyomo.core.kernel.dict_container.DictContainer

method), 410
child() (pyomo.core.kernel.list_container.ListContainer

method), 408
child() (pyomo.core.kernel.tuple_container.TupleContainer

method), 405
child_ctypes() (pyomo.core.kernel.block.block

method), 375
child_ctypes() (pyomo.core.kernel.heterogeneous_container.IHeterogeneousContainer

method), 403
children() (pyomo.core.kernel.base.ICategorizedObjectContainer

method), 402
children() (pyomo.core.kernel.block.block method),

375
children() (pyomo.core.kernel.dict_container.DictContainer

method), 410
children() (pyomo.core.kernel.list_container.ListContainer

method), 408
children() (pyomo.core.kernel.tuple_container.TupleContainer

method), 405
clear() (pyomo.core.kernel.dict_container.DictContainer

method), 411
clear() (pyomo.core.kernel.list_container.ListContainer

method), 408
clear() (pyomo.dataportal.TableData.TableData

method), 333
clear() (pyomo.environ.AbstractModel method), 243
clear() (pyomo.environ.Block method), 249

clear() (pyomo.environ.ConcreteModel method), 236
clear() (pyomo.environ.Constraint method), 253
clear() (pyomo.environ.Objective method), 260
clear() (pyomo.environ.Param method), 264
clear() (pyomo.environ.Set method), 273
clear() (pyomo.environ.Var method), 277
clear_all_values() (pyomo.core.kernel.suffix.suffix

method), 386
clear_except() (pyomo.common.timing.HierarchicalTimer

method), 234
clear_suffix_value() (py-

omo.environ.AbstractModel method), 243
clear_suffix_value() (pyomo.environ.Block

method), 249
clear_suffix_value() (py-

omo.environ.ConcreteModel method), 236
clear_suffix_value() (pyomo.environ.Constraint

method), 253
clear_suffix_value() (py-

omo.environ.ExternalFunction method),
256

clear_suffix_value() (pyomo.environ.Objective
method), 260

clear_suffix_value() (pyomo.environ.Param
method), 264

clear_suffix_value() (pyomo.environ.RangeSet
method), 269

clear_suffix_value() (pyomo.environ.Set method),
273

clear_suffix_value() (pyomo.environ.Var method),
277

clear_tempfiles() (py-
omo.common.tempfiles.TempfileManagerClass
method), 226

clear_value() (pyomo.core.kernel.suffix.suffix
method), 386

clone() (pyomo.core.kernel.base.ICategorizedObject
method), 401

clone() (pyomo.core.kernel.dict_container.DictContainer
method), 411

clone() (pyomo.core.kernel.list_container.ListContainer
method), 408

clone() (pyomo.core.kernel.tuple_container.TupleContainer
method), 406

clone() (pyomo.environ.AbstractModel method), 243
clone() (pyomo.environ.ConcreteModel method), 236
clone_counter (class in pyomo.core.expr.current), 284
clone_expression() (in module py-

omo.core.expr.current), 282
close() (pyomo.dataportal.TableData.TableData

method), 333
cname() (pyomo.environ.AbstractModel method), 243
cname() (pyomo.environ.Block method), 249
cname() (pyomo.environ.ConcreteModel method), 236

618 Index

Pyomo Documentation, Release 6.5.0

cname() (pyomo.environ.Constraint method), 253
cname() (pyomo.environ.ExternalFunction method), 257
cname() (pyomo.environ.Objective method), 260
cname() (pyomo.environ.Param method), 264
cname() (pyomo.environ.RangeSet method), 269
cname() (pyomo.environ.Set method), 274
cname() (pyomo.environ.Var method), 277
coefficients_mat (py-

omo.contrib.pyros.uncertainty_sets.BudgetSet
property), 570

coefficients_mat (py-
omo.contrib.pyros.uncertainty_sets.PolyhedralSet
property), 574

col_block_map (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface
property), 459

collect_ctypes() (py-
omo.core.kernel.heterogeneous_container.IHeterogeneousContainer
method), 403

collect_ctypes() (pyomo.environ.AbstractModel
method), 243

collect_ctypes() (pyomo.environ.ConcreteModel
method), 237

Collocation_Discretization_Transformation
(class in pyomo.dae.plugins.colloc), 114

ColPartition (class in py-
omo.contrib.incidence_analysis.dulmage_mendelsohn),
465

CommunityMap (class in py-
omo.contrib.community_detection.detection),
429

component() (pyomo.environ.AbstractModel method),
244

component() (pyomo.environ.ConcreteModel method),
237

component_data_iterindex() (py-
omo.environ.AbstractModel method), 244

component_data_iterindex() (py-
omo.environ.ConcreteModel method), 237

component_data_objects() (py-
omo.environ.AbstractModel method), 244

component_data_objects() (py-
omo.environ.ConcreteModel method), 237

component_map() (pyomo.environ.AbstractModel
method), 244

component_map() (pyomo.environ.ConcreteModel
method), 237

component_objects() (pyomo.environ.AbstractModel
method), 244

component_objects() (pyomo.environ.ConcreteModel
method), 238

components() (pyomo.core.kernel.base.ICategorizedObjectContainer
method), 402

components() (pyomo.core.kernel.dict_container.DictContainer
method), 411

components() (pyomo.core.kernel.heterogeneous_container.IHeterogeneousContainer
method), 403

components() (pyomo.core.kernel.homogeneous_container.IHomogeneousContainer
method), 403

components() (pyomo.core.kernel.list_container.ListContainer
method), 408

components() (pyomo.core.kernel.tuple_container.TupleContainer
method), 406

compute_FIM() (pyomo.contrib.doe.doe.DesignOfExperiments
method), 436

compute_statistics() (py-
omo.environ.AbstractModel method), 244

compute_statistics() (py-
omo.environ.ConcreteModel method), 238

con_index_map (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface
property), 459

ConcreteModel (class in pyomo.environ), 235
confidence_region_test() (py-

omo.contrib.parmest.parmest.Estimator
method), 504

config (pyomo.contrib.appsi.base.PersistentSolver prop-
erty), 337

config (pyomo.contrib.appsi.base.Solver property), 336
config (pyomo.contrib.appsi.solvers.cbc.Cbc property),

361
config (pyomo.contrib.appsi.solvers.cplex.Cplex prop-

erty), 356
config (pyomo.contrib.appsi.solvers.gurobi.Gurobi

property), 345
config (pyomo.contrib.appsi.solvers.highs.Highs prop-

erty), 364
config (pyomo.contrib.appsi.solvers.ipopt.Ipopt prop-

erty), 352
ConfigBase (class in pyomo.common.config), 206
ConfigBase.NoArgument (class in py-

omo.common.config), 206
ConfigDict (class in pyomo.common.config), 207
ConfigList (class in pyomo.common.config), 208
ConfigValue (class in pyomo.common.config), 208
connect() (pyomo.dataportal.DataPortal.DataPortal

method), 331
constraint (class in pyomo.core.kernel.constraint), 378
Constraint (class in pyomo.environ), 252
constraint_dict (class in py-

omo.core.kernel.constraint), 380
constraint_idx() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 537

constraint_list (class in py-
omo.core.kernel.constraint), 380

constraint_names() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 537

constraint_names() (py-

Index 619

Pyomo Documentation, Release 6.5.0

omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

constraint_names() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 528

constraint_names() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 525

constraint_names() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 549

constraint_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 553

constraint_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

constraint_tuple (class in py-
omo.core.kernel.constraint), 380

constraints (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface
property), 459

constraints_lb() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 537

constraints_lb() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

constraints_lb() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 528

constraints_lb() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 525

constraints_lb() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 549

constraints_lb() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 553

constraints_lb() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

constraints_ub() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 537

constraints_ub() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

constraints_ub() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 528

constraints_ub() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 525

constraints_ub() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 549

constraints_ub() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

constraints_ub() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

ConstraintToVarBoundTransform (class in py-
omo.contrib.preprocessing.plugins.bounds_to_vars),
483

construct() (pyomo.dae.ContinuousSet method), 104
construct() (pyomo.environ.AbstractModel method),

244
construct() (pyomo.environ.Block method), 249
construct() (pyomo.environ.ConcreteModel method),

238
construct() (pyomo.environ.Constraint method), 253
construct() (pyomo.environ.ExternalFunction

method), 257
construct() (pyomo.environ.Objective method), 260
construct() (pyomo.environ.Param method), 264
construct() (pyomo.environ.RangeSet method), 269
construct() (pyomo.environ.Set method), 274
construct() (pyomo.environ.Var method), 277
contains_component() (py-

omo.environ.AbstractModel method), 244
contains_component() (py-

omo.environ.ConcreteModel method), 238
content_filters (pyomo.common.config.ConfigDict

attribute), 207
content_filters (py-

omo.contrib.appsi.base.MIPSolverConfig
attribute), 341

content_filters (py-
omo.contrib.appsi.base.SolverConfig attribute),
340

content_filters (py-
omo.contrib.appsi.base.UpdateConfig at-
tribute), 343

content_filters (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
attribute), 359

content_filters (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 354

content_filters (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
attribute), 350

context() (pyomo.common.tempfiles.TempfileManagerClass
method), 225

ContinuousSet (class in pyomo.dae), 104
convert() (pyomo.core.base.units_container.PyomoUnitsContainer

620 Index

Pyomo Documentation, Release 6.5.0

method), 158
convert_temp_C_to_K() (py-

omo.core.base.units_container.PyomoUnitsContainer
method), 158

convert_temp_F_to_R() (py-
omo.core.base.units_container.PyomoUnitsContainer
method), 158

convert_temp_K_to_C() (py-
omo.core.base.units_container.PyomoUnitsContainer
method), 158

convert_temp_R_to_F() (py-
omo.core.base.units_container.PyomoUnitsContainer
method), 158

convert_value() (py-
omo.core.base.units_container.PyomoUnitsContainer
method), 158

copy_structure() (py-
omo.contrib.pynumero.sparse.block_vector.BlockVector
method), 525

copyfrom() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector
method), 524

copyto() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector
method), 525

count (pyomo.core.expr.current.clone_counter prop-
erty), 285

count() (pyomo.core.kernel.list_container.ListContainer
method), 408

count() (pyomo.core.kernel.tuple_container.TupleContainer
method), 406

Cplex (class in pyomo.contrib.appsi.solvers.cplex), 356
Cplex.Availability (class in py-

omo.contrib.appsi.solvers.cplex), 356
cplex_options (pyomo.contrib.appsi.solvers.cplex.Cplex

property), 357
CplexConfig (class in py-

omo.contrib.appsi.solvers.cplex), 354
CPLEXPersistent (class in py-

omo.solvers.plugins.solvers.cplex_persistent),
313

CplexResults (class in py-
omo.contrib.appsi.solvers.cplex), 356

create_graph() (pyomo.network.SequentialDecomposition
method), 145

create_instance() (pyomo.environ.AbstractModel
method), 245

create_instance() (pyomo.environ.ConcreteModel
method), 238

create_new_vector() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 537

create_new_vector() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

create_new_vector() (py-

omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 528

create_new_vector() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 525

create_new_vector() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 549

create_new_vector() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

create_new_vector() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

create_node_with_local_data() (py-
omo.core.expr.current.AbsExpression method),
308

create_node_with_local_data() (py-
omo.core.expr.current.ExternalFunctionExpression
method), 294

create_node_with_local_data() (py-
omo.core.expr.current.InequalityExpression
method), 299

create_node_with_local_data() (py-
omo.core.expr.current.SumExpression method),
301

create_node_with_local_data() (py-
omo.core.expr.current.UnaryFunctionExpression
method), 307

create_potentially_variable_object() (py-
omo.core.expr.current.NumericExpression
method), 291

create_tempdir() (py-
omo.common.tempfiles.TempfileContext
method), 227

create_tempdir() (py-
omo.common.tempfiles.TempfileManagerClass
method), 225

create_tempfile() (py-
omo.common.tempfiles.TempfileContext
method), 227

create_tempfile() (py-
omo.common.tempfiles.TempfileManagerClass
method), 225

create_using() (pyomo.contrib.preprocessing.plugins.bounds_to_vars.ConstraintToVarBoundTransform
method), 483

create_using() (pyomo.contrib.preprocessing.plugins.constraint_tightener.TightenContraintFromVars
method), 484

create_using() (pyomo.contrib.preprocessing.plugins.deactivate_trivial_constraints.TrivialConstraintDeactivator
method), 485

create_using() (pyomo.contrib.preprocessing.plugins.detect_fixed_vars.FixedVarDetector
method), 485

create_using() (pyomo.contrib.preprocessing.plugins.equality_propagate.FixedVarPropagator
method), 486

Index 621

Pyomo Documentation, Release 6.5.0

create_using() (pyomo.contrib.preprocessing.plugins.equality_propagate.VarBoundPropagator
method), 486

create_using() (pyomo.contrib.preprocessing.plugins.induced_linearity.InducedLinearity
method), 484

create_using() (pyomo.contrib.preprocessing.plugins.init_vars.InitMidpoint
method), 486

create_using() (pyomo.contrib.preprocessing.plugins.init_vars.InitZero
method), 487

create_using() (pyomo.contrib.preprocessing.plugins.remove_zero_terms.RemoveZeroTerms
method), 487

create_using() (pyomo.contrib.preprocessing.plugins.strip_bounds.VariableBoundStripper
method), 487

create_using() (pyomo.contrib.preprocessing.plugins.var_aggregator.VariableAggregator
method), 483

create_using() (pyomo.contrib.preprocessing.plugins.zero_sum_propagator.ZeroSumPropagator
method), 488

ctype (pyomo.core.kernel.base.ICategorizedObject
property), 401

ctype (pyomo.core.kernel.dict_container.DictContainer
property), 411

ctype (pyomo.core.kernel.list_container.ListContainer
property), 408

ctype (pyomo.core.kernel.tuple_container.TupleContainer
property), 406

ctype (pyomo.environ.AbstractModel property), 245
ctype (pyomo.environ.Block property), 249
ctype (pyomo.environ.ConcreteModel property), 238
ctype (pyomo.environ.Constraint property), 253
ctype (pyomo.environ.ExternalFunction property), 257
ctype (pyomo.environ.Objective property), 260
ctype (pyomo.environ.Param property), 264
ctype (pyomo.environ.RangeSet property), 269
ctype (pyomo.environ.Set property), 274
ctype (pyomo.environ.Var property), 277

D
data() (pyomo.dataportal.DataPortal.DataPortal

method), 332
DataPortal (class in pyomo.dataportal.DataPortal),

331
datatype (pyomo.core.kernel.suffix.ISuffix property),

385
datatype (pyomo.core.kernel.suffix.suffix property), 386
deactivate() (pyomo.core.kernel.base.ICategorizedObject

method), 401
deactivate() (pyomo.core.kernel.base.ICategorizedObjectContainer

method), 402
deactivate() (pyomo.core.kernel.dict_container.DictContainer

method), 411
deactivate() (pyomo.core.kernel.list_container.ListContainer

method), 408
deactivate() (pyomo.core.kernel.tuple_container.TupleContainer

method), 406

deactivate() (pyomo.environ.AbstractModel method),
245

deactivate() (pyomo.environ.Block method), 249
deactivate() (pyomo.environ.ConcreteModel method),

238
deactivate() (pyomo.environ.Constraint method), 253
deactivate() (pyomo.environ.Objective method), 260
declare() (pyomo.common.config.ConfigDict method),

207
declare() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
declare() (pyomo.contrib.appsi.base.SolverConfig

method), 340
declare() (pyomo.contrib.appsi.base.UpdateConfig

method), 343
declare() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
declare() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 354
declare() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 350
declare_as_argument() (py-

omo.common.config.ConfigBase method),
206

declare_as_argument() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 341

declare_as_argument() (py-
omo.contrib.appsi.base.SolverConfig method),
340

declare_as_argument() (py-
omo.contrib.appsi.base.UpdateConfig method),
343

declare_as_argument() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

declare_as_argument() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 354

declare_as_argument() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 350

declare_deferred_modules_as_importable() (in
module pyomo.common.dependencies), 214

declare_from() (pyomo.common.config.ConfigDict
method), 207

declare_from() (pyomo.contrib.appsi.base.MIPSolverConfig
method), 341

declare_from() (pyomo.contrib.appsi.base.SolverConfig
method), 340

declare_from() (pyomo.contrib.appsi.base.UpdateConfig
method), 343

declare_from() (pyomo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

622 Index

Pyomo Documentation, Release 6.5.0

declare_from() (pyomo.contrib.appsi.solvers.cplex.CplexConfig
method), 354

declare_from() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 350

decompose_term() (in module py-
omo.core.expr.current), 281

default() (pyomo.environ.Param method), 264
default_deprecation_msg() (in module py-

omo.common.deprecation), 215
default_labeler (py-

omo.core.expr.symbol_map.SymbolMap
attribute), 284

DeferredImportError, 212
DeferredImportIndicator (class in py-

omo.common.dependencies), 212
DeferredImportModule (class in py-

omo.common.dependencies), 212
del_component() (pyomo.environ.AbstractModel

method), 245
del_component() (pyomo.environ.ConcreteModel

method), 238
deprecated() (in module pyomo.common.deprecation),

215
deprecation_warning() (in module py-

omo.common.deprecation), 215
DerivativeVar (class in pyomo.dae), 107
DesignOfExperiments (class in py-

omo.contrib.doe.doe), 435
destination (pyomo.network.arc._ArcData attribute),

139
dests() (pyomo.network.port._PortData method), 137
detect_communities() (in module py-

omo.contrib.community_detection.detection),
430

dfs_postorder_stack() (py-
omo.core.expr.current.ExpressionReplacementVisitor
method), 311

dfs_postorder_stack() (py-
omo.core.expr.current.ExpressionValueVisitor
method), 309

DictContainer (class in py-
omo.core.kernel.dict_container), 409

differentiate() (in module pyomo.core.expr), 283
dim (pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet

property), 575
dim (pyomo.contrib.pyros.uncertainty_sets.BoxSet prop-

erty), 567
dim (pyomo.contrib.pyros.uncertainty_sets.BudgetSet

property), 571
dim (pyomo.contrib.pyros.uncertainty_sets.CardinalitySet

property), 568
dim (pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet

property), 579
dim (pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet

property), 577
dim (pyomo.contrib.pyros.uncertainty_sets.FactorModelSet

property), 572
dim (pyomo.contrib.pyros.uncertainty_sets.IntersectionSet

property), 580
dim (pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet

property), 574
dim (pyomo.contrib.pyros.uncertainty_sets.UncertaintySet

property), 578
dim() (pyomo.environ.AbstractModel method), 245
dim() (pyomo.environ.Block method), 249
dim() (pyomo.environ.ConcreteModel method), 238
dim() (pyomo.environ.Constraint method), 253
dim() (pyomo.environ.Objective method), 261
dim() (pyomo.environ.Param method), 264
dim() (pyomo.environ.Set method), 274
dim() (pyomo.environ.Var method), 277
directed (pyomo.network.arc._ArcData attribute), 140
direction (pyomo.core.kernel.suffix.ISuffix property),

385
direction (pyomo.core.kernel.suffix.suffix property),

386
DirectLinearSolverInterface (class in py-

omo.contrib.pynumero.linalg.base), 557
disable() (pyomo.common.fileutils.PathData method),

221
disconnect() (pyomo.dataportal.DataPortal.DataPortal

method), 332
DiscreteScenarioSet (class in py-

omo.contrib.pyros.uncertainty_sets), 579
display() (pyomo.common.config.ConfigBase method),

206
display() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
display() (pyomo.contrib.appsi.base.SolverConfig

method), 340
display() (pyomo.contrib.appsi.base.UpdateConfig

method), 343
display() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
display() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 354
display() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 350
display() (pyomo.environ.AbstractModel method), 245
display() (pyomo.environ.Block method), 249
display() (pyomo.environ.ConcreteModel method), 238
display() (pyomo.environ.Constraint method), 253
display() (pyomo.environ.Objective method), 261
DivisionExpression (class in py-

omo.core.expr.current), 297
do_back_solve() (py-

omo.contrib.pynumero.linalg.base.DirectLinearSolverInterface
method), 557

Index 623

Pyomo Documentation, Release 6.5.0

do_back_solve() (py-
omo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

do_back_solve() (py-
omo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

do_back_solve() (py-
omo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 559

do_back_solve() (py-
omo.contrib.pynumero.linalg.scipy_interface.ScipyLU
method), 560

do_numeric_factorization() (py-
omo.contrib.pynumero.linalg.base.DirectLinearSolverInterface
method), 557

do_numeric_factorization() (py-
omo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

do_numeric_factorization() (py-
omo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

do_numeric_factorization() (py-
omo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 559

do_numeric_factorization() (py-
omo.contrib.pynumero.linalg.scipy_interface.ScipyLU
method), 560

do_symbolic_factorization() (py-
omo.contrib.pynumero.linalg.base.DirectLinearSolverInterface
method), 557

do_symbolic_factorization() (py-
omo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

do_symbolic_factorization() (py-
omo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

do_symbolic_factorization() (py-
omo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

do_symbolic_factorization() (py-
omo.contrib.pynumero.linalg.scipy_interface.ScipyLU
method), 560

domain (pyomo.core.kernel.variable.variable property),
377

domain_name() (pyomo.common.config.ConfigBase
method), 206

domain_name() (pyomo.common.config.ConfigDict
method), 207

domain_name() (pyomo.contrib.appsi.base.MIPSolverConfig
method), 341

domain_name() (pyomo.contrib.appsi.base.SolverConfig
method), 340

domain_name() (pyomo.contrib.appsi.base.UpdateConfig
method), 343

domain_name() (pyomo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

domain_name() (pyomo.contrib.appsi.solvers.cplex.CplexConfig
method), 354

domain_name() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 350

domain_type (pyomo.core.kernel.variable.variable
property), 377

dot_product (in module pyomo.core.util), 281
dual_exponential (class in pyomo.core.kernel.conic),

400
dual_power (class in pyomo.core.kernel.conic), 400
dulmage_mendelsohn() (in module py-

omo.contrib.incidence_analysis.dulmage_mendelsohn),
466

dulmage_mendelsohn() (py-
omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 459

DynamicImplicitDomain (class in py-
omo.common.config), 209

E
ef_nonants() (in module py-

omo.contrib.parmest.parmest), 506
EllipsoidalSet (class in py-

omo.contrib.pyros.uncertainty_sets), 576
eq_constraint_idx() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 538

eq_constraint_names() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 538

equality (pyomo.core.kernel.matrix_constraint.matrix_constraint
property), 381

Equality() (pyomo.network.Port static method), 136
equality_constraint_names() (py-

omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 552

equality_constraint_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

EqualityExpression (class in py-
omo.core.expr.current), 300

error (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

error (pyomo.contrib.pynumero.linalg.base.LinearSolverStatus
attribute), 557

Estimator (class in pyomo.contrib.parmest.parmest),
503

evaluate() (pyomo.environ.ExternalFunction method),
257

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 538

624 Index

Pyomo Documentation, Release 6.5.0

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 528

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 526

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 549

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

evaluate_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

evaluate_eq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 538

evaluate_eq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

evaluate_eq_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 529

evaluate_eq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

evaluate_eq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

evaluate_equality_constraints() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 552

evaluate_expression() (in module py-
omo.core.expr.current), 282

evaluate_fgh() (pyomo.environ.ExternalFunction
method), 257

evaluate_grad_objective() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 538

evaluate_grad_objective() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

evaluate_grad_objective() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 529

evaluate_grad_objective() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 526

evaluate_grad_objective() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP

method), 549
evaluate_grad_objective() (py-

omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

evaluate_grad_objective() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 543

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 538

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 533

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 529

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 526

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 549

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

evaluate_hessian_lag() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

evaluate_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

evaluate_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 534

evaluate_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 529

evaluate_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

evaluate_jacobian() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

evaluate_jacobian() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 534

evaluate_jacobian() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 529

evaluate_jacobian() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 526

evaluate_jacobian() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP

Index 625

Pyomo Documentation, Release 6.5.0

method), 550
evaluate_jacobian() (py-

omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 554

evaluate_jacobian() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

evaluate_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

evaluate_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 534

evaluate_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 529

evaluate_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

evaluate_jacobian_equality_constraints() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 552

evaluate_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

evaluate_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 534

evaluate_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

evaluate_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

evaluate_jacobian_outputs() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 552

evaluate_objective() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

evaluate_objective() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 534

evaluate_objective() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

evaluate_objective() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 526

evaluate_objective() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

evaluate_objective() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP

method), 554
evaluate_objective() (py-

omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

evaluate_outputs() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 552

executable (pyomo.common.fileutils.ExecutableData
property), 222

executable() (pyomo.solvers.plugins.solvers.GAMS.GAMSShell
method), 311

ExecutableData (class in pyomo.common.fileutils), 222
expanded_block (pyomo.network.arc._ArcData at-

tribute), 140
export_enabled (pyomo.core.kernel.suffix.suffix prop-

erty), 386
export_suffix_generator() (in module py-

omo.core.kernel.suffix), 385
expr (pyomo.core.kernel.constraint.constraint property),

379
expr (pyomo.core.kernel.expression.expression prop-

erty), 383
expr (pyomo.core.kernel.objective.objective property),

383
Expr_ifExpression (class in pyomo.core.expr.current),

304
expression (class in pyomo.core.kernel.expression),

383
expression_dict (class in py-

omo.core.kernel.expression), 384
expression_list (class in py-

omo.core.kernel.expression), 384
expression_to_string() (in module py-

omo.core.expr.current), 281
expression_tuple (class in py-

omo.core.kernel.expression), 383
ExpressionReplacementVisitor (class in py-

omo.core.expr.current), 310
ExpressionValueVisitor (class in py-

omo.core.expr.current), 309
extend() (pyomo.core.kernel.list_container.ListContainer

method), 408
ExtendedNLP (class in py-

omo.contrib.pynumero.interfaces.nlp), 528
Extensive() (pyomo.network.Port static method), 136
ExternalFunction (class in pyomo.environ), 256
ExternalFunctionExpression (class in py-

omo.core.expr.current), 293
ExternalGreyBoxModel (class in py-

omo.contrib.pynumero.interfaces.external_grey_box),
552

extract_bipartite_subgraph() (in module py-
omo.contrib.incidence_analysis.interface),
462

626 Index

Pyomo Documentation, Release 6.5.0

extract_submatrix_hessian_lag() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 544

extract_submatrix_jacobian() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

extract_subvector_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

extract_subvector_grad_objective() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

extract_values() (pyomo.environ.Param method),
265

extract_values() (pyomo.environ.Var method), 277
extract_values_sparse() (pyomo.environ.Param

method), 265

F
FactorModelSet (class in py-

omo.contrib.pyros.uncertainty_sets), 571
finalize() (pyomo.core.expr.current.ExpressionValueVisitor

method), 310
finalize() (pyomo.core.expr.current.SimpleExpressionVisitor

method), 308
finalize_block_construction() (py-

omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 552

find_component() (pyomo.environ.AbstractModel
method), 245

find_component() (pyomo.environ.ConcreteModel
method), 238

find_dir() (in module pyomo.common.fileutils), 220
find_executable() (in module py-

omo.common.fileutils), 221
find_file() (in module pyomo.common.fileutils), 219
find_library() (in module pyomo.common.fileutils),

220
find_nearest_index() (pyomo.dae.ContinuousSet

method), 104
find_path() (in module pyomo.common.fileutils), 218
FisherResults (class in pyomo.contrib.doe.result), 440
fit_kde_dist() (in module py-

omo.contrib.parmest.graphics), 508
fit_mvn_dist() (in module py-

omo.contrib.parmest.graphics), 508
fit_rect_dist() (in module py-

omo.contrib.parmest.graphics), 508
fix() (pyomo.network.port._PortData method), 138
fixed (pyomo.core.kernel.variable.variable property),

377
FixedVarDetector (class in py-

omo.contrib.preprocessing.plugins.detect_fixed_vars),
485

FixedVarPropagator (class in py-
omo.contrib.preprocessing.plugins.equality_propagate),
486

flag_as_stale() (pyomo.environ.Var method), 277
flatten() (pyomo.common.timing.HierarchicalTimer

method), 234
flatten_components_along_sets() (in module py-

omo.dae.flatten), 161
flatten_dae_components() (in module py-

omo.dae.flatten), 162
fn (pyomo.core.kernel.parameter.functional_value prop-

erty), 382
free() (pyomo.network.port._PortData method), 138
FullLicense (pyomo.contrib.appsi.base.PersistentSolver.Availability

attribute), 337
FullLicense (pyomo.contrib.appsi.base.Solver.Availability

attribute), 335
FullLicense (pyomo.contrib.appsi.solvers.cbc.Cbc.Availability

attribute), 360
FullLicense (pyomo.contrib.appsi.solvers.cplex.Cplex.Availability

attribute), 356
FullLicense (pyomo.contrib.appsi.solvers.gurobi.Gurobi.Availability

attribute), 344
FullLicense (pyomo.contrib.appsi.solvers.highs.Highs.Availability

attribute), 363
FullLicense (pyomo.contrib.appsi.solvers.ipopt.Ipopt.Availability

attribute), 352
functional_value (class in py-

omo.core.kernel.parameter), 382

G
gamma (pyomo.contrib.pyros.uncertainty_sets.CardinalitySet

property), 569
GAMSDirect (class in py-

omo.solvers.plugins.solvers.GAMS), 312
GAMSShell (class in py-

omo.solvers.plugins.solvers.GAMS), 311
GDP_GLOA_Solver (class in pyomo.contrib.gdpopt.gloa),

450
GDP_LBB_Solver (class in py-

omo.contrib.gdpopt.branch_and_bound),
450

GDP_LOA_Solver (class in pyomo.contrib.gdpopt.loa),
450

GDP_RIC_Solver (class in pyomo.contrib.gdpopt.ric),
450

GDPoptSolver (class in pyomo.contrib.gdpopt.GDPopt),
449

generate_delaunay() (in module py-
omo.core.kernel.piecewise_library.util),
397

generate_documentation() (py-
omo.common.config.ConfigBase method),
206

Index 627

Pyomo Documentation, Release 6.5.0

generate_documentation() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 341

generate_documentation() (py-
omo.contrib.appsi.base.SolverConfig method),
340

generate_documentation() (py-
omo.contrib.appsi.base.UpdateConfig method),
343

generate_documentation() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

generate_documentation() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

generate_documentation() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 350

generate_gray_code() (in module py-
omo.core.kernel.piecewise_library.util),
397

generate_import_warning() (py-
omo.common.dependencies.ModuleUnavailable
method), 212

generate_model_graph() (in module py-
omo.contrib.community_detection.community_graph),
431

generate_strongly_connected_components()
(in module py-
omo.contrib.incidence_analysis.scc_solver),
467

generate_structured_model() (py-
omo.contrib.community_detection.detection.CommunityMap
method), 429

generate_yaml_template() (py-
omo.common.config.ConfigBase method),
206

generate_yaml_template() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 341

generate_yaml_template() (py-
omo.contrib.appsi.base.SolverConfig method),
340

generate_yaml_template() (py-
omo.contrib.appsi.base.UpdateConfig method),
343

generate_yaml_template() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

generate_yaml_template() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

generate_yaml_template() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 350
get() (pyomo.common.config.ConfigDict method), 207
get() (pyomo.common.config.ConfigList method), 208
get() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
get() (pyomo.contrib.appsi.base.SolverConfig method),

340
get() (pyomo.contrib.appsi.base.UpdateConfig method),

343
get() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
get() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
get() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 350
get() (pyomo.core.kernel.dict_container.DictContainer

method), 411
get_adjacent_to() (py-

omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 460

get_arg_units() (py-
omo.core.expr.current.ExternalFunctionExpression
method), 295

get_arg_units() (pyomo.environ.ExternalFunction
method), 258

get_bipartite_incidence_graph() (in module py-
omo.contrib.incidence_analysis.interface), 462

get_block() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector
method), 524

get_block_size() (py-
omo.contrib.pynumero.sparse.block_vector.BlockVector
method), 524

get_blocks_from_maps() (in module py-
omo.contrib.incidence_analysis.triangularize),
464

get_changed() (pyomo.dae.ContinuousSet method),
105

get_cntl() (pyomo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

get_cntl() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

get_cntl() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

get_connected_components() (py-
omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 460

get_constraint_indices() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

get_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

get_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP

628 Index

Pyomo Documentation, Release 6.5.0

method), 534
get_constraints_scaling() (py-

omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 526

get_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

get_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

get_continuousset() (pyomo.dae.Integral method),
110

get_continuousset_list() (py-
omo.dae.DerivativeVar method), 107

get_datatype() (pyomo.core.kernel.suffix.suffix
method), 386

get_derivative_expression() (py-
omo.dae.DerivativeVar method), 107

get_diagonal_blocks() (in module py-
omo.contrib.incidence_analysis.triangularize),
465

get_diagonal_blocks() (py-
omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 461

get_direction() (pyomo.core.kernel.suffix.suffix
method), 386

get_discretization_info() (py-
omo.dae.ContinuousSet method), 105

get_duals() (pyomo.contrib.appsi.base.PersistentSolver
method), 337

get_duals() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 361

get_duals() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 357

get_duals() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 345

get_duals() (pyomo.contrib.appsi.solvers.highs.Highs
method), 364

get_duals() (pyomo.contrib.appsi.solvers.ipopt.Ipopt
method), 352

get_duals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

get_duals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_duals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_duals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 526

get_duals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

get_duals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_duals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

get_duals_eq() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 539

get_duals_eq() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_duals_eq() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_duals_eq() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_duals_eq() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

get_duals_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_duals_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_duals_ineq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_duals_ineq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

get_eq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_eq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_eq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_eq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 545

get_equality_constraint_indices() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_equality_constraint_scaling_factors()
(pyomo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

get_finite_elements() (pyomo.dae.ContinuousSet
method), 105

get_gurobi_param_info() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 346

get_gurobi_param_info() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 320

Index 629

Pyomo Documentation, Release 6.5.0

get_icntl() (pyomo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

get_icntl() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

get_icntl() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

get_independent_submatrices() (in module py-
omo.contrib.incidence_analysis.connected),
464

get_ineq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_ineq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_ineq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_ineq_constraints_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_inequality_constraint_indices() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_info() (pyomo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

get_info() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

get_info() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

get_infog() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

get_linear_constraint_attr() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 346

get_linear_constraint_attr() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 320

get_lower_element_boundary() (py-
omo.dae.ContinuousSet method), 105

get_matrix_coord() (py-
omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 461

get_model_attr() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 346

get_model_attr() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 320

get_num_calls() (py-
omo.common.timing.HierarchicalTimer
method), 234

get_numeric_incidence_matrix() (in module py-
omo.contrib.incidence_analysis.interface), 463

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_obj_factor() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_obj_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_output_constraint_scaling_factors() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

get_path() (pyomo.common.fileutils.PathData
method), 221

get_primal_indices() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_primals() (pyomo.contrib.appsi.base.PersistentSolver
method), 338

get_primals() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 361

630 Index

Pyomo Documentation, Release 6.5.0

get_primals() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 357

get_primals() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 346

get_primals() (pyomo.contrib.appsi.solvers.highs.Highs
method), 364

get_primals() (pyomo.contrib.appsi.solvers.ipopt.Ipopt
method), 352

get_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_primals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 530

get_primals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 527

get_primals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

get_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_primals_scaling() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_pyomo_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_pyomo_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_pyomo_equality_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 546

get_pyomo_inequality_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP

method), 546
get_pyomo_objective() (py-

omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_pyomo_objective() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

get_pyomo_variables() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

get_pyomo_variables() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

get_quadratic_constraint_attr() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 346

get_quadratic_constraint_attr() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 321

get_reduced_costs() (py-
omo.contrib.appsi.base.PersistentSolver
method), 338

get_reduced_costs() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
361

get_reduced_costs() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
357

get_reduced_costs() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 346

get_reduced_costs() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 364

get_reduced_costs() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
353

get_relative_percent_time() (py-
omo.common.timing.HierarchicalTimer
method), 234

get_rinfo() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

get_rinfo() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

get_rinfog() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

get_scc_of_projection() (in module py-
omo.contrib.incidence_analysis.triangularize),
465

get_slacks() (pyomo.contrib.appsi.base.PersistentSolver
method), 338

get_slacks() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 361

get_slacks() (pyomo.contrib.appsi.solvers.cplex.Cplex

Index 631

Pyomo Documentation, Release 6.5.0

method), 357
get_slacks() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 346
get_slacks() (pyomo.contrib.appsi.solvers.highs.Highs

method), 364
get_slacks() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 353
get_sos_attr() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 347
get_sos_attr() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 321
get_split_fraction() (py-

omo.network.port._PortData method), 138
get_state_var() (pyomo.dae.DerivativeVar method),

107
get_structural_incidence_matrix() (in module

pyomo.contrib.incidence_analysis.interface),
463

get_suffix_value() (pyomo.environ.AbstractModel
method), 245

get_suffix_value() (pyomo.environ.Block method),
249

get_suffix_value() (pyomo.environ.ConcreteModel
method), 239

get_suffix_value() (pyomo.environ.Constraint
method), 253

get_suffix_value() (py-
omo.environ.ExternalFunction method),
258

get_suffix_value() (pyomo.environ.Objective
method), 261

get_suffix_value() (pyomo.environ.Param method),
265

get_suffix_value() (pyomo.environ.RangeSet
method), 269

get_suffix_value() (pyomo.environ.Set method), 274
get_suffix_value() (pyomo.environ.Var method), 277
get_timers() (pyomo.common.timing.HierarchicalTimer

method), 234
get_total_percent_time() (py-

omo.common.timing.HierarchicalTimer
method), 234

get_total_time() (py-
omo.common.timing.HierarchicalTimer
method), 233

get_units() (pyomo.core.base.units_container.PyomoUnitsContainer
method), 158

get_units() (pyomo.core.expr.current.ExternalFunctionExpression
method), 295

get_units() (pyomo.environ.ExternalFunction
method), 258

get_units() (pyomo.environ.Param method), 265
get_units() (pyomo.environ.Var method), 277
get_upper_element_boundary() (py-

omo.dae.ContinuousSet method), 105
get_values() (pyomo.environ.Var method), 277
get_var_attr() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 347
get_var_attr() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 321
get_variable_order() (pyomo.dae.Simulator

method), 117
get_xpress_attribute() (py-

omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 327

get_xpress_control() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 327

GetItemExpression (class in pyomo.core.expr.current),
302

getname() (pyomo.core.expr.current.DivisionExpression
method), 298

getname() (pyomo.core.expr.current.Expr_ifExpression
method), 305

getname() (pyomo.core.expr.current.ExternalFunctionExpression
method), 295

getname() (pyomo.core.expr.current.GetItemExpression
method), 303

getname() (pyomo.core.expr.current.NegationExpression
method), 293

getname() (pyomo.core.expr.current.ProductExpression
method), 297

getname() (pyomo.core.expr.current.UnaryFunctionExpression
method), 307

getname() (pyomo.core.expr.numvalue.NumericValue
method), 289

getname() (pyomo.core.kernel.base.ICategorizedObject
method), 402

getname() (pyomo.core.kernel.dict_container.DictContainer
method), 411

getname() (pyomo.core.kernel.list_container.ListContainer
method), 408

getname() (pyomo.core.kernel.tuple_container.TupleContainer
method), 406

getname() (pyomo.environ.AbstractModel method), 245
getname() (pyomo.environ.Block method), 249
getname() (pyomo.environ.ConcreteModel method), 239
getname() (pyomo.environ.Constraint method), 253
getname() (pyomo.environ.ExternalFunction method),

258
getname() (pyomo.environ.Objective method), 261
getname() (pyomo.environ.Param method), 265
getname() (pyomo.environ.RangeSet method), 269
getname() (pyomo.environ.Set method), 274
getname() (pyomo.environ.Var method), 277
gettempdir() (pyomo.common.tempfiles.TempfileContext

method), 227
gettempdirb() (pyomo.common.tempfiles.TempfileContext

632 Index

Pyomo Documentation, Release 6.5.0

method), 227
gettempprefix() (py-

omo.common.tempfiles.TempfileContext
method), 227

gettempprefixb() (py-
omo.common.tempfiles.TempfileContext
method), 227

GridSearchResult (class in pyomo.contrib.doe.result),
440

group_data() (in module py-
omo.contrib.parmest.parmest), 506

grouped_boxplot() (in module py-
omo.contrib.parmest.graphics), 508

grouped_violinplot() (in module py-
omo.contrib.parmest.graphics), 509

Gurobi (class in pyomo.contrib.appsi.solvers.gurobi),
344

Gurobi.Availability (class in py-
omo.contrib.appsi.solvers.gurobi), 344

gurobi_options (pyomo.contrib.appsi.solvers.gurobi.Gurobi
property), 347

GurobiPersistent (class in py-
omo.solvers.plugins.solvers.gurobi_persistent),
318

GurobiResults (class in py-
omo.contrib.appsi.solvers.gurobi), 344

H
half_lengths (pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet

property), 575
has_capability() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 314

has_capability() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 321

has_capability() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 327

has_instance() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

has_instance() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 321

has_instance() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

has_none (pyomo.contrib.pynumero.sparse.block_vector.BlockVector
property), 525

heterogeneous_containers() (in module py-
omo.core.kernel.heterogeneous_container),
404

HierarchicalTimer (class in pyomo.common.timing),
230

Highs (class in pyomo.contrib.appsi.solvers.highs), 363

Highs.Availability (class in py-
omo.contrib.appsi.solvers.highs), 363

highs_options (pyomo.contrib.appsi.solvers.highs.Highs
property), 364

HighsResults (class in py-
omo.contrib.appsi.solvers.highs), 363

I
ICategorizedObject (class in py-

omo.core.kernel.base), 401
ICategorizedObjectContainer (class in py-

omo.core.kernel.base), 402
id_index_map() (pyomo.environ.AbstractModel

method), 245
id_index_map() (pyomo.environ.Block method), 249
id_index_map() (pyomo.environ.ConcreteModel

method), 239
id_index_map() (pyomo.environ.Constraint method),

253
id_index_map() (pyomo.environ.Objective method),

261
id_index_map() (pyomo.environ.Param method), 265
id_index_map() (pyomo.environ.Set method), 274
id_index_map() (pyomo.environ.Var method), 278
identify_components() (in module py-

omo.core.expr.current), 282
identify_variables() (in module py-

omo.core.expr.current), 282
IHeterogeneousContainer (class in py-

omo.core.kernel.heterogeneous_container),
403

IHomogeneousContainer (class in py-
omo.core.kernel.homogeneous_container),
403

import_argparse() (py-
omo.common.config.ConfigBase method),
206

import_argparse() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 341

import_argparse() (py-
omo.contrib.appsi.base.SolverConfig method),
340

import_argparse() (py-
omo.contrib.appsi.base.UpdateConfig method),
343

import_argparse() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

import_argparse() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

import_argparse() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig

Index 633

Pyomo Documentation, Release 6.5.0

method), 350
import_enabled (pyomo.core.kernel.suffix.suffix prop-

erty), 387
import_file() (in module pyomo.common.fileutils),

221
import_suffix_generator() (in module py-

omo.core.kernel.suffix), 385
In (class in pyomo.common.config), 210
in_testing_environment() (in module py-

omo.common.deprecation), 215
incidence_matrix (py-

omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
property), 461

IncidenceGraphInterface (class in py-
omo.contrib.incidence_analysis.interface),
458

InconsistentUnitsError (class in py-
omo.core.base.units_container), 159

increase_memory_allocation() (py-
omo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

increase_memory_allocation() (py-
omo.contrib.pynumero.linalg.ma57_interface.MA57
method), 558

increase_memory_allocation() (py-
omo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

index() (pyomo.core.kernel.list_container.ListContainer
method), 409

index() (pyomo.core.kernel.tuple_container.TupleContainer
method), 406

index() (pyomo.environ.AbstractModel method), 246
index() (pyomo.environ.ConcreteModel method), 239
index_set() (pyomo.environ.AbstractModel method),

246
index_set() (pyomo.environ.Block method), 249
index_set() (pyomo.environ.ConcreteModel method),

239
index_set() (pyomo.environ.Constraint method), 253
index_set() (pyomo.environ.Objective method), 261
index_set() (pyomo.environ.Param method), 265
index_set() (pyomo.environ.Set method), 274
index_set() (pyomo.environ.Var method), 278
indexes_to_arcs() (py-

omo.network.SequentialDecomposition
method), 145

InducedLinearity (class in py-
omo.contrib.preprocessing.plugins.induced_linearity),
484

InEnum (class in pyomo.common.config), 211
ineq_constraint_idx() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

ineq_constraint_names() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

ineq_lb() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

ineq_lb() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

ineq_lb() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

ineq_lb() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

ineq_ub() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 540

ineq_ub() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

ineq_ub() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

ineq_ub() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

inequality_constraint_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

InequalityExpression (class in py-
omo.core.expr.current), 298

infeasible (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

infeasibleOrUnbounded (py-
omo.contrib.appsi.base.TerminationCondition
attribute), 334

init_duals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

init_duals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 535

init_duals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

init_duals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 527

init_duals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

init_duals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

init_duals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

init_duals_eq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

init_duals_eq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

init_duals_eq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

init_duals_eq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

634 Index

Pyomo Documentation, Release 6.5.0

init_duals_eq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

init_duals_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

init_duals_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

init_duals_ineq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

init_duals_ineq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

init_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

init_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

init_primals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

init_primals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 527

init_primals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

init_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

init_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

initialize() (pyomo.dataportal.TableData.TableData
method), 333

initialize_argparse() (py-
omo.common.config.ConfigBase method),
206

initialize_argparse() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 341

initialize_argparse() (py-
omo.contrib.appsi.base.SolverConfig method),
340

initialize_argparse() (py-
omo.contrib.appsi.base.UpdateConfig method),
343

initialize_argparse() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 359

initialize_argparse() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

initialize_argparse() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

initialize_model() (pyomo.dae.Simulator method),
117

InitMidpoint (class in py-
omo.contrib.preprocessing.plugins.init_vars),
486

InitZero (class in py-
omo.contrib.preprocessing.plugins.init_vars),
487

input (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
property), 391

input (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND
property), 396

input_names() (pyomo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

insert() (pyomo.core.kernel.list_container.ListContainer
method), 409

Integral (class in pyomo.dae), 110
interrupted (pyomo.contrib.appsi.base.TerminationCondition

attribute), 334
IntersectionSet (class in py-

omo.contrib.pyros.uncertainty_sets), 580
Ipopt (class in pyomo.contrib.appsi.solvers.ipopt), 351
Ipopt.Availability (class in py-

omo.contrib.appsi.solvers.ipopt), 351
ipopt_options (pyomo.contrib.appsi.solvers.ipopt.Ipopt

property), 353
IpoptConfig (class in py-

omo.contrib.appsi.solvers.ipopt), 350
IpoptConfig.NoArgument (class in py-

omo.contrib.appsi.solvers.ipopt), 350
is_binary() (pyomo.network.port._PortData method),

138
is_block_defined() (py-

omo.contrib.pynumero.sparse.block_vector.BlockVector
method), 524

is_component_type() (pyomo.environ.AbstractModel
method), 246

is_component_type() (pyomo.environ.Block method),
249

is_component_type() (pyomo.environ.ConcreteModel
method), 239

is_component_type() (pyomo.environ.Constraint
method), 253

is_component_type() (py-
omo.environ.ExternalFunction method),
258

is_component_type() (pyomo.environ.Objective
method), 261

is_component_type() (pyomo.environ.Param
method), 265

is_component_type() (pyomo.environ.RangeSet
method), 269

is_component_type() (pyomo.environ.Set method),
274

is_component_type() (pyomo.environ.Var method),
278

Index 635

Pyomo Documentation, Release 6.5.0

is_constant() (in module py-
omo.core.kernel.piecewise_library.util),
397

is_constant() (pyomo.core.expr.numvalue.NumericValue
method), 289

is_constructed() (pyomo.environ.AbstractModel
method), 246

is_constructed() (pyomo.environ.Block method), 250
is_constructed() (pyomo.environ.ConcreteModel

method), 239
is_constructed() (pyomo.environ.Constraint

method), 253
is_constructed() (pyomo.environ.ExternalFunction

method), 258
is_constructed() (pyomo.environ.Objective method),

261
is_constructed() (pyomo.environ.Param method),

265
is_constructed() (pyomo.environ.RangeSet method),

269
is_constructed() (pyomo.environ.Set method), 274
is_constructed() (pyomo.environ.Var method), 278
is_continuous() (pyomo.network.port._PortData

method), 138
is_equality() (pyomo.network.port._PortData

method), 138
is_expression_type() (py-

omo.environ.AbstractModel method), 246
is_expression_type() (pyomo.environ.Block

method), 250
is_expression_type() (py-

omo.environ.ConcreteModel method), 239
is_expression_type() (pyomo.environ.Constraint

method), 254
is_expression_type() (py-

omo.environ.ExternalFunction method),
258

is_expression_type() (pyomo.environ.Objective
method), 261

is_expression_type() (pyomo.environ.Param
method), 265

is_expression_type() (pyomo.environ.RangeSet
method), 269

is_expression_type() (pyomo.environ.Set method),
274

is_expression_type() (pyomo.environ.Var method),
278

is_extensive() (pyomo.network.port._PortData
method), 138

is_fixed() (pyomo.core.expr.numvalue.NumericValue
method), 290

is_fixed() (pyomo.network.port._PortData method),
138

is_fully_discretized() (pyomo.dae.DerivativeVar

method), 107
is_indexed() (pyomo.core.expr.numvalue.NumericValue

method), 290
is_indexed() (pyomo.environ.AbstractModel method),

246
is_indexed() (pyomo.environ.Block method), 250
is_indexed() (pyomo.environ.ConcreteModel method),

239
is_indexed() (pyomo.environ.Constraint method), 254
is_indexed() (pyomo.environ.ExternalFunction

method), 258
is_indexed() (pyomo.environ.Objective method), 261
is_indexed() (pyomo.environ.Param method), 265
is_indexed() (pyomo.environ.RangeSet method), 270
is_indexed() (pyomo.environ.Set method), 274
is_indexed() (pyomo.environ.Var method), 278
is_integer() (pyomo.network.port._PortData

method), 138
is_logical_type() (pyomo.environ.AbstractModel

method), 246
is_logical_type() (pyomo.environ.Block method),

250
is_logical_type() (pyomo.environ.ConcreteModel

method), 239
is_logical_type() (pyomo.environ.Constraint

method), 254
is_logical_type() (pyomo.environ.ExternalFunction

method), 258
is_logical_type() (pyomo.environ.Objective

method), 261
is_logical_type() (pyomo.environ.Param method),

265
is_logical_type() (pyomo.environ.RangeSet

method), 270
is_logical_type() (pyomo.environ.Set method), 274
is_logical_type() (pyomo.environ.Var method), 278
is_named_expression_type() (py-

omo.environ.AbstractModel method), 246
is_named_expression_type() (pyomo.environ.Block

method), 250
is_named_expression_type() (py-

omo.environ.ConcreteModel method), 239
is_named_expression_type() (py-

omo.environ.Constraint method), 254
is_named_expression_type() (py-

omo.environ.ExternalFunction method),
258

is_named_expression_type() (py-
omo.environ.Objective method), 261

is_named_expression_type() (pyomo.environ.Param
method), 265

is_named_expression_type() (py-
omo.environ.RangeSet method), 270

is_named_expression_type() (pyomo.environ.Set

636 Index

Pyomo Documentation, Release 6.5.0

method), 274
is_named_expression_type() (pyomo.environ.Var

method), 278
is_nondecreasing() (in module py-

omo.core.kernel.piecewise_library.util),
397

is_nonincreasing() (in module py-
omo.core.kernel.piecewise_library.util),
397

is_numeric_type() (py-
omo.core.expr.numvalue.NumericValue
method), 290

is_numeric_type() (pyomo.environ.AbstractModel
method), 246

is_numeric_type() (pyomo.environ.Block method),
250

is_numeric_type() (pyomo.environ.ConcreteModel
method), 239

is_numeric_type() (pyomo.environ.Constraint
method), 254

is_numeric_type() (pyomo.environ.ExternalFunction
method), 258

is_numeric_type() (pyomo.environ.Objective
method), 261

is_numeric_type() (pyomo.environ.Param method),
265

is_numeric_type() (pyomo.environ.RangeSet
method), 270

is_numeric_type() (pyomo.environ.Set method), 274
is_numeric_type() (pyomo.environ.Var method), 278
is_parameter_type() (pyomo.environ.AbstractModel

method), 246
is_parameter_type() (pyomo.environ.Block method),

250
is_parameter_type() (pyomo.environ.ConcreteModel

method), 239
is_parameter_type() (pyomo.environ.Constraint

method), 254
is_parameter_type() (py-

omo.environ.ExternalFunction method),
258

is_parameter_type() (pyomo.environ.Objective
method), 261

is_parameter_type() (pyomo.environ.Param
method), 265

is_parameter_type() (pyomo.environ.RangeSet
method), 270

is_parameter_type() (pyomo.environ.Set method),
274

is_parameter_type() (pyomo.environ.Var method),
278

is_persistent() (py-
omo.contrib.appsi.base.PersistentSolver
method), 338

is_persistent() (pyomo.contrib.appsi.base.Solver
method), 336

is_persistent() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
362

is_persistent() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
357

is_persistent() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

is_persistent() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 364

is_persistent() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
353

is_positive_power_of_two() (in module py-
omo.core.kernel.piecewise_library.util), 397

is_potentially_variable() (py-
omo.core.expr.current.Expr_ifExpression
method), 305

is_potentially_variable() (py-
omo.core.expr.current.GetItemExpression
method), 303

is_potentially_variable() (py-
omo.core.expr.numvalue.NumericValue
method), 290

is_potentially_variable() (py-
omo.network.port._PortData method), 138

is_reference() (pyomo.environ.AbstractModel
method), 246

is_reference() (pyomo.environ.Block method), 250
is_reference() (pyomo.environ.ConcreteModel

method), 239
is_reference() (pyomo.environ.Constraint method),

254
is_reference() (pyomo.environ.ExternalFunction

method), 258
is_reference() (pyomo.environ.Objective method),

261
is_reference() (pyomo.environ.Param method), 265
is_reference() (pyomo.environ.RangeSet method),

270
is_reference() (pyomo.environ.Set method), 275
is_reference() (pyomo.environ.Var method), 278
is_relational() (py-

omo.core.expr.numvalue.NumericValue
method), 290

is_variable_type() (pyomo.environ.AbstractModel
method), 246

is_variable_type() (pyomo.environ.Block method),
250

is_variable_type() (pyomo.environ.ConcreteModel

Index 637

Pyomo Documentation, Release 6.5.0

method), 239
is_variable_type() (pyomo.environ.Constraint

method), 254
is_variable_type() (py-

omo.environ.ExternalFunction method),
258

is_variable_type() (pyomo.environ.Objective
method), 261

is_variable_type() (pyomo.environ.Param method),
266

is_variable_type() (pyomo.environ.RangeSet
method), 270

is_variable_type() (pyomo.environ.Set method), 275
is_variable_type() (pyomo.environ.Var method), 278
ISuffix (class in pyomo.core.kernel.suffix), 385
items() (pyomo.common.config.ConfigDict method),

207
items() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
items() (pyomo.contrib.appsi.base.SolverConfig

method), 340
items() (pyomo.contrib.appsi.base.UpdateConfig

method), 343
items() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
items() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
items() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
items() (pyomo.core.kernel.dict_container.DictContainer

method), 411
items() (pyomo.dataportal.DataPortal.DataPortal

method), 332
items() (pyomo.environ.AbstractModel method), 246
items() (pyomo.environ.Block method), 250
items() (pyomo.environ.ConcreteModel method), 240
items() (pyomo.environ.Constraint method), 254
items() (pyomo.environ.Objective method), 261
items() (pyomo.environ.Param method), 266
items() (pyomo.environ.Set method), 275
items() (pyomo.environ.Var method), 278
iter_vars() (pyomo.network.port._PortData method),

138
iteritems() (pyomo.common.config.ConfigDict

method), 207
iteritems() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
iteritems() (pyomo.contrib.appsi.base.SolverConfig

method), 340
iteritems() (pyomo.contrib.appsi.base.UpdateConfig

method), 343
iteritems() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
iteritems() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
iteritems() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
iteritems() (pyomo.environ.AbstractModel method),

246
iteritems() (pyomo.environ.Block method), 250
iteritems() (pyomo.environ.ConcreteModel method),

240
iteritems() (pyomo.environ.Constraint method), 254
iteritems() (pyomo.environ.Objective method), 262
iteritems() (pyomo.environ.Param method), 266
iteritems() (pyomo.environ.Set method), 275
iteritems() (pyomo.environ.Var method), 278
iterkeys() (pyomo.common.config.ConfigDict

method), 207
iterkeys() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 341
iterkeys() (pyomo.contrib.appsi.base.SolverConfig

method), 340
iterkeys() (pyomo.contrib.appsi.base.UpdateConfig

method), 343
iterkeys() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
iterkeys() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
iterkeys() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
iterkeys() (pyomo.environ.AbstractModel method),

246
iterkeys() (pyomo.environ.Block method), 250
iterkeys() (pyomo.environ.ConcreteModel method),

240
iterkeys() (pyomo.environ.Constraint method), 254
iterkeys() (pyomo.environ.Objective method), 262
iterkeys() (pyomo.environ.Param method), 266
iterkeys() (pyomo.environ.Set method), 275
iterkeys() (pyomo.environ.Var method), 278
itervalues() (pyomo.common.config.ConfigDict

method), 207
itervalues() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
itervalues() (pyomo.contrib.appsi.base.SolverConfig

method), 340
itervalues() (pyomo.contrib.appsi.base.UpdateConfig

method), 343
itervalues() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
itervalues() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
itervalues() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
itervalues() (pyomo.environ.AbstractModel method),

247
itervalues() (pyomo.environ.Block method), 250

638 Index

Pyomo Documentation, Release 6.5.0

itervalues() (pyomo.environ.ConcreteModel method),
240

itervalues() (pyomo.environ.Constraint method), 254
itervalues() (pyomo.environ.Objective method), 262
itervalues() (pyomo.environ.Param method), 266
itervalues() (pyomo.environ.Set method), 275
itervalues() (pyomo.environ.Var method), 279

K
keys() (pyomo.common.config.ConfigDict method), 207
keys() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
keys() (pyomo.contrib.appsi.base.SolverConfig

method), 340
keys() (pyomo.contrib.appsi.base.UpdateConfig

method), 344
keys() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
keys() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
keys() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
keys() (pyomo.core.kernel.dict_container.DictContainer

method), 411
keys() (pyomo.dataportal.DataPortal.DataPortal

method), 332
keys() (pyomo.environ.AbstractModel method), 247
keys() (pyomo.environ.Block method), 250
keys() (pyomo.environ.ConcreteModel method), 240
keys() (pyomo.environ.Constraint method), 254
keys() (pyomo.environ.Objective method), 262
keys() (pyomo.environ.Param method), 266
keys() (pyomo.environ.Set method), 275
keys() (pyomo.environ.Var method), 279

L
lb (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381
leaveNout_bootstrap_test() (py-

omo.contrib.parmest.parmest.Estimator
method), 504

level (pyomo.core.kernel.sos.sos property), 384
license_is_valid() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

license_is_valid() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

license_is_valid() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

licensingProblems (py-
omo.contrib.appsi.base.TerminationCondition
attribute), 334

likelihood_ratio_test() (py-
omo.contrib.parmest.parmest.Estimator
method), 505

LimitedLicense (pyomo.contrib.appsi.base.PersistentSolver.Availability
attribute), 337

LimitedLicense (pyomo.contrib.appsi.base.Solver.Availability
attribute), 335

LimitedLicense (pyomo.contrib.appsi.solvers.cbc.Cbc.Availability
attribute), 360

LimitedLicense (pyomo.contrib.appsi.solvers.cplex.Cplex.Availability
attribute), 356

LimitedLicense (pyomo.contrib.appsi.solvers.gurobi.Gurobi.Availability
attribute), 344

LimitedLicense (pyomo.contrib.appsi.solvers.highs.Highs.Availability
attribute), 363

LimitedLicense (pyomo.contrib.appsi.solvers.ipopt.Ipopt.Availability
attribute), 352

linear_constraint (class in py-
omo.core.kernel.constraint), 379

linear_expression (class in pyomo.core.expr.current),
284

LinearSolverInterface (class in py-
omo.contrib.pynumero.linalg.base), 557

LinearSolverResults (class in py-
omo.contrib.pynumero.linalg.base), 557

LinearSolverStatus (class in py-
omo.contrib.pynumero.linalg.base), 557

ListContainer (class in py-
omo.core.kernel.list_container), 407

load() (pyomo.dataportal.DataPortal.DataPortal
method), 332

load() (pyomo.environ.AbstractModel method), 247
load() (pyomo.environ.ConcreteModel method), 240
load_definitions_from_file() (py-

omo.core.base.units_container.PyomoUnitsContainer
method), 159

load_definitions_from_strings() (py-
omo.core.base.units_container.PyomoUnitsContainer
method), 159

load_duals() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

load_duals() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

load_duals() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

load_rc() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

load_rc() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

load_rc() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

load_slacks() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

load_slacks() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

Index 639

Pyomo Documentation, Release 6.5.0

method), 322
load_slacks() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 328
load_solution (pyomo.contrib.appsi.base.MIPSolverConfig

attribute), 342
load_solution (pyomo.contrib.appsi.base.SolverConfig

attribute), 339
load_solution (pyomo.contrib.appsi.solvers.cbc.CbcConfig

attribute), 359
load_solution (pyomo.contrib.appsi.solvers.cplex.CplexConfig

attribute), 355
load_solution (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

attribute), 351
load_solution() (pyomo.core.kernel.block.block

method), 375
load_state_into_pyomo() (py-

omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

load_state_into_pyomo() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

load_vars() (pyomo.contrib.appsi.base.PersistentSolver
method), 338

load_vars() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 362

load_vars() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 357

load_vars() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

load_vars() (pyomo.contrib.appsi.solvers.highs.Highs
method), 365

load_vars() (pyomo.contrib.appsi.solvers.ipopt.Ipopt
method), 353

load_vars() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

load_vars() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

load_vars() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

local_name (pyomo.core.kernel.base.ICategorizedObject
property), 402

local_name (pyomo.core.kernel.dict_container.DictContainer
property), 411

local_name (pyomo.core.kernel.list_container.ListContainer
property), 409

local_name (pyomo.core.kernel.tuple_container.TupleContainer
property), 406

local_name (pyomo.environ.AbstractModel property),
247

local_name (pyomo.environ.Block property), 251
local_name (pyomo.environ.ConcreteModel property),

240
local_name (pyomo.environ.Constraint property), 255
local_name (pyomo.environ.ExternalFunction prop-

erty), 258
local_name (pyomo.environ.Objective property), 262
local_name (pyomo.environ.Param property), 266
local_name (pyomo.environ.RangeSet property), 270
local_name (pyomo.environ.Set property), 275
local_name (pyomo.environ.Var property), 279
local_suffix_generator() (in module py-

omo.core.kernel.suffix), 386
log2floor() (in module py-

omo.core.kernel.piecewise_library.util),
397

log_filename() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 362

log_filename() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 358

log_import_warning() (py-
omo.common.dependencies.ModuleUnavailable
method), 212

lower (pyomo.core.kernel.variable.variable property),
377

lp_filename() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 362

lp_filename() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 358

lslack (pyomo.core.kernel.matrix_constraint.matrix_constraint
property), 381

M
MA27 (class in pyomo.contrib.pynumero.linalg.ma27_interface),

558
MA57 (class in pyomo.contrib.pynumero.linalg.ma57_interface),

558
map_nodes_to_block_triangular_indices() (py-

omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 461

matrix_constraint (class in py-
omo.core.kernel.matrix_constraint), 380

max_iter (pyomo.contrib.pynumero.linalg.base.LinearSolverStatus
attribute), 557

maximum_matching() (in module py-
omo.contrib.incidence_analysis.matching),
463

maximum_matching() (py-
omo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 461

maxIterations (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

maxTimeLimit (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

Measurements (class in py-
omo.contrib.doe.measurements), 439

MindtPySolver (class in py-
omo.contrib.mindtpy.MindtPy), 473

640 Index

Pyomo Documentation, Release 6.5.0

minStepLength (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

mip_gap (pyomo.contrib.appsi.base.MIPSolverConfig at-
tribute), 341

mip_gap (pyomo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 355

MIPSolverConfig (class in pyomo.contrib.appsi.base),
341

mkdtemp() (pyomo.common.tempfiles.TempfileContext
method), 227

mkstemp() (pyomo.common.tempfiles.TempfileContext
method), 226

model() (pyomo.environ.AbstractModel method), 247
model() (pyomo.environ.Block method), 251
model() (pyomo.environ.ConcreteModel method), 240
model() (pyomo.environ.Constraint method), 255
model() (pyomo.environ.ExternalFunction method), 258
model() (pyomo.environ.Objective method), 262
model() (pyomo.environ.Param method), 266
model() (pyomo.environ.RangeSet method), 270
model() (pyomo.environ.Set method), 275
model() (pyomo.environ.Var method), 279
module

pyomo.common.dependencies, 212
pyomo.common.deprecation, 215
pyomo.common.fileutils, 218
pyomo.common.formatting, 224
pyomo.common.tempfiles, 225
pyomo.common.timing, 228
pyomo.contrib.appsi, 333
pyomo.contrib.appsi.solvers, 344
pyomo.contrib.community_detection.community_graph,

431
pyomo.contrib.community_detection.detection,

429
pyomo.contrib.iis.iis, 451
pyomo.contrib.incidence_analysis.connected,

464
pyomo.contrib.incidence_analysis.dulmage_mendelsohn,

465
pyomo.contrib.incidence_analysis.interface,

458
pyomo.contrib.incidence_analysis.matching,

463
pyomo.contrib.incidence_analysis.scc_solver,

467
pyomo.contrib.incidence_analysis.triangularize,

464
pyomo.contrib.parmest.graphics, 508
pyomo.contrib.parmest.parmest, 503
pyomo.contrib.parmest.scenariocreator,

507
pyomo.contrib.pynumero, 520
pyomo.contrib.pynumero.interfaces, 525

pyomo.contrib.pynumero.linalg, 557
pyomo.contrib.pynumero.sparse, 520
pyomo.core.base.units_container, 156
pyomo.core.kernel.base, 401
pyomo.core.kernel.heterogeneous_container,

403
pyomo.core.kernel.homogeneous_container,

403
pyomo.core.kernel.piecewise_library.util,

396
pyomo.core.kernel.suffix, 385

ModuleUnavailable (class in py-
omo.common.dependencies), 212

mro() (pyomo.common.dependencies.DeferredImportModule
method), 212

mro() (pyomo.common.dependencies.ModuleUnavailable
method), 212

MultiStart (class in pyomo.contrib.multistart.multi),
481

MumpsCentralizedAssembledLinearSolver
(class in py-
omo.contrib.pynumero.linalg.mumps_interface),
559

N
n_constraints() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

n_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

n_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

n_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

n_constraints() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 550

n_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

n_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

n_edges (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface
property), 461

n_eq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

n_eq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

Index 641

Pyomo Documentation, Release 6.5.0

n_eq_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

n_eq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 555

n_eq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

n_equality_constraints() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

n_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

n_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

n_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

n_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

n_ineq_constraints() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

n_inputs() (pyomo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

n_outputs() (pyomo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

n_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

n_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

n_primals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

n_primals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 527

n_primals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

n_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

n_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

name (pyomo.core.kernel.base.ICategorizedObject prop-
erty), 402

name (pyomo.core.kernel.dict_container.DictContainer
property), 411

name (pyomo.core.kernel.list_container.ListContainer
property), 409

name (pyomo.core.kernel.tuple_container.TupleContainer
property), 406

name (pyomo.environ.AbstractModel property), 247

name (pyomo.environ.Block property), 251
name (pyomo.environ.ConcreteModel property), 240
name (pyomo.environ.Constraint property), 255
name (pyomo.environ.ExternalFunction property), 258
name (pyomo.environ.Objective property), 262
name (pyomo.environ.Param property), 266
name (pyomo.environ.RangeSet property), 270
name (pyomo.environ.Set property), 275
name (pyomo.environ.Var property), 279
name() (pyomo.common.config.ConfigBase method), 206
name() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
name() (pyomo.contrib.appsi.base.SolverConfig

method), 340
name() (pyomo.contrib.appsi.base.UpdateConfig

method), 344
name() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
name() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
name() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
namespaces() (pyomo.dataportal.DataPortal.DataPortal

method), 332
nargs() (pyomo.core.expr.current.EqualityExpression

method), 300
nargs() (pyomo.core.expr.current.Expr_ifExpression

method), 306
nargs() (pyomo.core.expr.current.ExternalFunctionExpression

method), 295
nargs() (pyomo.core.expr.current.GetItemExpression

method), 303
nargs() (pyomo.core.expr.current.InequalityExpression

method), 299
nargs() (pyomo.core.expr.current.NegationExpression

method), 293
nargs() (pyomo.core.expr.current.NumericExpression

method), 291
nargs() (pyomo.core.expr.current.SumExpression

method), 301
nargs() (pyomo.core.expr.current.UnaryFunctionExpression

method), 308
native_numeric_types (in module py-

omo.core.expr.numvalue), 285
native_types (in module pyomo.core.expr.numvalue),

285
nblocks (pyomo.contrib.pynumero.sparse.block_vector.BlockVector

property), 525
NeedsCompiledExtension (py-

omo.contrib.appsi.base.PersistentSolver.Availability
attribute), 337

NeedsCompiledExtension (py-
omo.contrib.appsi.base.Solver.Availability
attribute), 335

642 Index

Pyomo Documentation, Release 6.5.0

NeedsCompiledExtension (py-
omo.contrib.appsi.solvers.cbc.Cbc.Availability
attribute), 360

NeedsCompiledExtension (py-
omo.contrib.appsi.solvers.cplex.Cplex.Availability
attribute), 356

NeedsCompiledExtension (py-
omo.contrib.appsi.solvers.gurobi.Gurobi.Availability
attribute), 344

NeedsCompiledExtension (py-
omo.contrib.appsi.solvers.highs.Highs.Availability
attribute), 363

NeedsCompiledExtension (py-
omo.contrib.appsi.solvers.ipopt.Ipopt.Availability
attribute), 352

NegationExpression (class in py-
omo.core.expr.current), 292

NegativeFloat() (in module pyomo.common.config),
210

NegativeInt() (in module pyomo.common.config), 210
new_context() (pyomo.common.tempfiles.TempfileManagerClass

method), 226
nl_filename() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 353
NLP (class in pyomo.contrib.pynumero.interfaces.nlp),

525
nnz_hessian_lag() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

nnz_hessian_lag() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

nnz_hessian_lag() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

nnz_hessian_lag() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

nnz_hessian_lag() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

nnz_hessian_lag() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

nnz_hessian_lag() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

nnz_jacobian() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

nnz_jacobian() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

nnz_jacobian() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

nnz_jacobian() (pyomo.contrib.pynumero.interfaces.nlp.NLP

method), 527
nnz_jacobian() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP

method), 551
nnz_jacobian() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP

method), 556
nnz_jacobian() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP

method), 547
nnz_jacobian_eq() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

nnz_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

nnz_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

nnz_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

nnz_jacobian_eq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

nnz_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

nnz_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

nnz_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 531

nnz_jacobian_ineq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 547

nonlinear_expression (class in py-
omo.core.expr.current), 284

NonNegativeFloat() (in module py-
omo.common.config), 210

NonNegativeInt() (in module pyomo.common.config),
210

NonPositiveFloat() (in module py-
omo.common.config), 210

NonPositiveInt() (in module pyomo.common.config),
210

nonpyomo_leaf_types (in module py-
omo.core.expr.numvalue), 285

not_enough_memory (py-
omo.contrib.pynumero.linalg.base.LinearSolverStatus
attribute), 557

NotFound (pyomo.contrib.appsi.base.PersistentSolver.Availability
attribute), 337

NotFound (pyomo.contrib.appsi.base.Solver.Availability
attribute), 335

NotFound (pyomo.contrib.appsi.solvers.cbc.Cbc.Availability

Index 643

Pyomo Documentation, Release 6.5.0

attribute), 360
NotFound (pyomo.contrib.appsi.solvers.cplex.Cplex.Availability

attribute), 356
NotFound (pyomo.contrib.appsi.solvers.gurobi.Gurobi.Availability

attribute), 344
NotFound (pyomo.contrib.appsi.solvers.highs.Highs.Availability

attribute), 363
NotFound (pyomo.contrib.appsi.solvers.ipopt.Ipopt.Availability

attribute), 352
number_of_factors (py-

omo.contrib.pyros.uncertainty_sets.FactorModelSet
property), 572

NumericExpression (class in pyomo.core.expr.current),
290

NumericValue (class in pyomo.core.expr.numvalue), 286

O
objective (class in pyomo.core.kernel.objective), 383
Objective (class in pyomo.environ), 259
objective_at_theta() (py-

omo.contrib.parmest.parmest.Estimator
method), 505

objective_dict (class in pyomo.core.kernel.objective),
383

objective_list (class in pyomo.core.kernel.objective),
383

objective_tuple (class in py-
omo.core.kernel.objective), 383

objectiveLimit (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

open() (pyomo.dataportal.TableData.TableData
method), 333

optimal (pyomo.contrib.appsi.base.TerminationCondition
attribute), 334

options_filename() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
353

origin (pyomo.contrib.pyros.uncertainty_sets.BudgetSet
property), 571

origin (pyomo.contrib.pyros.uncertainty_sets.CardinalitySet
property), 569

origin (pyomo.contrib.pyros.uncertainty_sets.FactorModelSet
property), 573

output (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
property), 391

output (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND
property), 396

output_names() (pyomo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

overconstrained (py-
omo.contrib.incidence_analysis.dulmage_mendelsohn.ColPartition
property), 465

overconstrained (py-
omo.contrib.incidence_analysis.dulmage_mendelsohn.RowPartition

property), 466

P
pairwise_plot() (in module py-

omo.contrib.parmest.graphics), 509
Param (class in pyomo.environ), 263
Param.NoValue (class in pyomo.environ), 264
parameter (class in pyomo.core.kernel.parameter), 382
parameter_bounds (py-

omo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet
property), 575

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.BoxSet
property), 567

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.BudgetSet
property), 571

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.CardinalitySet
property), 569

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet
property), 579

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.EllipsoidalSet
property), 577

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.FactorModelSet
property), 573

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.IntersectionSet
property), 580

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.PolyhedralSet
property), 574

parameter_bounds (py-
omo.contrib.pyros.uncertainty_sets.UncertaintySet
property), 578

parameter_dict (class in py-
omo.core.kernel.parameter), 382

parameter_list (class in py-
omo.core.kernel.parameter), 382

parameter_tuple (class in py-
omo.core.kernel.parameter), 382

parent (pyomo.core.kernel.base.ICategorizedObject
property), 402

parent (pyomo.core.kernel.dict_container.DictContainer
property), 411

parent (pyomo.core.kernel.list_container.ListContainer
property), 409

parent (pyomo.core.kernel.tuple_container.TupleContainer
property), 406

parent_block() (pyomo.environ.AbstractModel
method), 247

644 Index

Pyomo Documentation, Release 6.5.0

parent_block() (pyomo.environ.Block method), 251
parent_block() (pyomo.environ.ConcreteModel

method), 240
parent_block() (pyomo.environ.Constraint method),

255
parent_block() (pyomo.environ.ExternalFunction

method), 258
parent_block() (pyomo.environ.Objective method),

262
parent_block() (pyomo.environ.Param method), 266
parent_block() (pyomo.environ.RangeSet method),

270
parent_block() (pyomo.environ.Set method), 275
parent_block() (pyomo.environ.Var method), 279
parent_component() (pyomo.environ.AbstractModel

method), 247
parent_component() (pyomo.environ.Block method),

251
parent_component() (pyomo.environ.ConcreteModel

method), 240
parent_component() (pyomo.environ.Constraint

method), 255
parent_component() (py-

omo.environ.ExternalFunction method),
258

parent_component() (pyomo.environ.Objective
method), 262

parent_component() (pyomo.environ.Param method),
266

parent_component() (pyomo.environ.RangeSet
method), 270

parent_component() (pyomo.environ.Set method), 275
parent_component() (pyomo.environ.Var method), 279
ParmestScen (class in py-

omo.contrib.parmest.scenariocreator), 507
Path (class in pyomo.common.config), 211
path() (pyomo.common.fileutils.PathData method), 221
PathData (class in pyomo.common.fileutils), 221
PathList (class in pyomo.common.config), 211
PathManager (class in pyomo.common.fileutils), 222
PersistentSolver (class in pyomo.contrib.appsi.base),

336
PersistentSolver.Availability (class in py-

omo.contrib.appsi.base), 336
piecewise() (in module py-

omo.core.kernel.piecewise_library.transforms),
388

piecewise_cc (class in py-
omo.core.kernel.piecewise_library.transforms),
392

piecewise_convex (class in py-
omo.core.kernel.piecewise_library.transforms),
392

piecewise_dcc (class in py-

omo.core.kernel.piecewise_library.transforms),
392

piecewise_dlog (class in py-
omo.core.kernel.piecewise_library.transforms),
393

piecewise_inc (class in py-
omo.core.kernel.piecewise_library.transforms),
393

piecewise_log (class in py-
omo.core.kernel.piecewise_library.transforms),
393

piecewise_mc (class in py-
omo.core.kernel.piecewise_library.transforms),
393

piecewise_nd() (in module py-
omo.core.kernel.piecewise_library.transforms_nd),
394

piecewise_nd_cc (class in py-
omo.core.kernel.piecewise_library.transforms_nd),
396

piecewise_sos2 (class in py-
omo.core.kernel.piecewise_library.transforms),
392

PiecewiseLinearFunction (class in py-
omo.core.kernel.piecewise_library.transforms),
389

PiecewiseLinearFunctionND (class in py-
omo.core.kernel.piecewise_library.transforms_nd),
395

PiecewiseValidationError, 396
plot() (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface

method), 461
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet

method), 576
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.BoxSet

method), 567
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.BudgetSet

method), 571
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.CardinalitySet

method), 569
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet

method), 579
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet

method), 577
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.FactorModelSet

method), 573
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.IntersectionSet

method), 580
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet

method), 574
point_in_set() (pyomo.contrib.pyros.uncertainty_sets.UncertaintySet

method), 578
PolyhedralSet (class in py-

omo.contrib.pyros.uncertainty_sets), 573

Index 645

Pyomo Documentation, Release 6.5.0

polynomial_degree() (py-
omo.core.expr.current.NumericExpression
method), 292

polynomial_degree() (py-
omo.core.expr.numvalue.NumericValue
method), 290

polynomial_degree() (pyomo.network.port._PortData
method), 138

pop() (pyomo.common.tempfiles.TempfileManagerClass
method), 226

pop() (pyomo.core.kernel.dict_container.DictContainer
method), 411

pop() (pyomo.core.kernel.list_container.ListContainer
method), 409

popitem() (pyomo.core.kernel.dict_container.DictContainer
method), 412

Port (class in pyomo.network), 136
ports (pyomo.network.arc._ArcData attribute), 139
positive_deviation (py-

omo.contrib.pyros.uncertainty_sets.CardinalitySet
property), 569

PositiveFloat() (in module pyomo.common.config),
210

PositiveInt() (in module pyomo.common.config), 210
pprint() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector

method), 525
pprint() (pyomo.environ.AbstractModel method), 247
pprint() (pyomo.environ.Block method), 251
pprint() (pyomo.environ.ConcreteModel method), 240
pprint() (pyomo.environ.Constraint method), 255
pprint() (pyomo.environ.ExternalFunction method),

259
pprint() (pyomo.environ.Objective method), 262
pprint() (pyomo.environ.Param method), 266
pprint() (pyomo.environ.RangeSet method), 270
pprint() (pyomo.environ.Set method), 276
pprint() (pyomo.environ.Var method), 279
PRECEDENCE (pyomo.core.expr.current.DivisionExpression

attribute), 297
PRECEDENCE (pyomo.core.expr.current.EqualityExpression

attribute), 300
PRECEDENCE (pyomo.core.expr.current.Expr_ifExpression

attribute), 304
PRECEDENCE (pyomo.core.expr.current.GetItemExpression

attribute), 302
PRECEDENCE (pyomo.core.expr.current.InequalityExpression

attribute), 298
PRECEDENCE (pyomo.core.expr.current.NegationExpression

attribute), 292
PRECEDENCE (pyomo.core.expr.current.NumericExpression

attribute), 290
PRECEDENCE (pyomo.core.expr.current.ProductExpression

attribute), 295
PRECEDENCE (pyomo.core.expr.current.SumExpression

attribute), 301
PRECEDENCE (pyomo.core.expr.current.UnaryFunctionExpression

attribute), 306
preprocess() (pyomo.environ.AbstractModel method),

247
preprocess() (pyomo.environ.ConcreteModel method),

241
primal_exponential (class in py-

omo.core.kernel.conic), 399
primal_idx() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP

method), 541
primal_power (class in pyomo.core.kernel.conic), 399
primals_lb() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP

method), 541
primals_lb() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP

method), 536
primals_lb() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP

method), 531
primals_lb() (pyomo.contrib.pynumero.interfaces.nlp.NLP

method), 527
primals_lb() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP

method), 551
primals_lb() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP

method), 556
primals_lb() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP

method), 548
primals_names() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

primals_names() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

primals_names() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

primals_names() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

primals_names() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

primals_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

primals_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

primals_ub() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 541

primals_ub() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

primals_ub() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

primals_ub() (pyomo.contrib.pynumero.interfaces.nlp.NLP

646 Index

Pyomo Documentation, Release 6.5.0

method), 527
primals_ub() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP

method), 551
primals_ub() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP

method), 556
primals_ub() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP

method), 548
problem_format() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

problem_format() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

problem_format() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

ProblemWriter_gams (class in py-
omo.repn.plugins.gams_writer), 312

process() (pyomo.dataportal.TableData.TableData
method), 333

prod() (in module pyomo.core.util), 280
ProductExpression (class in pyomo.core.expr.current),

295
ProjectedNLP (class in py-

omo.contrib.pynumero.interfaces.nlp_projections),
549

propagate_solution() (py-
omo.core.plugins.transform.scaling.ScaleModel
method), 100

psi_mat (pyomo.contrib.pyros.uncertainty_sets.FactorModelSet
property), 573

push() (pyomo.common.tempfiles.TempfileManagerClass
method), 226

pyomo.common.dependencies
module, 212

pyomo.common.deprecation
module, 215

pyomo.common.fileutils
module, 218

pyomo.common.formatting
module, 224

pyomo.common.tempfiles
module, 225

pyomo.common.timing
module, 228

pyomo.contrib.appsi
module, 333

pyomo.contrib.appsi.solvers
module, 344

pyomo.contrib.community_detection.community_graph
module, 431

pyomo.contrib.community_detection.detection
module, 429

pyomo.contrib.iis.iis

module, 451
pyomo.contrib.incidence_analysis.connected

module, 464
pyomo.contrib.incidence_analysis.dulmage_mendelsohn

module, 465
pyomo.contrib.incidence_analysis.interface

module, 458
pyomo.contrib.incidence_analysis.matching

module, 463
pyomo.contrib.incidence_analysis.scc_solver

module, 467
pyomo.contrib.incidence_analysis.triangularize

module, 464
pyomo.contrib.parmest.graphics

module, 508
pyomo.contrib.parmest.parmest

module, 503
pyomo.contrib.parmest.scenariocreator

module, 507
pyomo.contrib.pynumero

module, 520
pyomo.contrib.pynumero.interfaces

module, 525
pyomo.contrib.pynumero.linalg

module, 557
pyomo.contrib.pynumero.sparse

module, 520
pyomo.core.base.units_container

module, 156
pyomo.core.kernel.base

module, 401
pyomo.core.kernel.heterogeneous_container

module, 403
pyomo.core.kernel.homogeneous_container

module, 403
pyomo.core.kernel.piecewise_library.util

module, 396
pyomo.core.kernel.suffix

module, 385
pyomo_model() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP

method), 556
pyomo_model() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP

method), 548
PyomoGreyBoxNLP (class in py-

omo.contrib.pynumero.interfaces.pyomo_nlp),
553

PyomoNLP (class in py-
omo.contrib.pynumero.interfaces.pyomo_nlp),
543

PyomoUnitsContainer (class in py-
omo.core.base.units_container), 157

PyROS (class in pyomo.contrib.pyros), 563

Index 647

Pyomo Documentation, Release 6.5.0

Q
quadratic (class in pyomo.core.kernel.conic), 398
quicksum() (in module pyomo.core.util), 280

R
RangeSet (class in pyomo.environ), 268
read() (pyomo.dataportal.TableData.TableData

method), 333
reclassify_component_type() (py-

omo.environ.AbstractModel method), 247
reclassify_component_type() (py-

omo.environ.ConcreteModel method), 241
reconstruct() (pyomo.environ.AbstractModel

method), 247
reconstruct() (pyomo.environ.Block method), 251
reconstruct() (pyomo.environ.ConcreteModel

method), 241
reconstruct() (pyomo.environ.Constraint method),

255
reconstruct() (pyomo.environ.ExternalFunction

method), 259
reconstruct() (pyomo.environ.Objective method), 262
reconstruct() (pyomo.environ.Param method), 267
reconstruct() (pyomo.environ.RangeSet method), 270
reconstruct() (pyomo.environ.Set method), 276
reconstruct() (pyomo.environ.Var method), 279
reduce_collocation_points() (py-

omo.dae.plugins.colloc.Collocation_Discretization_Transformation
method), 114

Reference() (in module pyomo.environ), 271
register_executable() (in module py-

omo.common.fileutils), 223
registered_executable() (in module py-

omo.common.fileutils), 223
rehash() (pyomo.common.fileutils.PathData method),

222
rehash() (pyomo.common.fileutils.PathManager

method), 223
relax_integrality (py-

omo.contrib.appsi.base.MIPSolverConfig
attribute), 341

relax_integrality (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 355

release() (pyomo.common.tempfiles.TempfileContext
method), 228

release_license() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

relocated_module() (in module py-
omo.common.deprecation), 216

relocated_module_attribute() (in module py-
omo.common.deprecation), 217

remove() (pyomo.core.kernel.list_container.ListContainer
method), 409

remove() (pyomo.network.port._PortData method), 138
remove_block() (pyomo.contrib.appsi.base.PersistentSolver

method), 338
remove_block() (pyomo.contrib.appsi.solvers.cbc.Cbc

method), 362
remove_block() (pyomo.contrib.appsi.solvers.cplex.Cplex

method), 358
remove_block() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 347
remove_block() (pyomo.contrib.appsi.solvers.highs.Highs

method), 365
remove_block() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 353
remove_block() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 315
remove_block() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 322
remove_block() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 328
remove_constraint() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 315

remove_constraint() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

remove_constraint() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

remove_constraints() (py-
omo.contrib.appsi.base.PersistentSolver
method), 338

remove_constraints() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
362

remove_constraints() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
358

remove_constraints() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

remove_constraints() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

remove_constraints() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
353

remove_nodes() (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface
method), 461

remove_params() (py-
omo.contrib.appsi.base.PersistentSolver
method), 338

remove_params() (py-

648 Index

Pyomo Documentation, Release 6.5.0

omo.contrib.appsi.solvers.cbc.Cbc method),
362

remove_params() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
358

remove_params() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

remove_params() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

remove_params() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
353

remove_sos_constraint() (py-
omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 316

remove_sos_constraint() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

remove_sos_constraint() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 328

remove_sos_constraints() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

remove_sos_constraints() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

remove_var() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 316

remove_var() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

remove_var() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

remove_variables() (py-
omo.contrib.appsi.base.PersistentSolver
method), 338

remove_variables() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
362

remove_variables() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
358

remove_variables() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 347

remove_variables() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

remove_variables() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
353

RemoveZeroTerms (class in py-

omo.contrib.preprocessing.plugins.remove_zero_terms),
487

RenamedClass (class in pyomo.common.deprecation),
217

report_solver_status() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

report_solver_status() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

report_solver_status() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

report_solver_status() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 527

report_solver_status() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

report_solver_status() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

report_solver_status() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

report_timing (pyomo.contrib.appsi.base.MIPSolverConfig
attribute), 342

report_timing (pyomo.contrib.appsi.base.SolverConfig
attribute), 339

report_timing (pyomo.contrib.appsi.solvers.cbc.CbcConfig
attribute), 359

report_timing (pyomo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 355

report_timing (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
attribute), 351

report_timing() (in module pyomo.common.timing),
228

reset() (pyomo.common.config.ConfigBase method),
206

reset() (pyomo.common.config.ConfigDict method),
207

reset() (pyomo.common.config.ConfigList method), 208
reset() (pyomo.common.timing.HierarchicalTimer

method), 233
reset() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
reset() (pyomo.contrib.appsi.base.SolverConfig

method), 340
reset() (pyomo.contrib.appsi.base.UpdateConfig

method), 344
reset() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 359
reset() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355

Index 649

Pyomo Documentation, Release 6.5.0

reset() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 348

reset() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

reset() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 316

reset() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 322

reset() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

Results (class in pyomo.contrib.appsi.base), 334
results (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

attribute), 316
results (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

attribute), 323
results (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

attribute), 329
results_format() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 316

results_format() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 323

results_format() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

reverse() (pyomo.core.kernel.list_container.ListContainer
method), 409

revert() (pyomo.contrib.preprocessing.plugins.deactivate_trivial_constraints.TrivialConstraintDeactivator
method), 485

revert() (pyomo.contrib.preprocessing.plugins.detect_fixed_vars.FixedVarDetector
method), 485

revert() (pyomo.contrib.preprocessing.plugins.equality_propagate.FixedVarPropagator
method), 486

revert() (pyomo.contrib.preprocessing.plugins.equality_propagate.VarBoundPropagator
method), 486

revert() (pyomo.contrib.preprocessing.plugins.strip_bounds.VariableBoundStripper
method), 487

rhs (pyomo.core.kernel.matrix_constraint.matrix_constraint
property), 381

rhs_vec (pyomo.contrib.pyros.uncertainty_sets.BudgetSet
property), 571

rhs_vec (pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet
property), 575

root_block() (pyomo.environ.AbstractModel method),
248

root_block() (pyomo.environ.Block method), 251
root_block() (pyomo.environ.ConcreteModel method),

241
root_block() (pyomo.environ.Constraint method), 255
root_block() (pyomo.environ.ExternalFunction

method), 259
root_block() (pyomo.environ.Objective method), 263
root_block() (pyomo.environ.Param method), 267

root_block() (pyomo.environ.RangeSet method), 270
root_block() (pyomo.environ.Set method), 276
root_block() (pyomo.environ.Var method), 279
rotated_quadratic (class in pyomo.core.kernel.conic),

398
row_block_map (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface

property), 462
RowPartition (class in py-

omo.contrib.incidence_analysis.dulmage_mendelsohn),
466

rule_for() (pyomo.network.port._PortData method),
138

run() (pyomo.network.SequentialDecomposition
method), 145

run_grid_search() (py-
omo.contrib.doe.doe.DesignOfExperiments
method), 436

S
scale (pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet

property), 578
ScaleModel (class in py-

omo.core.plugins.transform.scaling), 99
Scenario_generator (class in py-

omo.contrib.doe.scenario), 439
ScenarioCreator (class in py-

omo.contrib.parmest.scenariocreator), 507
ScenarioNumber() (py-

omo.contrib.parmest.scenariocreator.ScenarioSet
method), 507

scenarios (pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet
property), 579

ScenarioSet (class in py-
omo.contrib.parmest.scenariocreator), 507

ScenariosFromBoostrap() (py-
omo.contrib.parmest.scenariocreator.ScenarioCreator
method), 507

ScenariosFromExperiments() (py-
omo.contrib.parmest.scenariocreator.ScenarioCreator
method), 507

ScensIterator() (py-
omo.contrib.parmest.scenariocreator.ScenarioSet
method), 507

ScipyIterative (class in py-
omo.contrib.pynumero.linalg.scipy_interface),
560

ScipyLU (class in py-
omo.contrib.pynumero.linalg.scipy_interface),
560

select_tear_heuristic() (py-
omo.network.SequentialDecomposition
method), 145

select_tear_mip() (py-
omo.network.SequentialDecomposition

650 Index

Pyomo Documentation, Release 6.5.0

method), 146
select_tear_mip_model() (py-

omo.network.SequentialDecomposition
method), 146

sense (pyomo.core.kernel.objective.objective property),
383

sensitivity_calculation() (in module py-
omo.contrib.sensitivity_toolbox.sens), 591

sequential_files() (py-
omo.common.tempfiles.TempfileManagerClass
method), 226

SequentialDecomposition (class in pyomo.network),
143

Set (class in pyomo.environ), 272
set_all_values() (pyomo.core.kernel.suffix.suffix

method), 387
set_block() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector

method), 524
set_blocks() (pyomo.contrib.pynumero.sparse.block_vector.BlockVector

method), 525
set_callback() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 348
set_callback() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 316
set_callback() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 323
set_callback() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 329
set_changed() (pyomo.dae.ContinuousSet method),

105
set_cntl() (pyomo.contrib.pynumero.linalg.ma27_interface.MA27

method), 558
set_cntl() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57

method), 558
set_cntl() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver

method), 560
set_datatype() (pyomo.core.kernel.suffix.suffix

method), 387
set_default() (pyomo.environ.Param method), 267
set_default_value() (py-

omo.common.config.ConfigBase method),
206

set_default_value() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 342

set_default_value() (py-
omo.contrib.appsi.base.SolverConfig method),
340

set_default_value() (py-
omo.contrib.appsi.base.UpdateConfig method),
344

set_default_value() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 360

set_default_value() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

set_default_value() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

set_derivative_expression() (py-
omo.dae.DerivativeVar method), 107

set_direction() (pyomo.core.kernel.suffix.suffix
method), 387

set_domain() (pyomo.common.config.ConfigBase
method), 206

set_domain() (pyomo.contrib.appsi.base.MIPSolverConfig
method), 342

set_domain() (pyomo.contrib.appsi.base.SolverConfig
method), 340

set_domain() (pyomo.contrib.appsi.base.UpdateConfig
method), 344

set_domain() (pyomo.contrib.appsi.solvers.cbc.CbcConfig
method), 360

set_domain() (pyomo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

set_domain() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

set_duals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

set_duals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

set_duals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

set_duals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 527

set_duals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

set_duals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

set_duals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

set_duals_eq() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

set_duals_eq() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 536

set_duals_eq() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

set_duals_eq() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

set_duals_eq() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

set_duals_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

set_duals_ineq() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 537

Index 651

Pyomo Documentation, Release 6.5.0

set_duals_ineq() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

set_duals_ineq() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

set_equality_constraint_multipliers() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

set_guesses_for() (py-
omo.network.SequentialDecomposition
method), 146

set_gurobi_param() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 349

set_gurobi_param() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 324

set_icntl() (pyomo.contrib.pynumero.linalg.ma27_interface.MA27
method), 558

set_icntl() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57
method), 559

set_icntl() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver
method), 560

set_input_values() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

set_instance() (pyomo.contrib.appsi.base.PersistentSolver
method), 338

set_instance() (pyomo.contrib.appsi.solvers.cbc.Cbc
method), 362

set_instance() (pyomo.contrib.appsi.solvers.cplex.Cplex
method), 358

set_instance() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 349

set_instance() (pyomo.contrib.appsi.solvers.highs.Highs
method), 365

set_instance() (pyomo.contrib.appsi.solvers.ipopt.Ipopt
method), 353

set_instance() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 316

set_instance() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 324

set_instance() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

set_linear_constraint_attr() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 349

set_linear_constraint_attr() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 324

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 537

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.nlp.NLP
method), 528

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

set_obj_factor() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

set_objective() (py-
omo.contrib.appsi.base.PersistentSolver
method), 338

set_objective() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
362

set_objective() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
358

set_objective() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 349

set_objective() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

set_objective() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
354

set_objective() (py-
omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 316

set_objective() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 324

set_objective() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

set_output_constraint_multipliers() (py-
omo.contrib.pynumero.interfaces.external_grey_box.ExternalGreyBoxModel
method), 553

set_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

set_primals() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AslNLP
method), 537

set_primals() (pyomo.contrib.pynumero.interfaces.nlp.ExtendedNLP
method), 532

652 Index

Pyomo Documentation, Release 6.5.0

set_primals() (pyomo.contrib.pynumero.interfaces.nlp.NLP
method), 528

set_primals() (pyomo.contrib.pynumero.interfaces.nlp_projections.ProjectedNLP
method), 551

set_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP
method), 556

set_primals() (pyomo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

set_problem_format() (py-
omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 317

set_problem_format() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 324

set_problem_format() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

set_results_format() (py-
omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 317

set_results_format() (py-
omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 325

set_results_format() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 329

set_split_fraction() (py-
omo.network.port._PortData method), 138

set_suffix_value() (pyomo.environ.AbstractModel
method), 248

set_suffix_value() (pyomo.environ.Block method),
251

set_suffix_value() (pyomo.environ.ConcreteModel
method), 241

set_suffix_value() (pyomo.environ.Constraint
method), 255

set_suffix_value() (py-
omo.environ.ExternalFunction method),
259

set_suffix_value() (pyomo.environ.Objective
method), 263

set_suffix_value() (pyomo.environ.Param method),
267

set_suffix_value() (pyomo.environ.RangeSet
method), 270

set_suffix_value() (pyomo.environ.Set method), 276
set_suffix_value() (pyomo.environ.Var method), 279
set_tear_set() (pyomo.network.SequentialDecomposition

method), 146
set_value() (pyomo.common.config.ConfigDict

method), 208
set_value() (pyomo.common.config.ConfigList

method), 208
set_value() (pyomo.common.config.ConfigValue

method), 209
set_value() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
set_value() (pyomo.contrib.appsi.base.SolverConfig

method), 340
set_value() (pyomo.contrib.appsi.base.UpdateConfig

method), 344
set_value() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 360
set_value() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
set_value() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
set_value() (pyomo.environ.AbstractModel method),

248
set_value() (pyomo.environ.Block method), 251
set_value() (pyomo.environ.ConcreteModel method),

241
set_value() (pyomo.environ.Constraint method), 255
set_value() (pyomo.environ.Objective method), 263
set_value() (pyomo.environ.Param method), 267
set_value() (pyomo.environ.Set method), 276
set_value() (pyomo.environ.Var method), 279
set_value() (pyomo.network.arc._ArcData method),

140
set_values() (pyomo.environ.Var method), 280
set_var_attr() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 349
set_var_attr() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 325
set_xpress_control() (py-

omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 330

setdefault() (pyomo.common.config.ConfigDict
method), 208

setdefault() (pyomo.contrib.appsi.base.MIPSolverConfig
method), 342

setdefault() (pyomo.contrib.appsi.base.SolverConfig
method), 340

setdefault() (pyomo.contrib.appsi.base.UpdateConfig
method), 344

setdefault() (pyomo.contrib.appsi.solvers.cbc.CbcConfig
method), 360

setdefault() (pyomo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

setdefault() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

setdefault() (pyomo.core.kernel.dict_container.DictContainer
method), 412

shape_matrix (pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet
property), 578

SimpleExpressionVisitor (class in py-
omo.core.expr.current), 308

simulate() (pyomo.dae.Simulator method), 117

Index 653

Pyomo Documentation, Release 6.5.0

Simulator (class in pyomo.dae), 117
singular (pyomo.contrib.pynumero.linalg.base.LinearSolverStatus

attribute), 557
slack (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381
slice_component_along_sets() (in module py-

omo.dae.flatten), 161
sol_filename() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 354
soln_filename() (py-

omo.contrib.appsi.solvers.cbc.Cbc method),
362

solve() (pyomo.contrib.appsi.base.PersistentSolver
method), 338

solve() (pyomo.contrib.appsi.base.Solver method), 336
solve() (pyomo.contrib.appsi.solvers.cbc.Cbc method),

362
solve() (pyomo.contrib.appsi.solvers.cplex.Cplex

method), 358
solve() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 349
solve() (pyomo.contrib.appsi.solvers.highs.Highs

method), 365
solve() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 354
solve() (pyomo.contrib.gdpopt.GDPopt.GDPoptSolver

method), 450
solve() (pyomo.contrib.mindtpy.MindtPy.MindtPySolver

method), 473
solve() (pyomo.contrib.pynumero.linalg.base.DirectLinearSolverInterface

method), 557
solve() (pyomo.contrib.pynumero.linalg.base.LinearSolverInterface

method), 557
solve() (pyomo.contrib.pynumero.linalg.ma27_interface.MA27

method), 558
solve() (pyomo.contrib.pynumero.linalg.ma57_interface.MA57

method), 559
solve() (pyomo.contrib.pynumero.linalg.mumps_interface.MumpsCentralizedAssembledLinearSolver

method), 560
solve() (pyomo.contrib.pynumero.linalg.scipy_interface.ScipyIterative

method), 560
solve() (pyomo.contrib.pynumero.linalg.scipy_interface.ScipyLU

method), 560
solve() (pyomo.contrib.pyros.PyROS method), 563
solve() (pyomo.contrib.trustregion.TRF.TrustRegionSolver

method), 593
solve() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 317
solve() (pyomo.solvers.plugins.solvers.GAMS.GAMSDirect

method), 312
solve() (pyomo.solvers.plugins.solvers.GAMS.GAMSShell

method), 311
solve() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 325

solve() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 330

solve_strongly_connected_components()
(in module py-
omo.contrib.incidence_analysis.scc_solver),
467

Solver (class in pyomo.contrib.appsi.base), 335
Solver.Availability (class in py-

omo.contrib.appsi.base), 335
SolverConfig (class in pyomo.contrib.appsi.base), 339
sos (class in pyomo.core.kernel.sos), 384
sos1() (in module pyomo.core.kernel.sos), 384
sos2() (in module pyomo.core.kernel.sos), 384
sos_dict (class in pyomo.core.kernel.sos), 385
sos_list (class in pyomo.core.kernel.sos), 385
sos_tuple (class in pyomo.core.kernel.sos), 384
source (pyomo.network.arc._ArcData attribute), 139
sources() (pyomo.network.port._PortData method),

138
sparse (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381
sparse_items() (pyomo.environ.Param method), 267
sparse_iteritems() (pyomo.environ.Param method),

267
sparse_iterkeys() (pyomo.environ.Param method),

267
sparse_itervalues() (pyomo.environ.Param

method), 267
sparse_keys() (pyomo.environ.Param method), 267
sparse_values() (pyomo.environ.Param method), 267
square (pyomo.contrib.incidence_analysis.dulmage_mendelsohn.ColPartition

property), 465
square (pyomo.contrib.incidence_analysis.dulmage_mendelsohn.RowPartition

property), 466
stale (pyomo.core.kernel.variable.variable property),

377
start() (pyomo.common.timing.HierarchicalTimer

method), 233
stochastic_program() (py-

omo.contrib.doe.doe.DesignOfExperiments
method), 437

stop() (pyomo.common.timing.HierarchicalTimer
method), 233

storage_key (pyomo.core.kernel.base.ICategorizedObject
property), 402

storage_key (pyomo.core.kernel.dict_container.DictContainer
property), 412

storage_key (pyomo.core.kernel.list_container.ListContainer
property), 409

storage_key (pyomo.core.kernel.tuple_container.TupleContainer
property), 406

store() (pyomo.dataportal.DataPortal.DataPortal
method), 332

store_values() (pyomo.environ.Param method), 267

654 Index

Pyomo Documentation, Release 6.5.0

stream_solver (pyomo.contrib.appsi.base.MIPSolverConfig
attribute), 342

stream_solver (pyomo.contrib.appsi.base.SolverConfig
attribute), 339

stream_solver (pyomo.contrib.appsi.solvers.cbc.CbcConfig
attribute), 360

stream_solver (pyomo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 355

stream_solver (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
attribute), 351

StreamIndenter (class in pyomo.common.formatting),
224

strict (pyomo.core.expr.current.InequalityExpression
property), 299

successful (pyomo.contrib.pynumero.linalg.base.LinearSolverStatus
attribute), 557

suffix (class in pyomo.core.kernel.suffix), 386
suffix_dict (class in pyomo.core.kernel.suffix), 387
suffix_generator() (in module py-

omo.core.kernel.suffix), 387
sum_product() (in module pyomo.core.util), 281
SumExpression (class in pyomo.core.expr.current), 301
summation (in module pyomo.core.util), 281
symbol_map (pyomo.contrib.appsi.base.PersistentSolver

property), 339
symbol_map (pyomo.contrib.appsi.base.Solver prop-

erty), 336
symbol_map (pyomo.contrib.appsi.solvers.cbc.Cbc prop-

erty), 362
symbol_map (pyomo.contrib.appsi.solvers.cplex.Cplex

property), 358
symbol_map (pyomo.contrib.appsi.solvers.gurobi.Gurobi

property), 349
symbol_map (pyomo.contrib.appsi.solvers.highs.Highs

property), 365
symbol_map (pyomo.contrib.appsi.solvers.ipopt.Ipopt

property), 354
symbolic_solver_labels (py-

omo.contrib.appsi.base.MIPSolverConfig
attribute), 342

symbolic_solver_labels (py-
omo.contrib.appsi.base.SolverConfig attribute),
339

symbolic_solver_labels (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
attribute), 360

symbolic_solver_labels (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 355

symbolic_solver_labels (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
attribute), 351

SymbolMap (class in pyomo.core.expr.symbol_map), 284

T
TableData (class in pyomo.dataportal.TableData), 333
tabular_writer() (in module py-

omo.common.formatting), 224
tear_set_arcs() (py-

omo.network.SequentialDecomposition
method), 147

TempfileContext (class in pyomo.common.tempfiles),
226

TempfileManagerClass (class in py-
omo.common.tempfiles), 225

termination_condition (py-
omo.contrib.appsi.base.Results attribute),
334

TerminationCondition (class in py-
omo.contrib.appsi.base), 334

terms (pyomo.core.kernel.constraint.linear_constraint
property), 380

theta_est() (pyomo.contrib.parmest.parmest.Estimator
method), 505

theta_est_bootstrap() (py-
omo.contrib.parmest.parmest.Estimator
method), 506

theta_est_leaveNout() (py-
omo.contrib.parmest.parmest.Estimator
method), 506

this_file() (in module pyomo.common.fileutils), 218
this_file_dir() (in module pyomo.common.fileutils),

218
tic() (in module pyomo.common.timing), 230
tic() (pyomo.common.timing.TicTocTimer method), 229
TicTocTimer (class in pyomo.common.timing), 228
TightenContraintFromVars (class in py-

omo.contrib.preprocessing.plugins.constraint_tightener),
484

time_limit (pyomo.contrib.appsi.base.MIPSolverConfig
attribute), 342

time_limit (pyomo.contrib.appsi.base.SolverConfig at-
tribute), 339

time_limit (pyomo.contrib.appsi.solvers.cbc.CbcConfig
attribute), 360

time_limit (pyomo.contrib.appsi.solvers.cplex.CplexConfig
attribute), 355

time_limit (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
attribute), 351

to_dense_data() (pyomo.environ.AbstractModel
method), 248

to_dense_data() (pyomo.environ.Block method), 251
to_dense_data() (pyomo.environ.ConcreteModel

method), 241
to_dense_data() (pyomo.environ.Constraint method),

255
to_dense_data() (pyomo.environ.Objective method),

263

Index 655

Pyomo Documentation, Release 6.5.0

to_dense_data() (pyomo.environ.Param method), 267
to_dense_data() (pyomo.environ.Set method), 276
to_dense_data() (pyomo.environ.Var method), 280
to_string() (pyomo.core.expr.numvalue.NumericValue

method), 290
toc() (in module pyomo.common.timing), 230
toc() (pyomo.common.timing.TicTocTimer method), 229
tostr() (in module pyomo.common.formatting), 224
transfer_attributes_from() (py-

omo.environ.AbstractModel method), 248
transfer_attributes_from() (py-

omo.environ.ConcreteModel method), 241
TransformedPiecewiseLinearFunction (class in py-

omo.core.kernel.piecewise_library.transforms),
390

TransformedPiecewiseLinearFunctionND
(class in py-
omo.core.kernel.piecewise_library.transforms_nd),
395

tree_order() (pyomo.network.SequentialDecomposition
method), 147

triangulation (pyomo.core.kernel.piecewise_library.transforms_nd.PiecewiseLinearFunctionND
property), 395

triangulation (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND
property), 396

TrivialConstraintDeactivator (class in py-
omo.contrib.preprocessing.plugins.deactivate_trivial_constraints),
485

TrustRegionSolver (class in py-
omo.contrib.trustregion.TRF), 593

TupleContainer (class in py-
omo.core.kernel.tuple_container), 404

type (pyomo.contrib.pyros.uncertainty_sets.AxisAlignedEllipsoidalSet
property), 576

type (pyomo.contrib.pyros.uncertainty_sets.BoxSet prop-
erty), 568

type (pyomo.contrib.pyros.uncertainty_sets.BudgetSet
property), 571

type (pyomo.contrib.pyros.uncertainty_sets.CardinalitySet
property), 569

type (pyomo.contrib.pyros.uncertainty_sets.DiscreteScenarioSet
property), 579

type (pyomo.contrib.pyros.uncertainty_sets.EllipsoidalSet
property), 578

type (pyomo.contrib.pyros.uncertainty_sets.FactorModelSet
property), 573

type (pyomo.contrib.pyros.uncertainty_sets.IntersectionSet
property), 581

type (pyomo.contrib.pyros.uncertainty_sets.PolyhedralSet
property), 575

type() (pyomo.environ.AbstractModel method), 248
type() (pyomo.environ.Block method), 251
type() (pyomo.environ.ConcreteModel method), 241
type() (pyomo.environ.Constraint method), 255

type() (pyomo.environ.ExternalFunction method), 259
type() (pyomo.environ.Objective method), 263
type() (pyomo.environ.Param method), 267
type() (pyomo.environ.RangeSet method), 270
type() (pyomo.environ.Set method), 276
type() (pyomo.environ.Var method), 280

U
ub (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381
UnaryFunctionExpression (class in py-

omo.core.expr.current), 306
unbounded (pyomo.contrib.appsi.base.TerminationCondition

attribute), 334
UncertaintySet (class in py-

omo.contrib.pyros.uncertainty_sets), 578
underconstrained (py-

omo.contrib.incidence_analysis.dulmage_mendelsohn.ColPartition
property), 465

underconstrained (py-
omo.contrib.incidence_analysis.dulmage_mendelsohn.RowPartition
property), 466

unfix() (pyomo.network.port._PortData method), 138
UnitsError (class in pyomo.core.base.units_container),

159
unknown (pyomo.contrib.appsi.base.TerminationCondition

attribute), 334
unmatched (pyomo.contrib.incidence_analysis.dulmage_mendelsohn.ColPartition

property), 465
unmatched (pyomo.contrib.incidence_analysis.dulmage_mendelsohn.RowPartition

property), 466
unregister_executable() (in module py-

omo.common.fileutils), 223
unused_user_values() (py-

omo.common.config.ConfigBase method),
207

unused_user_values() (py-
omo.contrib.appsi.base.MIPSolverConfig
method), 342

unused_user_values() (py-
omo.contrib.appsi.base.SolverConfig method),
340

unused_user_values() (py-
omo.contrib.appsi.base.UpdateConfig method),
344

unused_user_values() (py-
omo.contrib.appsi.solvers.cbc.CbcConfig
method), 360

unused_user_values() (py-
omo.contrib.appsi.solvers.cplex.CplexConfig
method), 355

unused_user_values() (py-
omo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

656 Index

Pyomo Documentation, Release 6.5.0

update() (pyomo.contrib.appsi.solvers.gurobi.Gurobi
method), 350

update() (pyomo.contrib.appsi.solvers.highs.Highs
method), 365

update() (pyomo.core.kernel.dict_container.DictContainer
method), 412

update_boolean_vars_from_binary()
(in module py-
omo.core.plugins.transform.logical_to_linear),
133

update_config (pyomo.contrib.appsi.base.PersistentSolver
property), 339

update_config (pyomo.contrib.appsi.solvers.cbc.Cbc
property), 362

update_config (pyomo.contrib.appsi.solvers.cplex.Cplex
property), 358

update_config (pyomo.contrib.appsi.solvers.gurobi.Gurobi
property), 350

update_config (pyomo.contrib.appsi.solvers.highs.Highs
property), 365

update_config (pyomo.contrib.appsi.solvers.ipopt.Ipopt
property), 354

update_constraints (py-
omo.contrib.appsi.base.UpdateConfig at-
tribute), 342

update_named_expressions (py-
omo.contrib.appsi.base.UpdateConfig at-
tribute), 343

update_params (pyomo.contrib.appsi.base.UpdateConfig
attribute), 343

update_params() (py-
omo.contrib.appsi.base.PersistentSolver
method), 339

update_params() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
362

update_params() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
358

update_params() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 350

update_params() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

update_params() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
354

update_var() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent
method), 317

update_var() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 325

update_var() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 330

update_variables() (py-
omo.contrib.appsi.base.PersistentSolver
method), 339

update_variables() (py-
omo.contrib.appsi.solvers.cbc.Cbc method),
362

update_variables() (py-
omo.contrib.appsi.solvers.cplex.Cplex method),
358

update_variables() (py-
omo.contrib.appsi.solvers.gurobi.Gurobi
method), 350

update_variables() (py-
omo.contrib.appsi.solvers.highs.Highs
method), 365

update_variables() (py-
omo.contrib.appsi.solvers.ipopt.Ipopt method),
354

update_variables() (py-
omo.contrib.preprocessing.plugins.var_aggregator.VariableAggregator
method), 483

update_vars (pyomo.contrib.appsi.base.UpdateConfig
attribute), 343

UpdateConfig (class in pyomo.contrib.appsi.base), 342
upper (pyomo.core.kernel.variable.variable property),

377
user_values() (pyomo.common.config.ConfigBase

method), 207
user_values() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
user_values() (pyomo.contrib.appsi.base.SolverConfig

method), 341
user_values() (pyomo.contrib.appsi.base.UpdateConfig

method), 344
user_values() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 360
user_values() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355
user_values() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig

method), 351
uslack (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381

V
valid_model_component() (py-

omo.environ.AbstractModel method), 248
valid_model_component() (pyomo.environ.Block

method), 251
valid_model_component() (py-

omo.environ.ConcreteModel method), 241
valid_model_component() (py-

omo.environ.Constraint method), 255
valid_model_component() (py-

omo.environ.ExternalFunction method),

Index 657

Pyomo Documentation, Release 6.5.0

259
valid_model_component() (pyomo.environ.Objective

method), 263
valid_model_component() (pyomo.environ.Param

method), 268
valid_model_component() (pyomo.environ.RangeSet

method), 271
valid_model_component() (pyomo.environ.Set

method), 276
valid_model_component() (pyomo.environ.Var

method), 280
valid_problem_types() (py-

omo.environ.AbstractModel method), 248
valid_problem_types() (py-

omo.environ.ConcreteModel method), 241
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_cc

method), 392
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_convex

method), 392
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_dcc

method), 392
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_dlog

method), 393
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_inc

method), 393
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_log

method), 393
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_mc

method), 393
validate() (pyomo.core.kernel.piecewise_library.transforms.piecewise_sos2

method), 392
validate() (pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction

method), 390
validate() (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction

method), 391
value (pyomo.core.kernel.parameter.parameter prop-

erty), 382
value (pyomo.core.kernel.variable.variable property),

377
value() (pyomo.common.config.ConfigDict method),

208
value() (pyomo.common.config.ConfigList method), 208
value() (pyomo.common.config.ConfigValue method),

209
value() (pyomo.contrib.appsi.base.MIPSolverConfig

method), 342
value() (pyomo.contrib.appsi.base.SolverConfig

method), 341
value() (pyomo.contrib.appsi.base.UpdateConfig

method), 344
value() (pyomo.contrib.appsi.solvers.cbc.CbcConfig

method), 360
value() (pyomo.contrib.appsi.solvers.cplex.CplexConfig

method), 355

value() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

values (pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction
property), 390

values (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
property), 392

values (pyomo.core.kernel.piecewise_library.transforms_nd.PiecewiseLinearFunctionND
property), 395

values (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND
property), 396

values() (pyomo.common.config.ConfigDict method),
208

values() (pyomo.contrib.appsi.base.MIPSolverConfig
method), 342

values() (pyomo.contrib.appsi.base.SolverConfig
method), 341

values() (pyomo.contrib.appsi.base.UpdateConfig
method), 344

values() (pyomo.contrib.appsi.solvers.cbc.CbcConfig
method), 360

values() (pyomo.contrib.appsi.solvers.cplex.CplexConfig
method), 356

values() (pyomo.contrib.appsi.solvers.ipopt.IpoptConfig
method), 351

values() (pyomo.core.kernel.dict_container.DictContainer
method), 412

values() (pyomo.dataportal.DataPortal.DataPortal
method), 333

values() (pyomo.environ.AbstractModel method), 248
values() (pyomo.environ.Block method), 252
values() (pyomo.environ.ConcreteModel method), 242
values() (pyomo.environ.Constraint method), 255
values() (pyomo.environ.Objective method), 263
values() (pyomo.environ.Param method), 268
values() (pyomo.environ.Set method), 276
values() (pyomo.environ.Var method), 280
Var (class in pyomo.environ), 276
var_index_map (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface

property), 462
VarBoundPropagator (class in py-

omo.contrib.preprocessing.plugins.equality_propagate),
486

variable (class in pyomo.core.kernel.variable), 376
variable_dict (class in pyomo.core.kernel.variable),

377
variable_idx() (pyomo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP

method), 542
variable_list (class in pyomo.core.kernel.variable),

377
variable_names() (py-

omo.contrib.pynumero.interfaces.ampl_nlp.AmplNLP
method), 542

variable_names() (py-
omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoGreyBoxNLP

658 Index

Pyomo Documentation, Release 6.5.0

method), 556
variable_names() (py-

omo.contrib.pynumero.interfaces.pyomo_nlp.PyomoNLP
method), 548

variable_tuple (class in pyomo.core.kernel.variable),
377

VariableAggregator (class in py-
omo.contrib.preprocessing.plugins.var_aggregator),
482

VariableBoundStripper (class in py-
omo.contrib.preprocessing.plugins.strip_bounds),
487

variables (pyomo.contrib.incidence_analysis.interface.IncidenceGraphInterface
property), 462

variables (pyomo.core.kernel.sos.sos property), 384
vars (pyomo.network.port._PortData attribute), 137
version() (pyomo.contrib.appsi.base.PersistentSolver

method), 339
version() (pyomo.contrib.appsi.base.Solver method),

336
version() (pyomo.contrib.appsi.solvers.cbc.Cbc

method), 362
version() (pyomo.contrib.appsi.solvers.cplex.Cplex

method), 358
version() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 350
version() (pyomo.contrib.appsi.solvers.highs.Highs

method), 365
version() (pyomo.contrib.appsi.solvers.ipopt.Ipopt

method), 354
version() (pyomo.contrib.gdpopt.GDPopt.GDPoptSolver

method), 450
version() (pyomo.contrib.mindtpy.MindtPy.MindtPySolver

method), 476
version() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 317
version() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 325
version() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 330
visit() (pyomo.core.expr.current.ExpressionValueVisitor

method), 310
visit() (pyomo.core.expr.current.SimpleExpressionVisitor

method), 309
visiting_potential_leaf() (py-

omo.core.expr.current.ExpressionValueVisitor
method), 310

visualize_model_graph() (py-
omo.contrib.community_detection.detection.CommunityMap
method), 429

W
warm_start_capable() (py-

omo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 317
warm_start_capable() (py-

omo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent
method), 325

warm_start_capable() (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
method), 330

warning (pyomo.contrib.pynumero.linalg.base.LinearSolverStatus
attribute), 557

weights (pyomo.core.kernel.sos.sos property), 384
write() (pyomo.contrib.appsi.solvers.gurobi.Gurobi

method), 350
write() (pyomo.core.kernel.block.block method), 375
write() (pyomo.dataportal.TableData.TableData

method), 333
write() (pyomo.environ.AbstractModel method), 248
write() (pyomo.environ.ConcreteModel method), 242
write() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent

method), 317
write() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent

method), 325
write() (pyomo.solvers.plugins.solvers.xpress_persistent.XpressPersistent

method), 330
write_csv() (pyomo.contrib.parmest.scenariocreator.ScenarioSet

method), 508
write_iis() (in module pyomo.contrib.iis), 451
writer (pyomo.contrib.appsi.solvers.cbc.Cbc property),

363
writer (pyomo.contrib.appsi.solvers.cplex.Cplex prop-

erty), 358
writer (pyomo.contrib.appsi.solvers.ipopt.Ipopt prop-

erty), 354

X
x (pyomo.core.kernel.matrix_constraint.matrix_constraint

property), 381
xbfs() (pyomo.core.expr.current.SimpleExpressionVisitor

method), 309
xbfs_yield_leaves() (py-

omo.core.expr.current.SimpleExpressionVisitor
method), 309

XpressException (py-
omo.solvers.plugins.solvers.xpress_persistent.XpressPersistent
attribute), 326

XpressPersistent (class in py-
omo.solvers.plugins.solvers.xpress_persistent),
326

Z
ZeroSumPropagator (class in py-

omo.contrib.preprocessing.plugins.zero_sum_propagator),
488

Index 659

	Installation
	Using CONDA
	Using PIP
	Conditional Dependencies

	Citing Pyomo
	Pyomo
	PySP

	Pyomo Overview
	Mathematical Modeling
	Variables
	Parameters
	Relations
	Goals

	Overview of Modeling Components and Processes
	Set
	Param
	Var
	Objective
	Constraint

	Abstract Versus Concrete Models
	Simple Models
	A Simple Concrete Pyomo Model
	A Simple Abstract Pyomo Model
	Symbolic Index Sets
	Solving the Simple Examples

	Pyomo Modeling Components
	Sets
	Declaration
	Operations
	Predefined Virtual Sets
	Sparse Index Sets
	Sparse Index Sets Example

	Parameters
	Variables
	Objectives
	Constraints
	Expressions
	Rules to Generate Expressions
	Piecewise Linear Expressions
	Keywords:

	Expression Objects

	Suffixes
	Suffix Notation and the Pyomo NL File Interface
	Declaration
	Operations
	Importing Suffix Data
	Exporting Suffix Data
	Using Suffixes With an AbstractModel

	Solving Pyomo Models
	Solving ConcreteModels
	Solving AbstractModels
	pyomo solve Command
	Supported Solvers

	Working with Pyomo Models
	Repeated Solves
	Changing the Model or Data and Re-solving
	Fixing Variables and Re-solving
	Extending the Objective Function
	Activating and Deactivating Objectives
	Activating and Deactivating Constraints
	Accessing Variable Values
	Primal Variable Values
	One Variable from a Python Script
	All Variables from a Python Script

	Accessing Parameter Values
	Accessing Duals
	Access Duals in a Python Script

	Accessing Slacks
	Accessing Solver Status
	Display of Solver Output
	Sending Options to the Solver
	Specifying the Path to a Solver
	Warm Starts
	Solving Multiple Instances in Parallel
	Changing the temporary directory

	Working with Abstract Models
	Instantiating Models
	Managing Data in AbstractModels
	Using Standard Data Types
	Defining Constant Values
	Initializing Set and Parameter Components
	Set Components
	Parameter Components

	Using a Python Dictionary
	Data Command Files
	Model Data
	The set Command
	Simple Sets
	Sets of Tuple Data
	Set Arrays

	The param Command
	One-dimensional Parameter Data
	Multi-Dimensional Parameter Data

	The table Command
	The load Command
	Simple Load Examples
	Load Syntax Options
	Interpreting Tabular Data
	Loading from Spreadsheets and Relational Databases

	The include Command
	The namespace Keyword

	Data Portals
	Loading Structured Data
	Loading Tabular Data
	Tabular Data
	Loading Set Data
	Loading a Simple Set
	Loading a Set of Tuples
	Loading a Set Array

	Loading Parameter Data
	Loading a Simple Parameter
	Loading an Indexed Parameter
	Loading Set and Parameter Values
	Loading a Parameter with Missing Values
	Loading Multiple Parameters
	Selecting Parameter Columns
	Loading a Parameter Array

	Loading from Spreadsheets and Databases

	Data Namespaces

	Storing Data from Pyomo Models
	Storing Model Data in Excel

	The pyomo Command
	Passing Options to a Solver
	Troubleshooting
	Direct Interfaces to Solvers

	BuildAction and BuildCheck

	Model Transformations
	Model Scaling Transformation
	Setting Scaling Factors
	Applying Model Scaling
	In-Place Scaling
	Creating a New Scaled Model

	Modeling Extensions
	Bilevel Programming
	Dynamic Optimization with pyomo.DAE
	Modeling Components
	ContinuousSet
	DerivativeVar

	Declaring Differential Equations
	Declaring Integrals
	Discretization Transformations
	Finite Difference Transformation
	Collocation Transformation
	Restricting Optimal Control Profiles

	Applying Multiple Discretization Transformations
	Custom Discretization Schemes

	Dynamic Model Simulation
	Supported Simulator Packages
	Using the Simulator
	Specifying Time-Varing Inputs

	Dynamic Model Initialization
	From Simulation

	Generalized Disjunctive Programming
	Key Concepts
	Disjuncts
	Disjunctions
	Boolean Variables
	Logical Propositions

	Modeling in Pyomo.GDP
	Disjunctions
	Explicit syntax: more descriptive
	Compact syntax: more concise

	Logical Propositions
	Supported Logical Operators
	Indexed logical constraints
	Integration with Disjunctions

	Advanced LogicalConstraint Examples
	Composition of standard operators
	Expressions within CP-type operators
	Nested CP-style operators

	Additional Examples

	Solving Logic-based Models with Pyomo.GDP
	Flexible Solution Suite
	Reformulations
	Logical constraints
	Conjunctive Normal Form
	Factorable Programming

	Reformulation to MI(N)LP
	Big-M (BM) Reformulation
	Multiple Big-M (MBM) Reformulation
	Hull Reformulation (HR)
	Hybrid BM/HR Reformulation

	Direct GDP solvers
	References

	Literature References

	MPEC
	Stochastic Programming in Pyomo
	Pyomo Network
	Modeling Components
	Port
	Arc

	Arc Expansion Transformation
	Sequential Decomposition
	Creating a Graph
	Computation Order
	Tear Selection
	Running the Sequential Decomposition Procedure
	Guesses and Fixing Variables
	Tear Convergence

	Pyomo Tutorial Examples
	Debugging Pyomo Models
	Interrogating Pyomo Models
	FAQ
	Getting Help

	Advanced Topics
	Persistent Solvers
	Using Persistent Solvers
	Working with Indexed Variables and Constraints
	Persistent Solver Performance

	Units Handling in Pyomo
	LinearExpression
	“Flattening” a Pyomo model
	Motivation
	API reference
	What does it mean to flatten a model?
	Data structures

	Common Warnings/Errors
	Warnings
	W1001: Setting Var value not in domain
	W1002: Setting Var value outside the bounds
	W1003: Unexpected RecursionError walking an expression tree

	Errors
	E2001: Variable domains must be an instance of a Pyomo Set

	Developer Reference
	The Pyomo Configuration System
	Domain validation
	Configuring class hierarchies
	Interacting with argparse
	Accessing user-specified values
	Generating output & documentation

	Deprecation and Removal of Functionality
	Deprecation
	Removal

	Pyomo Expressions
	Building Expressions Faster
	Expression Generation
	Linear, Quadratic and General Nonlinear Expressions
	Pyomo Utility Functions
	prod
	quicksum
	sum_product

	Design Overview
	Historical Comparison
	Expression Entanglement and Mutability
	Entangled Sub-Expressions
	Mutable Expression Components

	Design Details
	Expression Classes
	Special Expression Classes
	Named Expressions
	Linear Expressions
	Sum Expressions
	Mutable Expressions

	Expression Semantics
	Context Managers

	Managing Expressions
	Creating a String Representation of an Expression
	Algebraic vs. Nested Functional Form
	Labeler and Symbol Map
	Standardized String Representations
	Other Ways to Generate String Representations

	Cloning Expressions
	Evaluating Expressions
	Identifying Components and Variables
	Walking an Expression Tree with a Visitor Class
	SimpleExpressionVisitor Example
	ExpressionValueVisitor Example
	ExpressionReplacementVisitor Example

	Library Reference
	Common Utilities
	pyomo.common.config
	Core classes
	Domain validators

	pyomo.common.dependencies
	pyomo.common.deprecation
	pyomo.common.fileutils
	pyomo.common.formatting
	pyomo.common.tempfiles
	pyomo.common.timing

	AML Library Reference
	AML Component Documentation

	Expression Reference
	Utilities to Build Expressions
	Utilities to Manage and Analyze Expressions
	Functions
	Classes

	Context Managers
	Core Classes
	Sets with Expression Types
	NumericValue and NumericExpression
	Other Public Classes

	Visitor Classes

	Solver Interfaces
	GAMS
	GAMSShell Solver
	GAMSDirect Solver
	GAMS Writer

	CPLEXPersistent
	GurobiPersistent
	Methods

	XpressPersistent

	Model Data Management
	APPSI
	APPSI Base Classes
	Solvers
	Gurobi
	Ipopt
	Cplex
	Cbc
	HiGHS

	Installation

	The Kernel Library
	Syntax Comparison Table (pyomo.kernel vs pyomo.environ)
	Notable Improvements
	More Control of Model Structure
	Sub-Classing
	Reduced Memory Usage
	Direct Support For Conic Constraints with Mosek

	Reference
	Modeling Components:
	Blocks
	Summary
	Member Documentation

	Variables
	Summary
	Member Documentation

	Constraints
	Summary
	Member Documentation

	Parameters
	Summary
	Member Documentation

	Objectives
	Summary
	Member Documentation

	Expressions
	Summary
	Member Documentation

	Special Ordered Sets
	Summary
	Member Documentation

	Suffixes
	Piecewise Function Library
	Single-variate Piecewise Functions
	Summary
	Member Documentation
	Multi-variate Piecewise Functions
	Summary
	Member Documentation
	Utilities for Piecewise Functions

	Conic Constraints
	Summary
	Member Documentation

	Base API:
	Base Object Storage Interface
	Homogeneous Object Containers
	Heterogeneous Object Containers

	Containers:
	Tuple-like Object Storage
	List-like Object Storage
	Dict-like Object Storage

	Contributing to Pyomo
	Contribution Requirements
	Coding Standards
	Testing
	Python Version Support

	Working on Forks and Branches
	Working with my fork and the GitHub Online UI
	Using GitHub UI to merge Pyomo main into a branch on your fork

	Working with remotes and the git command-line
	Setting up your development environment

	Review Process
	Where to put contributed code
	pyomo.contrib
	Including External Packages
	Contrib Packages within Pyomo

	Third-Party Contributions
	Community Detection for Pyomo models
	Description of Package and detect_communities function
	External Packages
	Usage Examples
	Functions in this Package

	Pyomo.DoE
	Methodology Overview
	Pyomo.DoE Required Inputs
	Pyomo.DoE Solver Interface
	Pyomo.DoE Usage Example
	Step 0: Import Pyomo and the Pyomo.DoE module
	Step 1: Define the Pyomo process model
	Step 2: Define the inputs for Pyomo.DoE
	Step 3: Compute the FIM of a square MBDoE problem
	Step 4: Exploratory analysis (Enumeration)
	Step 5: Gradient-based optimization

	GDPopt logic-based solver
	Logic-based Outer Approximation (LOA)
	Global Logic-based Outer Approximation (GLOA)
	Relaxation with Integer Cuts (RIC)
	Logic-based Branch-and-Bound (LBB)
	GDPopt implementation and optional arguments

	Infeasible Irreducible System (IIS) Tool
	Incidence Analysis
	Overview
	What is Incidence Analysis?
	Why is Incidence Analysis useful?
	Who develops and maintains Incidence Analysis?
	How can I cite Incidence Analysis?

	Incidence Analysis Tutorial
	Debugging a structural singularity with the Dulmage-Mendelsohn partition
	Debugging a numeric singularity using block triangularization
	Solving a square system with a block triangular decomposition

	API Reference
	Pyomo Interfaces
	Maximum Matching
	Weakly Connected Components
	Block Triangularization
	Dulmage-Mendelsohn Partition
	Block Triangular Decomposition Solver

	MindtPy Solver
	MINLP Formulation
	Solve Convex MINLPs
	LP/NLP Based Branch-and-Bound
	Regularized Outer-Approximation
	Solution Pool Implementation
	Feasibility Pump

	Solve Nonconvex MINLPs
	Equality Relaxation
	Augmented Penalty
	Global Outer-Approximation
	Convergence
	Bound Calculation

	MindtPy Implementation and Optional Arguments
	Get Help
	Report a Bug

	MPC
	Overview
	What does this package contain?
	What is the goal of this package?
	Why is this package useful?
	Who develops and maintains this package?

	Examples
	Frequently asked questions

	Multistart Solver
	Using Multistart Solver
	Multistart wrapper implementation and optional arguments

	Nonlinear Preprocessing Transformations
	Variable Aggregator
	Explicit Constraints to Variable Bounds
	Induced Linearity Reformulation
	Constraint Bounds Tightener
	Trivial Constraint Deactivation
	Fixed Variable Detection
	Fixed Variable Equality Propagator
	Variable Bound Equality Propagator
	Variable Midpoint Initializer
	Variable Zero Initializer
	Zero Term Remover
	Variable Bound Remover
	Zero Sum Propagator

	Parameter Estimation with parmest
	Citation for parmest
	Index of parmest documenation
	Overview
	Background

	Installation Instructions
	Python package dependencies
	IPOPT
	Testing

	Parameter Estimation
	Model function
	Data
	Theta names
	Objective function
	Suggested initialization procedure for parameter estimation problems

	Data Reconciliation
	Returned Values

	Covariance Matrix Estimation
	Scenario Creation
	Graphics
	Examples
	Parallel Implementation
	Installation

	API
	parmest
	scenariocreator
	graphics

	Indices and Tables

	PyNumero
	PyNumero Installation
	Method 1
	Method 2

	10 Minutes to PyNumero
	NLP Interfaces
	Linear Solver Interfaces
	Interface to MA27
	Interface to MUMPS

	Block Vectors and Matrices
	MPI-Based Block Vectors and Matrices

	PyNumero API
	PyNumero Block Linear Algebra
	BlockVector

	PyNumero NLP Interfaces
	NLP Interface
	Extended NLP Interface
	ASL NLP Interface
	AMPL NLP Interface
	Pyomo NLP Interface
	Projected NLP Interface
	External Grey Box Model
	Pyomo Grey Box NLP Interface

	PyNumero Linear Solver Interfaces
	Linear Solver Base Classes
	HSL MA27
	HSL MA57
	MUMPS
	Scipy

	Developers
	Packages built on PyNumero
	Papers utilizing PyNumero
	Indices and Tables

	PyROS Solver
	Methodology Overview
	PyROS Required Inputs
	PyROS Solver Interface
	PyROS Uncertainty Sets
	PyROS Uncertainty Set Classes

	PyROS Usage Example
	Step 0: Import Pyomo and the PyROS Module
	Step 1: Define the Deterministic Problem
	Step 2: Define the Uncertainty
	Step 3: Solve with PyROS
	PyROS Termination Conditions
	A Single-Stage Problem
	PyROS Results Object
	A Two-Stage Problem
	The Price of Robustness

	Sensitivity Toolbox
	Using the Sensitivity Toolbox
	Installing sIPOPT and k_aug
	Sensitivity Toolbox Interface

	Trust Region Framework Method Solver
	Methodology Overview
	TRF Inputs
	TRF Solver Interface
	TRF Usage Example
	Step 0: Import Pyomo
	Step 1: Define the external function and its gradient
	Step 2: Create the model
	Step 3: Solve with TRF

	MC++ Interface
	Default Installation
	Manual Installation

	z3 SMT Sat Solver Interface
	Installation
	Using z3 Sat Solver

	Related Packages
	Modeling Extensions
	Solvers and Solution Strategies
	Domain-Specific Applications

	Bibliography
	Indices and Tables
	Pyomo Resources
	Bibliography
	Python Module Index
	Index

